Gradle User Manual
Version 8.10

Version 8.10

Table of Contents

OVERVIEW
Gradle User Manual
The User Manual
RELEASES
Installing Gradle
Compatibility Matrix
The Feature Lifecycle
RUNNING GRADLE BUILDS
CORE CONCEPTS
Gradle Basics
Gradle Wrapper Basics
Command-Line Interface Basics
Settings File Basics
Build File Basics
Dependency Management Basics
Task Basics
Plugin Basics
Gradle Incremental Builds and Build Caching
Build Scans
OTHER TOPICS
Continuous Builds
AUTHORING GRADLE BUILDS
THE BASICS
Gradle Directories
Multi-Project Build Basics
Build Lifecycle
Writing Settings Files
Writing Build Scripts
Using Tasks
Writing Tasks
Using Plugins
Writing Plugins
STRUCTURING BUILDS
Structuring Projects with Gradle
Declaring Dependencies between Subprojects
Sharing Build Logic between Subprojects
Composite Builds

Configuration On Demand

o o0 o U1 U

13
15
19
20
20
22
25
27
28
31
33
36
39
42
45
45
47
48
48
50
38
63
69
86
97
100
120
126
126
132
136
146
155

DEVELOPING TASKS 158

Understanding Tasks 158
Configuring Tasks Lazily 177
Understanding Lazy properties 178
Creating a Property or Provider instance 181
Connecting properties together 182
Working with files 185
Working with task inputs and outputs 188
Working with collections 194
Working with maps 198
Applying a convention to a property 200
Where to apply conventions from? 201
Making a property unmodifiable 206
Using the Provider API 207
Provider Files API Reference 207
Property Files API Reference 208
Lazy Collections API Reference 208
Lazy Objects API Reference 209
Developing Parallel Tasks 209
Advanced Tasks 224
DEVELOPING PLUGINS 240
Understanding Plugins 240
Understanding Implementation Options for Plugins 251
Implementing Pre-compiled Script Plugins 252
Implementing Binary Plugins 260
Testing Gradle plugins 291
Publishing Plugins to the Gradle Plugin Portal 304
OTHER TOPICS 314
Gradle-managed Directories 314
Working With Files 322
Logging 375
Configuring the Build Environment 383
Initialization Scripts 392
Using Shared Build Services 400
Dataflow Actions 409
Testing Build Logic with TestKit 412
Using Ant from Gradle 423
AUTHORING JVM BUILDS 439
Building Java & JVM projects 439
Testing in Java & JVM projects 464

Managing Dependencies of JVM Projects 497

JAVA TOOLCHAINS
Toolchains for JVM projects
Toolchain Resolver Plugins
JVM PLUGINS
The Java Library Plugin
The Application Plugin
The Java Platform Plugin
The Groovy Plugin
The Scala Plugin
WORKING WITH DEPENDENCIES
THE BASICS
Dependency Management
3. Declaring repositories
1. Declaring dependencies
Understanding the difference between libraries and applications
View and Debug Dependencies
Understanding dependency resolution
Verifying dependencies
DECLARING VERSIONS
Declaring Versions and Ranges
Declaring Rich Versions
Handling dynamic versions
Locking dependency versions
CONTROLLING TRANSITIVES
Upgrading versions of transitive dependencies
Downgrading versions and excluding dependencies
Sharing dependency versions between projects
Aligning dependency versions
Handling mutually exclusive dependencies
Fixing metadata with component metadata rules
Customizing resolution of a dependency directly
Preventing accidental dependency upgrades
PRODUCING AND CONSUMING VARIANTS OF LIBRARIES
Declaring Capabilities of a Library
Modeling library features
Understanding variant selection
Working with Variant Attributes
Sharing outputs between projects
Artifact Transforms
PUBLISHING LIBRARIES

Publishing a project as module

502
502
518
521
521
533
540
546
555
567
568
568
571
575
582
583
589
597
623
623
627
630
639
649
649
650
657
680
687
691
714
733
740
740
744
755
773
780
790
811
811

Understanding Gradle Module Metadata 815

Signing artifacts 820
Customizing publishing 821
The Maven Publish Plugin 832
The Ivy Publish Plugin 849
OPTIMIZING BUILD PERFORMANCE 860
Improve the Performance of Gradle Builds 860
Gradle Daemon 880
File System Watching 888
Incremental build 892
Configuration cache 928
Inspecting Gradle Builds 968
USING THE BUILD CACHE 980
Build Cache 980
Use cases for the build cache 993
Build cache performance 996
Important concepts 1000
Caching Java projects 1005
Caching Android projects 1010
Debugging and diagnosing cache misses 1013
Solving common problems 1021
REFERENCE 1031
Command-Line Interface Reference 1031
Gradle Wrapper Reference 1050
Gradle Plugin Reference 1060
Gradle & Third-party Tools 1063
GRADLE DSLs and API 1067
A Groovy Build Script Primer 1067
Gradle Kotlin DSL Primer 1072
LICENSE INFORMATION 1104

License Information 1104

OVERVIEW

Gradle User Manual

Gradle Build Tool

Gradle Build Tool is a fast, dependable, and adaptable open-source build
automation tool with an elegant and extensible declarative build language.

In this User Manual, Gradle Build Tool is abbreviated Gradle.

Why Gradle?

Gradle is a widely used and mature tool with an active community and a strong developer
ecosystem.

* Gradle is the most popular build system for the JVM and is the default system for Android and
Kotlin Multi-Platform projects. It has a rich community plugin ecosystem.

* Gradle can automate a wide range of software build scenarios using either its built-in
functionality, third-party plugins, or custom build logic.

* Gradle provides a high-level, declarative, and expressive build language that makes it easy to
read and write build logic.

» Gradle is fast, scalable, and can build projects of any size and complexity.

* Gradle produces dependable results while benefiting from optimizations such as incremental
builds, build caching, and parallel execution.

Gradle, Inc. provides a free service called Build Scan® that provides extensive information and
insights about your builds. You can view scans to identify problems or share them for debugging
help.

Supported Languages and Frameworks

Gradle supports Android, Java, Kotlin Multiplatform, Groovy, Scala, Javascript, and C/C++.

G § {0 K

Compatible IDEs

All major IDEs support Gradle, including Android Studio, Intelli] IDEA, Visual Studio Code, Eclipse,

https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

and NetBeans.

® 8 0Sx

You can also invoke Gradle via its command-line interface (CLI) in your terminal or through your
continuous integration (CI) server.

Education
The Gradle User Manual is the official documentation for the Gradle Build Tool.

* Getting Started Tutorial — Learn Gradle basics and the benefits of building your App with
Gradle.

* Training Courses — Head over to the courses page to sign up for free Gradle training.

Support

* Forum — The fastest way to get help is through the Gradle Forum.

* Slack — Community members and core contributors answer questions directly on our Slack
Channel.

Licenses

Gradle Build Tool source code is open and licensed under the Apache License 2.0. Gradle user
manual and DSL reference manual are licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

The User Manual

Explore our guides and examples to use Gradle.

Releases

Information on Gradle releases and how to install Gradle is found on the Installation page.

Content
The Gradle User Manual is broken down into the following sections:

Running Gradle Builds

Learn Gradle basics and how to use Gradle to build your project.

Authoring Gradle Builds

Develop tasks and plugins to customize your build.

getting_started_eng.pdf#introduction
https://gradle.org/courses/
https://discuss.gradle.org/
https://gradle-community.slack.com/
https://gradle-community.slack.com/
https://github.com/gradle/gradle/blob/master/LICENSE
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
getting_started_eng.pdf#introduction

Authoring JVM Builds

Use Gradle with your Java project.

Working with Dependencies

Add dependencies to your build.

Optimizing Builds

Use caches to optimize your build and understand the Gradle daemon, incremental builds and
file system watching.

Reference

1. Gradle’s API Javadocs
2. Gradle’s Groovy DSL
3. Gradle’s Kotlin DSL

4. Gradle’s Core Plugins

glossary.pdf#dependency_management_terminology
https://docs.gradle.org/8.10/javadoc/index.html
https://docs.gradle.org/8.10/dsl/index.html
https://docs.gradle.org/8.10/kotlin-dsl/index.html

RELEASES

Installing Gradle

Gradle Installation

If all you want to do is run an existing Gradle project, then you don’t need to install Gradle if the
build uses the Gradle Wrapper. This is identifiable by the presence of the gradlew or gradlew.bat
files in the root of the project:

)
—— gradle

| L—— wrapper @
—— gradlew ®
—— gradlew.bat ®
L—

@ Project root directory.
@ Gradle Wrapper.

® Scripts for executing Gradle builds.

If the gradlew or gradlew.bat files are already present in your project, you do not need to install
Gradle. But you need to make sure your system satisfies Gradle’s prerequisites.

You can follow the steps in the Upgrading Gradle section if you want to update the Gradle version
for your project. Please use the Gradle Wrapper to upgrade Gradle.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately when only working within that IDE.

If you do not meet the criteria above and decide to install Gradle on your machine, first check if
Gradle is already installed by running gradle -v in your terminal. If the command does not return
anything, then Gradle is not installed, and you can follow the instructions below.

You can install Gradle Build Tool on Linux, macOS, or Windows. The installation can be done
manually or using a package manager like SDKMAN! or Homebrew.

You can find all Gradle releases and their checksums on the releases page.

Prerequisites

Gradle runs on all major operating systems. It requires Java Development Kit (JDK) version 8 or
higher to run. You can check the compatibility matrix for more information.

To check, run java -version:

0 java -version

upgrading_version_8.pdf#upgrading_version_8
https://sdkman.io/
https://brew.sh/
https://gradle.org/releases
https://jdk.java.net/

openjdk version "11.0.18" 2023-01-17
OpenJDK Runtime Environment Homebrew (build 11.0.18+0)
Open]DK 64-Bit Server VM Homebrew (build 11.0.18+0, mixed mode)

Gradle uses the JDK it finds in your path, the JDK used by your IDE, or the JDK specified by your
project. In this example, the $PATH points to JDK17:

0 echo $PATH
/opt/homebrew/opt/openjdk@17/bin

You can also set the JAVA_HOME environment variable to point to a specific JDK installation directory.
This is especially useful when multiple JDKs are installed:

0 echo %JAVA_HOME%
C:\Program Files\Java\jdk1.7.0_80

0 echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk-16.jdk/Contents/Home

Gradle supports Kotlin and Groovy as the main build languages. Gradle ships with its own Kotlin
and Groovy libraries, therefore they do not need to be installed. Existing installations are ignored
by Gradle.

See the full compatibility notes for Java, Groovy, Kotlin, and Android.

Linux installation

v Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

0 sdk install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of Gradle
that is incompatible or incomplete when compared to the official version.

v Installing manually

Step 1 - Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

https://kotlinlang.org/
https://groovy-lang.org/
#ex-installing-with-a-package-manager
http://sdkman.io
#ex-installing-manually
https://gradle.org/releases

* Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /opt/gradle

0 unzip -d /opt/gradle gradle-8.10-bin.zip

0 1s /opt/gradle/gradle-8.10

LICENSE NOTICE bin README 1init.d 1ib media
Step 3 - Configure your system environment
To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

0 export PATH=$PATH:/opt/gradle/gradle-8.10/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE _HOME environment variable.

export GRADLE_HOME=/opt/gradle/gradle-8.10
export PATH=${GRADLE_HOME}/bin:${PATH}

macOS installation

v Installing with a package manager

SDKMANT! is a tool for managing parallel versions of multiple Software Development Kits on most
Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

0 sdk install gradle

Using Homebrew:

0 brew install gradle

Using MacPorts:

#ex-installing-with-a-package-manager
http://sdkman.io
http://brew.sh
https://www.macports.org

0 sudo port install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc.

v Installing manually

Step 1- Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /usr/local/gradle

0 unzip gradle-8.10-bin.zip -d /usr/local/gradle
0 ls /usr/local/gradle/gradle-8.10

LICENSE NOTICE README bin init.d 1ib

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

0 export PATH=$PATH:/usr/local/gradle/gradle-8.10/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

It’s a good idea to edit .bash_profile in your home directory to add GRADLE_HOME variable:

export GRADLE_HOME=/usr/local/gradle/gradle-8.10
export PATH=$GRADLE_HOME/bin:$PATH

Windows installation

#ex-installing-manually
https://gradle.org/releases

v Installing manually

Step 1 - Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources
We recommend downloading the bin file.
Step 2 - Unpack the distribution
Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution was
downloaded. Double-click the ZIP archive to expose the content. Drag the content folder gradle-
8.10 to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using the archiver tool of
your choice.

Step 3 - Configure your system environment
To install Gradle, the path to the unpacked files needs to be in your Path.

In File Explorer right-click on the This PC (or Computer) icon, then click Properties — Advanced
System Settings — Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-8.10\bin.
Click OK to save.

Alternatively, you can add the environment variable GRADLE_HOME and point this to the unzipped
distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%\bin to your Path. When upgrading to a different version of Gradle, just change the
GRADLE_HOME environment variable.

Verify the installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

0 gradle -v

Build time: 2024-06-17 18:10:00 UTC
Revision: 6028379bb5a8512d0b2c1be6403543b79825e 08

#ex-installing-manually
https://gradle.org/releases

Kotlin: 1.9.23

Groovy: 3.0.21

Ant: Apache Ant(TM) version 1.10.13 compiled on January 4 2023

Launcher JVM: 11.0.23 (Eclipse Adoptium 11.0.23+9)

Daemon JVM: /Library/Java/JavaVirtualMachines/temurin-11.jdk/Contents/Home (no JDK
specified, using current Java home)

0S: Mac 0S X 14.5 aarch64

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.
Compatibility Matrix

The sections below describe Gradle’s compatibility with several integrations. Versions not listed
here may or may not work.

Java Runtime

Gradle runs on the Java Virtual Machine (JVM), which is often provided by either a JDK or JRE. A
JVM version between 8 and 23 is required to execute Gradle. JVM 24 and later versions are not yet
supported.

Executing the Gradle daemon with JVM 16 or earlier has been deprecated and will become an error
in Gradle 9.0. The Gradle wrapper, Gradle client, Tooling API client, and TestKit client will remain
compatible with JVM 8.

JDK 6 and 7 can be used for compilation. Testing with JVM 6 and 7 is deprecated and will not be
supported in Gradle 9.0.

Any fully supported version of Java can be used for compilation or testing. However, the latest Java
version may only be supported for compilation or testing, not for running Gradle. Support is
achieved using toolchains and applies to all tasks supporting toolchains.

See the table below for the Java version supported by a specific Gradle release:

Table 1. Java Compatibility

Java version Support for toolchains Support for running Gradle
8 N/A 2.0
9 N/A 4.3
10 N/A 4.7
11 N/A 5.0
12 N/A 5.4
13 N/A 6.0
14 N/A 6.3

15 6.7 6.7

https://gradle.org/releases

Java version Support for toolchains Support for running Gradle

16 7.0 7.0
17 7.3 7.3
18 7.5 7.5
19 7.6 7.6
20 8.1 8.3
21 8.4 8.5
22 8.7 8.8
23 8.10 8.10
24 N/A N/A
Kotlin

Gradle is tested with Kotlin 1.6.10 through 2.0.20-Beta2. Beta and RC versions may or may not work.

Table 2. Embedded Kotlin version

Embedded Kotlin version Minimum Gradle version Kotlin Language version
1.3.10 5.0 1.3
1.3.11 5.1 1.3
1.3.20 5.2 1.3
1.3.21 5.3 1.3
1.3.31 5.5 1.3
1.3.41 5.6 1.3
1.3.50 6.0 1.3
1.3.61 6.1 1.3
1.3.70 6.3 1.3
1.3.71 6.4 1.3
1.3.72 6.5 1.3
1.4.20 6.8 1.3
1.4.31 7.0 1.4
1.5.21 7.2 1.4
1.5.31 7.3 1.4
1.6.21 7.5 1.4
1.7.10 7.6 1.4
1.8.10 8.0 1.8

1.8.20 8.2 1.8

Embedded Kotlin version Minimum Gradle version Kotlin Language version

1.9.0 8.3 1.8
1.9.10 8.4 1.8
1.9.20 8.5 1.8
1.9.22 8.7 1.8
1.9.23 8.9 1.8
1.9.24 8.10 1.8
Groovy

Gradle is tested with Groovy 1.5.8 through 4.0.0.

Gradle plugins written in Groovy must use Groovy 3.x for compatibility with Gradle and Groovy
DSL build scripts.

Android

Gradle is tested with Android Gradle Plugin 7.3 through 8.4. Alpha and beta versions may or may
not work.

The Feature Lifecycle

Gradle is under constant development. New versions are delivered on a regular and frequent basis
(approximately every six weeks) as described in the section on end-of-life support.

Continuous improvement combined with frequent delivery allows new features to be available to
users early. Early users provide invaluable feedback, which is incorporated into the development
process.

Getting new functionality into the hands of users regularly is a core value of the Gradle platform.

At the same time, API and feature stability are taken very seriously and considered a core value of
the Gradle platform. Design choices and automated testing are engineered into the development
process and formalized by the section on backward compatibility.

The Gradle feature lifecycle has been designed to meet these goals. It also communicates to users of
Gradle what the state of a feature is. The term feature typically means an API or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and
modes of execution (e.g. the Build Daemon) are two examples of other features.

Feature States

Features can be in one of four states:

1. Internal

2. Incubating

3. Public

4. Deprecated

1. Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself.
They can change in any way at any point in time without any notice. Therefore, we recommend
avoiding the use of such features. Internal features are not documented. If it appears in this User
Manual, the DSL Reference, or the API Reference, then the feature is not internal.

Internal features may evolve into public features.

2. Incubating

Features are introduced in the incubating state to allow real-world feedback to be incorporated into
the feature before making it public. It also gives users willing to test potential future changes early
access.

A feature in an incubating state may change in future Gradle versions until it is no longer
incubating. Changes to incubating features for a Gradle release will be highlighted in the release
notes for that release. The incubation period for new features varies depending on the feature’s
scope, complexity, and nature.

Features in incubation are indicated. In the source code, all methods/properties/classes that are
incubating are annotated with incubating. This results in a special mark for them in the DSL and
API references.

If an incubating feature is discussed in this User Manual, it will be explicitly said to be in the
incubating state.

Feature Preview API

The feature preview API allows certain incubating features to be activated by adding
enableFeaturePreview('FEATURE') in your settings file. Individual preview features will be
announced in release notes.

When incubating features are either promoted to public or removed, the feature preview flags for
them become obsolete, have no effect, and should be removed from the settings file.

3. Public

The default state for a non-internal feature is public. Anything documented in the User Manual, DSL
Reference, or API reference that is not explicitly said to be incubating or deprecated is considered
public. Features are said to be promoted from an incubating state to public. The release notes for
each release indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation.
All public features are subject to the backward compatibility policy.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Incubating.html

4. Deprecated

Some features may be replaced or become irrelevant due to the natural evolution of Gradle. Such
features will eventually be removed from Gradle after being deprecated. A deprecated feature may
become stale until it is finally removed according to the backward compatibility policy.

Deprecated features are indicated to be so. In the source code, all methods/properties/classes that
are deprecated are annotated with “@java.lang.Deprecated” which is reflected in the DSL and API
References. In most cases, there is a replacement for the deprecated element, which will be
described in the documentation. Using a deprecated feature will result in a runtime warning in
Gradle’s output.

The use of deprecated features should be avoided. The release notes for each release indicate any
features being deprecated by the release.

Backward compatibility policy

Gradle provides backward compatibility across major versions (e.g., 1.x, 2.x, etc.). Once a public
feature is introduced in a Gradle release, it will remain indefinitely unless deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported
across major releases, but this is not guaranteed.

Release end-of-life Policy
Every day, a new nightly build of Gradle is created.

This contains all of the changes made through Gradle’s extensive continuous integration tests
during that day. Nightly builds may contain new changes that may or may not be stable.

The Gradle team creates a pre-release distribution called a release candidate (RC) for each minor or
major release. When no problems are found after a short time (usually a week), the release
candidate is promoted to a general availability (GA) release. If a regression is found in the release
candidate, a new RC distribution is created, and the process repeats. Release candidates are
supported for as long as the release window is open, but they are not intended to be used for
production. Bug reports are greatly appreciated during the RC phase.

The Gradle team may create additional patch releases to replace the final release due to critical bug
fixes or regressions. For instance, Gradle 5.2.1 replaces the Gradle 5.2 release.

Once a release candidate has been made, all feature development moves on to the next release for
the latest major version. As such, each minor Gradle release causes the previous minor releases in
the same major version to become end-of-life (EOL). EOL releases do not receive bug fixes or
feature backports.

For major versions, Gradle will backport critical fixes and security fixes to the last minor in the
previous major version. For example, when Gradle 7 was the latest major version, several releases
were made in the 6.x line, including Gradle 6.9 (and subsequent releases).

As such, each major Gradle release causes:

* The previous major version becomes maintenance only. It will only receive critical bug fixes
and security fixes.

* The major version before the previous one to become end-of-life (EOL), and that release line
will not receive any new fixes.

RUNNING GRADLE BUILDS

CORE CONCEPTS

Gradle Basics

Gradle automates building, testing, and deployment of software from information in build
scripts.

Project Gradle
r———=—=—=—=—=) r———————— R
|

|

Test A
TestB
Test C

|
|
|
|
|
: Project_App.JAR
SRS — Ancliroid_:;p.APK
| Gradle_Plugin.ZIP
| Web_App.WAR
|
|
|
|

cl
Server)
Repository

build.gradle

source code

&

Dependencies

Gradle core concepts

Projects

A Gradle project is a piece of software that can be built, such as an application or a library.
Single project builds include a single project called the root project.

Multi-project builds include one root project and any number of subprojects.

Build Scripts

Build scripts detail to Gradle what steps to take to build the project.

Each project can include one or more build scripts.

Dependency Management

Dependency management is an automated technique for declaring and resolving external
resources required by a project.

Each project typically includes a number of external dependencies that Gradle will resolve during
the build.

Tasks

Tasks are a basic unit of work such as compiling code or running your test.

Each project contains one or more tasks defined inside a build script or a plugin.

Plugins

Plugins are used to extend Gradle’s capability and optionally contribute tasks to a project.

Gradle project structure

Many developers will interact with Gradle for the first time through an existing project.

The presence of the gradlew and gradlew.bat files in the root directory of a project is a clear
indicator that Gradle is used.

A Gradle project will look similar to the following:

project
gradle @
| F—— 1libs.versions.toml @
| L—— wrapper
| —— gradle-wrapper.jar
! L—— gradle-wrapper.properties
—— gradlew
[—— gradlew.bat
—— settings.gradle(.kts)
—— subproject-a
| —— build.gradle(.kts)
| L—— src
L—— subproject-b

—— build.gradle(.kts)
L— src

0 o ©900

@ Gradle directory to store wrapper files and more

@ Gradle version catalog for dependency management

® Gradle wrapper scripts

@ Gradle settings file to define a root project name and subprojects

® Gradle build scripts of the two subprojects - subproject-a and subproject-b

® Source code and/or additional files for the projects

Invoking Gradle

IDE

Gradle is built-in to many IDEs including Android Studio, Intelli] IDEA, Visual Studio Code, Eclipse,
and NetBeans.

gradle_ides.pdf#gradle_ides

Gradle can be automatically invoked when you build, clean, or run your app in the IDE.

It is recommended that you consult the manual for the IDE of your choice to learn more about how
Gradle can be used and configured.

Command line

Gradle can be invoked in the command line once installed. For example:

$ gradle build

NOTE Most projects do not use the installed version of Gradle.

Gradle Wrapper

The Wrapper is a script that invokes a declared version of Gradle and is the recommended way to
execute a Gradle build. It is found in the project root directory as a gradlew or gradlew.bat file:

$ gradlew build // Linux or 0SX
$ gradlew.bat build // Windows

Next Step: Learn about the Gradle Wrapper >>

Gradle Wrapper Basics

The recommended way to execute any Gradle build is with the Gradle Wrapper.

Project
===)
|
|

TestB

sub-project-1 Test C

|

|

| build.gradle -
: n| source code Build Flow z;oé(:;t;_A:ng:EK
| Gradle_Plugin.ZIP
|

|

|

|

|

Web_App.WAR

% build.gradle

source code

Plugins Dependencies

The Wrapper script invokes a declared version of Gradle, downloading it beforehand if necessary.

1. Download distribution
Gradle

Build

Server

3. Use distribution 2. Store and unpack distribution

Gradle

User Home

The Wrapper is available as a gradlew or gradlew.bat file.
The Wrapper provides the following benefits:

» Standardizes a project on a given Gradle version.
* Provisions the same Gradle version for different users.

» Provisions the Gradle version for different execution environments (IDEs, CI servers...).

Using the Gradle Wrapper

It is always recommended to execute a build with the Wrapper to ensure a reliable, controlled, and
standardized execution of the build.

Depending on the operating system, you run gradlew or gradlew.bat instead of the gradle command.

Typical Gradle invocation:
$ gradle build

To run the Wrapper on a Linux or OSX machine:
$./gradlew build

To run the Wrapper on Windows PowerShell:
$.\gradlew.bat build

The command is run in the same directory that the Wrapper is located in. If you want to run the
command in a different directory, you must provide the relative path to the Wrapper:

$../gradlew build

The following console output demonstrates the use of the Wrapper on a Windows machine, in the
command prompt (cmd), for a Java-based project:

$ gradlew.bat build

Downloading https://services.gradle.org/distributions/gradle-5.0-all.zip
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-5.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-al\ac2708rbd@ic8ih410r9132mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-5.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

Understanding the Wrapper files

The following files are part of the Gradle Wrapper:

—— gradle

L—— wrapper

|
| —— gradle-wrapper.jar @
| L—— gradle-wrapper.properties @

—— gradlew ®

L—— gradlew.bat @

@ gradle-wrapper.jar: This is a small JAR file that contains the Gradle Wrapper code. It is
responsible for downloading and installing the correct version of Gradle for a project if it’s not
already installed.

@ gradle-wrapper.properties: This file contains configuration properties for the Gradle Wrapper,
such as the distribution URL (where to download Gradle from) and the distribution type (ZIP or
TARBALL).

® gradlew: This is a shell script (Unix-based systems) that acts as a wrapper around gradle-
wrapper.jar. It is used to execute Gradle tasks on Unix-based systems without needing to
manually install Gradle.

@ gradlew.bat: This is a batch script (Windows) that serves the same purpose as gradlew but is used
on Windows systems.

IMPORTANT You should never alter these files.

If you want to view or update the Gradle version of your project, use the command line. Do not edit
the wrapper files manually:

$./gradlew --version
$./gradlew wrapper --gradle-version 7.2

$ gradlew.bat --version
$ gradlew.bat wrapper --gradle-version 7.2

Consult the Gradle Wrapper reference to learn more.

Next Step: Learn about the Gradle CLI >>

Command-Line Interface Basics

The command-line interface is the primary method of interacting with Gradle outside the IDE.

Project Gradle
== m————————
|
| Test A
TestB
: TestC
| [% build.gradle
| Proji
: ject_App.JAR
Build FI
| @ source code ui ow Android_App.APK
| Gradle_Plugin.ZIP
| Web_App.WAR
|
| build.gradle
| / source code
|

Dependencies

Use of the Gradle Wrapper is highly encouraged.

Substitute ./gradlew (in macOS / Linux) or gradlew.bat (in Windows) for gradle in the following
examples.

Executing Gradle on the command line conforms to the following structure:

gradle [taskName...] [--option-name...]

Options are allowed before and after task names.

gradle [--option-name...] [taskName...]
If multiple tasks are specified, you should separate them with a space.
gradle [taskNamel taskName2...] [--option-name...]

Options that accept values can be specified with or without = between the option and argument.
The use of = is recommended.

gradle [...] --console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

gradle [...] --build-cache
gradle [...] --no-build-cache

Many long-form options have short-option equivalents. The following are equivalent:

gradle --help
gradle -h

Command-line usage

The following sections describe the use of the Gradle command-line interface. Some plugins also
add their own command line options.

Executing tasks

To execute a task called taskName on the root project, type:
$ gradle :taskName

This will run the single taskName and all of its dependencies.

Specify options for tasks

To pass an option to a task, prefix the option name with -- after the task name:
$ gradle taskName --exampleOption=exampleValue

Consult the Gradle Command Line Interface reference to learn more.

Next Step: Learn about the Settings file >>

Settings File Basics

The settings file is the entry point of every Gradle project.

Project Gradle
=== A r- - B
|
|

Test A
TestB
Test C

build.gradle s«
Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

=
s &

</»] source code Build Flow

build.gradle s

</»] source code

Plugins Dependencies

The primary purpose of the settings file is to add subprojects to your build.
Gradle supports single and multi-project builds.
* For single-project builds, the settings file is optional.
» For multi-project builds, the settings file is mandatory and declares all subprojects.

Settings script

The settings file is a script. It is either a settings.gradle file written in Groovy or a
settings.gradle.kts file in Kotlin.

The Groovy DSL and the Kotlin DSL are the only accepted languages for Gradle scripts.
The settings file is typically found in the root directory of the project.

Let’s take a look at an example and break it down:

settings.gradle.kts

rootProject.name = "root-project” @

include("sub-project-a") @

https://docs.gradle.org/8.10/dsl/index.html
https://docs.gradle.org/8.10/kotlin-dsl/index.html

include("sub-project-b")
include("sub-project-c")

@ Define the project name.

@ Add subprojects.

settings.gradle
rootProject.name = 'root-project’
include('sub-project-a")
include('sub-project-b")

include('sub-project-c")

@ Define the project name.

@ Add subprojects.

1. Define the project name

The settings file defines your project name:
rootProject.name = "root-project"

There is only one root project per build.
2. Add subprojects

The settings file defines the structure of the project by including subprojects, if there are any:

include("app")
include("business-logic")
include("data-model")

Consult the Writing Settings File page to learn more.

Next Step: Learn about the Build scripts >>

Build File Basics

Generally, a build script details build configuration, tasks, and plugins.

Project Gradle
f———————-
% settings.gradle —H Test A
l TestB
sub-project-1 TestC

|
|
|
|
: [% build.gradle @

: Project_App.JAR
| RSN Ancjiroid_::p.ApK
| Gradle_Plugin.ZIP
|
|
|
|
|

sub-project-2 = ask I Task B Web_App.WAR

% build.gradle @

Dependencies

Every Gradle build comprises at least one build script.
In the build file, two types of dependencies can be added:
1. The libraries and/or plugins on which Gradle and the build script depend.

2. The libraries on which the project sources (i.e., source code) depend.

Build scripts
The build script is either a build.gradle file written in Groovy or a build.gradle.kts file in Kotlin.
The Groovy DSL and the Kotlin DSL are the only accepted languages for Gradle scripts.

Let’s take a look at an example and break it down:

build.gradle.kts

plugins {
id("application") ©)
}

application {
mainClass = "com.example.Main" @

}

@ Add plugins.

@ Use convention properties.

https://docs.gradle.org/8.10/dsl/index.html
https://docs.gradle.org/8.10/kotlin-dsl/index.html

build.gradle

plugins {
id 'application' O
}

application {
mainClass = 'com.example.Main' @

}

@ Add plugins.

@ Use convention properties.

1. Add plugins
Plugins extend Gradle’s functionality and can contribute tasks to a project.
Adding a plugin to a build is called applying a plugin and makes additional functionality available.
plugins {
id("application")
}
The application plugin facilitates creating an executable JVM application.

Applying the Application plugin also implicitly applies the Java plugin. The java plugin adds Java
compilation along with testing and bundling capabilities to a project.

2. Use convention properties

A plugin adds tasks to a project. It also adds properties and methods to a project.

The application plugin defines tasks that package and distribute an application, such as the run
task.

The Application plugin provides a way to declare the main class of a Java application, which is

required to execute the code.

application {
mainClass = "com.example.Main"

}

In this example, the main class (i.e., the point where the program’s execution begins) is
com.example.Main.

Consult the Writing Build Scripts page to learn more.

java_plugin.pdf#java_plugin

Next Step: Learn about Dependency Management >>

Dependency Management Basics

Gradle has built-in support for dependency management.

Project Gradle
=== A r- - R
|
|

settings.gradle —=ﬂ

sub-project-1

Test A
TestB
Test C

build.gradle

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

S2°
s &

/»| source code Build Flow

sub-project-2

a source code

|

|

: |

% build.gradle s |
‘ |

|

Plugins Dependencies

Dependency management is an automated technique for declaring and resolving external
resources required by a project.

Gradle build scripts define the process to build projects that may require external dependencies.
Dependencies refer to JARs, plugins, libraries, or source code that support building your project.

Version Catalog

Version catalogs provide a way to centralize your dependency declarations in a libs.versions.toml
file.

The catalog makes sharing dependencies and version configurations between subprojects simple. It
also allows teams to enforce versions of libraries and plugins in large projects.

The version catalog typically contains four sections:

1. [versions] to declare the version numbers that plugins and libraries will reference.
2. [libraries] to define the libraries used in the build files.
3. [bundles] to define a set of dependencies.

4. [plugins] to define plugins.

[versions]

androidGradlePlugin = "7.4.1"
mockito = "2.16.0"

[libraries]

googleMaterial = { group = "com.google.android.material", name = "material", version =
"1.1.0-alpha05" }

mockitoCore = { module = "org.mockito:mockito-core", version.ref = "mockito" }

[plugins]
androidApplication = { id = "com.android.application", version.ref =
"androidGradlePlugin" }

The file is located in the gradle directory so that it can be used by Gradle and IDEs automatically.
The version catalog should be checked into source control: gradle/libs.versions.toml.

Declaring Your Dependencies

To add a dependency to your project, specify a dependency in the dependencies block of your
build.gradle(.kts) file.

The following build.gradle.kts file adds a plugin and two dependencies to the project using the
version catalog above:

plugins {
alias(libs.plugins.androidApplication) @
}

dependencies {
// Dependency on a remote binary to compile and run the code
implementation(1libs.googleMaterial) @

// Dependency on a remote binary to compile and run the test code
testImplementation(libs.mockitoCore) @

@ Applies the Android Gradle plugin to this project, which adds several features that are specific to
building Android apps.

@ Adds the Material dependency to the project. Material Design provides components for creating
a user interface in an Android App. This library will be used to compile and run the Kotlin
source code in this project.

3 Adds the Mockito dependency to the project. Mockito is a mocking framework for testing Java
code. This library will be used to compile and run the test source code in this project.
Dependencies in Gradle are grouped by configurations.
* The material library is added to the implementation configuration, which is used for compiling
and running production code.

* The mockito-core library is added to the testImplementation configuration, which is used for

compiling and running test code.

NOTE There are many more configurations available.

Viewing Project Dependencies
You can view your dependency tree in the terminal using the ./gradlew :app:dependencies

command:

$./gradlew :app:dependencies

> Task :app:dependencies

Project ':app'

implementation - Implementation only dependencies for source set 'main'. (n)
\--- com.google.android.material:material:1.1.0-alpha@5 (n)

testImplementation - Implementation only dependencies for source set 'test'. (n)
\--- org.mockito:mockito-core:2.16.0 (n)

Consult the Dependency Management chapter to learn more.

Next Step: Learn about Tasks >>

Task Basics

A task represents some independent unit of work that a build performs, such as compiling classes,
creating a JAR, generating Javadoc, or publishing archives to a repository.

glossary.pdf#dependency_management_terminology

Project Gradle
e———————n e m—————
|

|

TestA
TestB
Test C

build.gradle

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

source code Build Flow

Plugins

You run a Gradle build task using the gradle command or by invoking the Gradle Wrapper
(./gradlew or gradlew.bat) in your project directory:

$./gradlew build |

Available tasks
All available tasks in your project come from Gradle plugins and build scripts.

You can list all the available tasks in the project by running the following command in the terminal:

$./gradlew tasks

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

Documentation tasks

Other tasks

compileJava - Compiles main Java source.

Running tasks

The run task is executed with ./gradlew run:

$./gradlew run

> Task :app:compilelava
> Task :app:processResources NO-SOURCE
> Task :app:classes

> Task :app:run
Hello World!

BUILD SUCCESSFUL in 904ms
2 actionable tasks: 2 executed

In this example Java project, the output of the run task is a Hello World statement printed on the
console.

Task dependency

Many times, a task requires another task to run first.

For example, for Gradle to execute the build task, the Java code must first be compiled. Thus, the
build task depends on the compileJava task.

This means that the compileJava task will run before the build task:

$./gradlew build

Task :app:compilelava

Task :app:processResources NO-SOURCE
Task :app:classes

Task :app:jar

Task :app:startScripts

Task :app:distTar

Task :app:distZip

Task :app:assemble

Task :app:compileTestl]ava

Task :app:processTestResources NO-SOURCE

V V V V V V V V V V

> Task :app:testClasses
> Task :app:test

> Task :app:check

> Task :app:build

BUILD SUCCESSFUL in 764ms
7 actionable tasks: 7 executed

Build scripts can optionally define task dependencies. Gradle then automatically determines the
task execution order.

Consult the Task development chapter to learn more.

Next Step: Learn about Plugins >>

Plugin Basics

Gradle is built on a plugin system. Gradle itself is primarily composed of infrastructure, such as a
sophisticated dependency resolution engine. The rest of its functionality comes from plugins.

A plugin is a piece of software that provides additional functionality to the Gradle build system.

Project
m———————
|

|

TestA
TestB
TestC

% build.gradle s«

: Project. JAR
source code Build Flow ject_App

Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

% build.gradle = s

a source code

Plugins Dependencies

Plugins can be applied to a Gradle build script to add new tasks, configurations, or other build-
related capabilities:

The Java Library Plugin - java-library
Used to define and build Java libraries. It compiles Java source code with the compileJava task,

generates Javadoc with the javadoc task, and packages the compiled classes into a JAR file with
the jar task.

The Google Services Gradle Plugin - com.google.gms:google-services

Enables Google APIs and Firebase services in your Android application with a configuration
block called googleServices{} and a task called generateReleaseAssets.

The Gradle Bintray Plugin - com. jfrog.bintray

Allows you to publish artifacts to Bintray by configuring the plugin using the bintray{} block.
Plugin distribution
Plugins are distributed in three ways:

1. Core plugins - Gradle develops and maintains a set of Core Plugins.
2. Community plugins - Gradle’s community shares plugins via the Gradle Plugin Portal.

3. Local plugins - Gradle enables users to create custom plugins using APIs.

Applying plugins
Applying a plugin to a project allows the plugin to extend the project’s capabilities.

You apply plugins in the build script using a plugin id (a globally unique identifier / name) and a
version:

plugins {
id «plugin id» version «plugin version»

}

1. Core plugins

Gradle Core plugins are a set of plugins that are included in the Gradle distribution itself. These
plugins provide essential functionality for building and managing projects.

Some examples of core plugins include:

* java: Provides support for building Java projects.
* groovy: Adds support for compiling and testing Groovy source files.
* ear: Adds support for building EAR files for enterprise applications.
Core plugins are unique in that they provide short names, such as java for the core JavaPlugin,

when applied in build scripts. They also do not require versions. To apply the java plugin to a
project:

build.gradle.kts

plugins {
id("java")
¥

https://plugins.gradle.org
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/JavaPlugin.html

There are many Gradle Core Plugins users can take advantage of.

2. Community plugins

Community plugins are plugins developed by the Gradle community, rather than being part of the
core Gradle distribution. These plugins provide additional functionality that may be specific to
certain use cases or technologies.

The Spring Boot Gradle plugin packages executable JAR or WAR archives, and runs Spring Boot Java
applications.

To apply the org.springframework.boot plugin to a project:

build.gradle.kts

plugins {
id("org.springframework.boot") version "3.1.5"

}

Community plugins can be published at the Gradle Plugin Portal, where other Gradle users can
easily discover and use them.

3. Local plugins

Custom or local plugins are developed and used within a specific project or organization. These
plugins are not shared publicly and are tailored to the specific needs of the project or organization.

Local plugins can encapsulate common build logic, provide integrations with internal systems or
tools, or abstract complex functionality into reusable components.

Gradle provides users with the ability to develop custom plugins using APIs. To create your own
plugin, you’ll typically follow these steps:

1. Define the plugin class: create a new class that implements the Plugin<Project> interface.

// Define a 'HelloPlugin' plugin
class HelloPlugin : Plugin<Project> {
override fun apply(project: Project) {
// Define the 'hello' task
val helloTask = project.tasks.register("hello") {
dolLast {
println("Hello, Gradle!")

}

2. Build and optionally publish your plugin: generate a JAR file containing your plugin code and
optionally publish this JAR to a repository (local or remote) to be used in other projects.

https://plugins.gradle.org/plugin/org.springframework.boot
https://spring.io/
http://plugins.gradle.org/

// Publish the plugin
plugins {
‘maven-publish®

}

publishing {
publications {
create<MavenPublication>("mavenlava") {
from(components["java"])

}
}
repositories {
mavenLocal()
Iy

3. Apply your plugin: when you want to use the plugin, include the plugin ID and version in the
plugins{} block of the build file.

// Apply the plugin
plugins {
id("com.example.hello") version "1.0"

}

Consult the Plugin development chapter to learn more.

Next Step: Learn about Incremental Builds and Build Caching >>

Gradle Incremental Builds and Build Caching

<div class="badge-wrapper">
<a class="badge" href="https://dpeuniversity.gradle.com/app/courses/ec69d0b8-9171-
4969-ac3e-82deal6f87b0/" target="_blank">
LEARN
Incremental Builds and Build Caching with
Gradle > ;

</div>

Gradle uses two main features to reduce build time: incremental builds and build caching.

Project Gradle
r——=-=-=-===) r———————-
|

|

settings.gradle —h

sub-project-1

Test A
TestB
TestC

build.gradle

source code Build Flow

|

|

|

|

|
Project_App.JAR I
Android_App.APK |
Gradle_Plugin.ZIP |
Web_App.WAR |
|

|

|

|

build.gradle

source code

Plugins

Incremental builds

An incremental build is a build that avoids running tasks whose inputs have not changed since the
previous build. Re-executing such tasks is unnecessary if they would only re-produce the same
output.

For incremental builds to work, tasks must define their inputs and outputs. Gradle will determine
whether the input or outputs have changed at build time. If they have changed, Gradle will execute
the task. Otherwise, it will skip execution.

Incremental builds are always enabled, and the best way to see them in action is to turn on verbose
mode. With verbose mode, each task state is labeled during a build:

$./gradlew compileJava --console=verbose

Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
Task :buildSrc:compilePluginsBlocks UP-TO-DATE

Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE

Task :buildSrc:compileKotlin UP-TO-DATE

Task :buildSrc:compileJava NO-SOURCE

Task :buildSrc:compileGroovy NO-SOURCE

Task :buildSrc:pluginDescriptors UP-TO-DATE

Task :buildSrc:processResources UP-TO-DATE

Task :buildSrc:classes UP-TO-DATE

Task :buildSrc:jar UP-TO-DATE

Task :list:compileJava UP-TO-DATE

Task :utilities:compilelava UP-TO-DATE

Task :app:compilelava UP-TO-DATE

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 374ms
12 actionable tasks: 12 up-to-date

When you run a task that has been previously executed and hasn’t changed, then UP-TO-DATE is
printed next to the task.

To permanently enable verbose mode, add org.gradle.console=verbose to your

TIP
gradle.properties file.

Build caching

Incremental Builds are a great optimization that helps avoid work already done. If a developer
continuously changes a single file, there is likely no need to rebuild all the other files in the project.

However, what happens when the same developer switches to a new branch created last week? The
files are rebuilt, even though the developer is building something that has been built before.

This is where a build cache is helpful.

The build cache stores previous build results and restores them when needed. It prevents the
redundant work and cost of executing time-consuming and expensive processes.

When the build cache has been used to repopulate the local directory, the tasks are marked as FROM-
CACHE:

$./gradlew compilelava --build-cache

Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
Task :buildSrc:compilePluginsBlocks UP-TO-DATE

Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE

Task :buildSrc:compileKotlin UP-TO-DATE

Task :buildSrc:compileJava NO-SOURCE

Task :buildSrc:compileGroovy NO-SOURCE

Task :buildSrc:pluginDescriptors UP-TO-DATE

Task :buildSrc:processResources UP-TO-DATE

Task :buildSrc:classes UP-TO-DATE

Task :buildSrc:jar UP-TO-DATE

Task :list:compileJava FROM-CACHE

Task :utilities:compileJava FROM-CACHE

Task :app:compileJava FROM-CACHE

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 364ms
12 actionable tasks: 3 from cache, 9 up-to-date

Once the local directory has been repopulated, the next execution will mark tasks as UP-T0-DATE and
not FROM-CACHE.

The build cache allows you to share and reuse unchanged build and test outputs across teams. This
speeds up local and CI builds since cycles are not wasted re-building binaries unaffected by new
code changes.

Consult the Build cache chapter to learn more.

Next Step: Learn about Build Scans >>

Build Scans

<div class="badge-wrapper">
<a class="badge" href="https://dpeuniversity.gradle.com/app/courses/b5069222-cfd0-
4393-b645-732c¢713853d5/" target="_blank">
LEARN
How to Use Build Scans >

</div>

A build scan is a representation of metadata captured as you run your build.

Project Gradle
———————— e ——————
|

|

Test A
TestB
Test C

build.gradle
Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

</»] source code Build Flow

build.gradle

</»] source code

Plugins

Build Scans

Gradle captures your build metadata and sends it to the Build Scan Service. The service then
transforms the metadata into information you can analyze and share with others.

https://scans.gradle.com/

> C

[] @ Build Scan®@ for 'lab' yesterday X +

&?Gradle Enterprise

O]
i
i
&
EP3
&
i)

Console log
Failure
Deprecations
Timeline
Performance
Tests

Projects
Dependencies
Build dependencies
Plugins
Custom values
Switches

Infrastructure

Delete Build Scan

Request a trial

@& scans.gradle.com/s/ikej32xgkuhhy

@ x lab :app:compilelava Sep 19 2023 15:14:45 PDT

Started yesterday at 15:14:45 PDT, finished yesterday at 15:14:48 PDT

Gradle 8.1.1, Gradle Enterprise plugin 3.12.6
Composite build (1 included build)

Explore console log

1 task failure
The :app:compileJava task failed. View task in console log

Could not resolve all files for configuration ':app:compileClasspath’.

> Could not download support-compat-28.0.0.aar (com.android.support:support-compat:28.0.0)

3
%
»
i
[«
=]
@

> Could not get resource 'https://packages.atlassian.com/maven-external/com/android/support/support-compat/28.0.0/support-compat-28.0.0.aar".
> Could not HEAD 'https://d34y9yti11geow3.cloudfront.net/filestore/d2/d252b640ed832cf8addc35ef0adf9186dc7738a5?response-content-type=application%z

Explore failure

0 build deprecations

This build did not contain any deprecations.

14 tasks executed in 2 projects, 1 failure in 3s, with 10 avoided tasks saving 3.594s

:app:compileJava FAILED

:buildSrc:compileKotlin UP-TO-DATE
:buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE
:buildSrc:compilePluginsBlocks UP-TO-DATE
:buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
:buildSrc:generateScriptPluginAdapters UP-TO-DATE

Explore timeline

2.867s
0.007s
0.003s
0.001s
0.001s
0.001s

The information that scans collect can be an invaluable resource when troubleshooting,

collaborating on, or optimizing the performance of your builds.

For example, with a build scan, it’s no longer necessary to copy and paste error messages or include
all the details about your environment each time you want to ask a question on Stack Overflow,
Slack, or the Gradle Forum. Instead, copy the link to your latest build scan.

&«

@ /% Build Scan® for 'lab' yesterday X +

C & scans.gradle.com/s/ikej32xgkuhhy/failure#1

@Gradle Enterprise

=
=

Summary

Console log

O]

Deprecations
Timeline
Performance

Tests

Projects
Dependencies
Build dependencies
Plugins

Custom values
Switches

Infrastructure

Delete Build Scan

Request a trial

@ x lab :app:compilelava Sep 19 2023 15:14:45 PDT

Failure 1of 1 The :app:compileJava task failed. View task in console log

Could not resolve all files for configuration ':app:compileClasspath’.

> Could not download support-compat-28.0.0.aar (com.android.support:support-compat:28.0.0)

3
X
¥
1]
[«
=
@

> Could not get resource 'https://packages.atlassian.com/maven-external/com/android/support/support-compat/28.0.0/support-compat-28.0.0.aar".
> Could not HEAD 'https://d34y9yt11geow3.cloudfront.net/filestore/d2/d252b640ed832cf8addc35ef0adf9186dc7738a5?response-content-type=application%z

Exception

org.gradle.api.tasks.TaskExecutionException: Execution failed for task ':app:compileJava’.

P at org.gradle.api.internal.tasks.execution.CatchExceptionTaskExecuter.execute(CatchExceptionTaskExecuter.java:38)

Caused by: org.gradle.api.internal.artifacts.ivyservice.DefaultlLenientConfiguration$ArtifactResolveException: Could not resolve all files for conf

b at org.gradle.api.internal.artifacts.configurations.DefaultConfiguration.mapFailure(DefaultConfiguration.java:1716)

Caused by: org.gradle.internal.resolve.ArtifactResolveException: Could not download support-compat-28.0.9.aar (com.android.support:support-compat:

» at org.gradle.api.internal.artifacts.ivyservice.ivyresolve.ErrorHandlingModuleComponentRepository$ErrorHandlingModuleComponentRepositoryAccess

Caused by: org.gradle.api.resources.ResourceException: Could not get resource 'https://packages.atlassian.com/maven-external/com/android/support/s

» at org.gradle.internal.resource.ResourceExceptions.failure(ResourceExceptions.java:74)

Caused by: org.gradle.internal.resource.transport.http.HttpErrorStatusCodeException: Could not HEAD 'https://d34y9ytl11geow3.cloudfront.net/filesto

P at org.gradle.internal.resource.transport.http.HttpClientHelper.processResponse(HttpClientHelper.java:234)

Enable Build Scans

To enable build scans on a gradle command, add --scan to the command line option:

./gradlew build --scan

You may be prompted to agree to the terms to use Build Scans.
Vist the Build Scans page to learn more.

Next Step: Start the Tutorial >>

https://scans.gradle.com/
part1_gradle_init.pdf#part1_gradle_init

OTHER TOPICS

Continuous Builds

Continuous Build allows you to automatically re-execute the requested tasks when file inputs
change. You can execute the build in this mode using the -t or --continuous command-line option.

For example, you can continuously run the test task and all dependent tasks by running:
$ gradle test --continuous

Gradle will behave as if you ran gradle test after a change to sources or tests that contribute to the
requested tasks. This means unrelated changes (such as changes to build scripts) will not trigger a
rebuild. To incorporate build logic changes, the continuous build must be restarted manually.

Continuous build uses file system watching to detect changes to the inputs. If file system watching
does not work on your system, then continuous build won’t work either. In particular, continuous
build does not work when using --no-daemon.

When Gradle detects a change to the inputs, it will not trigger the build immediately. Instead, it will
wait until no additional changes are detected for a certain period of time - the quiet period. You can
configure the quiet period in milliseconds by the Gradle property
org.gradle.continuous.quietperiod.

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be
exited by pressing CTRL-D (On Microsoft Windows, it is required to also press ENTER or RETURN after
CTRL-D).

If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build
process must be terminated (e.g. using the kill command or similar).

If the build is being executed via the Tooling API, the build can be cancelled using the Tooling API’s
cancellation mechanism.
Limitations

Under some circumstances, continuous build may not detect changes to inputs.

Creating input directories

Sometimes, creating an input directory that was previously missing does not trigger a build, due to
the way file system watching works. For example, creating the src/main/java directory may not
trigger a build. Similarly, if the input is a filtered file tree and no files are matching the filter, the
creation of matching files may not trigger a build.

Inputs of untracked tasks

Changes to the inputs of untracked tasks or tasks that have no outputs may not trigger a build.

Changes to files outside of project directories

Gradle only watches for changes to files inside the project directory. Changes to files outside the
project directory will go undetected and not trigger a build.

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs
while executing, Gradle will detect the change and trigger a new build. If every time the task
executes, the inputs are modified again, the build will be triggered again. This isn’t unique to
continuous build. A task that modifies its own inputs will never be considered up-to-date when run
"normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files
reported changed by Gradle. After identifying the file(s) that are changed during each build, you
should look for a task that has that file as an input. In some cases, it may be obvious (e.g., a Java file
is compiled with compileJava). In other cases, you can use --info logging to find the task that is out-
of-date due to the identified files.

AUTHORING GRADLE BUILDS

THE BASICS

Gradle Directories

Gradle uses two main directories to perform and manage its work: the Gradle User Home directory
and the Project Root directory.

Project <Project_Root_Directory> Gradle $GRADLE _USER_HOME

[EpE—
jdks

jdk-14.0.2+12
jck-11.013

wrapper/dists

gradle-8.1.1-all
gradle-8.1.1-bin

0] jak-19.01 gradle-8.3-bin

daemon

Gradle User Home directory

By default, the Gradle User Home (~/.gradle or C:\Users\<USERNAME>\.gradle) stores global
configuration properties, initialization scripts, caches, and log files.

It can be set with the environment variable GRADLE_USER_HOME.
TIP Not to be confused with the GRADLE_HOME, the optional installation directory for Gradle.

It is roughly structured as follows:

@O ©6

0
4.8
I—49
.d
m

y-setup.gradle

—— jdks ®
| ——1
| L— jdk-14.0.2+12

—— wrapper
| L—— dists @
| —
| —— gradle-4.8-bin
| —— gradle-4.9-all
| L—— gradle-4.9-bin
L—— gradle.properties
@ Global cache directory (for everything that is not project-specific).
@ Version-specific caches (e.g., to support incremental builds).
® Shared caches (e.g., for artifacts of dependencies).
@ Registry and logs of the Gradle Daemon.
® Global initialization scripts.
® JDKs downloaded by the toolchain support.
@ Distributions downloaded by the Gradle Wrapper.

Global Gradle configuration properties.

Consult the Gradle Directories reference to learn more.

Project Root directory

The project root directory contains all source files from your project.

It also contains files and directories Gradle generates, such as .gradle and build.

While gradle is usually checked into source control, the build directory contains the output of your
builds as well as transient files Gradle uses to support features like incremental builds.

The anatomy of a typical project root directory looks as follows:

—— .gradle @
@
@

@

| L—— wrapper @
—— gradle.properties
—— gradlew

—— gradlew.bat

—— settings.gradle.kts
—— subproject-one

| —— build.gradle.kts ©
—— subproject-two

@000

®

L—

{ | — build.gradle.kts © 1

@ Project-specific cache directory generated by Gradle.

@ Version-specific caches (e.g., to support incremental builds).

® The build directory of this project into which Gradle generates all build artifacts.
@ Contains the JAR file and configuration of the Gradle Wrapper.

® Project-specific Gradle configuration properties.

® Scripts for executing builds using the Gradle Wrapper.

@ The project’s settings file where the list of subprojects is defined.

Usually, a project is organized into one or multiple subprojects.

© Each subproject has its own Gradle build script.
Consult the Gradle Directories reference to learn more.

Next Step: Learn how to structure Multi-Project Builds >>

Multi-Project Build Basics

Gradle supports multi-project builds.

Project Gradle
r——-=-==== A r————————
|

|

"
@
=
=
@
0
@
2
Q
(=2
o
—J_

TestB
Test C

sub-project-1

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

</»] source code Build Flow

sub-project-2

| |
l l
: |
% build.gradle s | |
I |
|
|
|

a source code

buildSrc

@ build.gradle ras

Plugins Dependencies

While some small projects and monolithic applications may contain a single build file and source
tree, it is often more common for a project to have been split into smaller, interdependent modules.
The word "interdependent" is vital, as you typically want to link the many modules together
through a single build.

Gradle supports this scenario through multi-project builds. This is sometimes referred to as a multi-
module project. Gradle refers to modules as subprojects.

A multi-project build consists of one root project and one or more subprojects.

Multi-Project structure

The following represents the structure of a multi-project build that contains two subprojects:

Generic Multi-Project Build:

% settings.gradle.kts

) ()

The directory structure should look as follows:

—— .gradle

| ——1
—— gradle
| F—— 1ibs.version.toml
| L—— wrapper
—— gradlew
—— gradlew.bat
—— settings.gradle.kts @
—— sub-project-1
| L—— build.gradle.kts @
—— sub-project-2
| L—— build.gradle.kts @
L—— sub-project-3
L—— build.gradle.kts @

® The settings.gradle.kts file should include all subprojects.
@ Each subproject should have its own build.gradle.kts file.

Multi-Project standards

The Gradle community has two standards for multi-project build structures:

1. Multi-Project Builds using buildSrc - where buildSrc is a subproject-like directory at the

Gradle project root containing all the build logic.

2. Composite Builds - a build that includes other builds where build-logic is a build directory at

the Gradle project root containing reusable build logic.

Multi-project Build - using buildSrc:

Composite Build - using includeBuild:

% settings.gradle.kts

O ()
(1,

% settings.gradle.kts

3 B
B

build-logic

[% settings.gradle.kts [%

B build.gradie kts

T ,\

; Sub-project containing reusable build logic

\ Separate build containing reusable build logic
Can be built by Gradle as its own project

1. Multi-Project Builds using buildSrc

Multi-project builds allow you to organize projects with many modules, wire dependencies between
those modules, and easily share common build logic amongst them.

For example, a build that has many modules called mobile-app, web-app, api, 1ib, and documentation
could be structured as follows:

—— gradle
—— gradlew
—— settings.gradle.kts
—— buildSrc
| —— build.gradle.kts
| L—— src/main/kot1lin/shared-build-conventions.gradle.kts
—— mobile-app
| L—— build.gradle.kts
—— web-app
| L—— build.gradle.kts
—— api
| L—— build.gradle.kts
F—— 11ib
| L—— build.gradle.kts
L—— documentation

L—— build.gradle.kts

The modules will have dependencies between them such as web-app and mobile-app depending on

1ib. This means that in order for Gradle to build web-app or mobile-app, it must build 1ib first.
In this example, the root settings file will look as follows:

settings.gradle.kts

include("mobile-app", "web-app", "api", "1ib", "documentation")

NOTE The order in which the subprojects (modules) are included does not matter.

The buildSrc directory is automatically recognized by Gradle. It is a good place to define and
maintain shared configuration or imperative build logic, such as custom tasks or plugins.

buildSrc is automatically included in your build as a special subproject if a build.gradle(.kts) file is
found under buildSrc.

If the java plugin is applied to the buildSrc project, the compiled code from buildSrc/src/main/java
is put in the classpath of the root build script, making it available to any subproject (web-app, mobile-
app, Lib, etc...) in the build.

Consult how to declare dependencies between subprojects to learn more.

2. Composite Builds

Composite Builds, also referred to as included builds, are best for sharing logic between builds (not
subprojects) or isolating access to shared build logic (i.e., convention plugins).

Let’s take the previous example. The logic in buildSrc has been turned into a project that contains
plugins and can be published and worked on independently of the root project build.

The plugin is moved to its own build called build-1logic with a build script and settings file:

—— gradle

—— gradlew

—— settings.gradle.kts
—— build-logic

| —— settings.gradle.kts
| L—— conventions

| —— build.gradle.kts
| L—— src/main/kot1lin/shared-build-conventions.gradle.kts
—— mobile-app

| L—— build.gradle.kts
—— web-app

| L—— build.gradle.kts
—— api

| L—— build.gradle.kts
—— 1ib

| L—— build.gradle.kts
L—— documentation

L—— build.gradle.kts

The fact that build-logic is located in a subdirectory of the root project is irrelevant.

NOTE
The folder could be located outside the root project if desired.

The root settings file includes the entire build-logic build:

settings.gradle.kts

pluginManagement {
includeBuild("build-logic")
¥

include("mobile-app", "web-app", "api", "lib", "documentation")

Consult how to create composite builds with includeBuild to learn more.

Multi-Project path

A project path has the following pattern: it starts with an optional colon, which denotes the root
project.

The root project, :, is the only project in a path not specified by its name.

The rest of a project path is a colon-separated sequence of project names, where the next project is
a subproject of the previous project:

:sub-project-1
You can see the project paths when running gradle projects:

Root project 'project'
+--- Project ':sub-project-1'
\--- Project ':sub-project-2'

Project paths usually reflect the filesystem layout, but there are exceptions. Most notably for
composite builds.

Identifying project structure
You can use the gradle projects command to identify the project structure.

As an example, let’s use a multi-project build with the following structure:

> gradle -q projects

Projects:

Root project 'multiproject'

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared'

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

Multi-project builds are collections of tasks you can run. The difference is that you may want to
control which project’s tasks get executed.

The following sections will cover your two options for executing tasks in a multi-project build.

Executing tasks by name

The command gradle test will execute the test task in any subprojects relative to the current
working directory that has that task.

If you run the command from the root project directory, you will run test in api, shared,
services:shared and services:webservice.

If you run the command from the services project directory, you will only execute the task in
services:shared and services:webservice.

The basic rule behind Gradle’s behavior is to execute all tasks down the hierarchy with this
name. And complain if there is no such task found in any of the subprojects traversed.

Some task selectors, like help or dependencies, will only run the task on the project
NOTE they are invoked on and not on all the subprojects to reduce the amount of
information printed on the screen.

Executing tasks by fully qualified name

You can use a task’s fully qualified name to execute a specific task in a particular subproject. For
example: gradle :services:webservice:build will run the build task of the webservice subproject.

The fully qualified name of a task is its project path plus the task name.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
use the tasks task, e.g. gradle :services:webservice:tasks.

Multi-Project building and testing
The build task is typically used to compile, test, and check a single project.

In multi-project builds, you may often want to do all of these tasks across various projects. The
buildNeeded and buildDependents tasks can help with this.

In this example, the :services:person-service project depends on both the :api and :shared
projects. The :api project also depends on the :shared project.

Assuming you are working on a single project, the :api project, you have been making changes but
have not built the entire project since performing a clean. You want to build any necessary
supporting JARs but only perform code quality and unit tests on the parts of the project you have
changed.

The build task does this:

$ gradle :api:build

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTest]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 0s

If you have just gotten the latest version of the source from your version control system, which
included changes in other projects that :api depends on, you might want to build all the projects
you depend on AND test them too.

The buildNeeded task builds AND tests all the projects from the project dependencies of the
testRuntime configuration:

$ gradle :api:buildNeeded

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTestl]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task :shared:assemble

Task :shared:compileTestJava
Task :shared:processTestResources
Task :shared:test(Classes

Task :shared:test

Task :shared:check

Task :shared:build

Task :shared:buildNeeded

Task :api:buildNeeded

V VvV

BUILD SUCCESSFUL in 0@s

You may want to refactor some part of the :api project used in other projects. If you make these
changes, testing only the :api project is insufficient. You must test all projects that depend on the
:api project.

The buildDependents task tests ALL the projects that have a project dependency (in the testRuntime
configuration) on the specified project:

$ gradle :api:buildDependents

Task :shared:compileJava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources

vV V V V V V

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

V V.V

:api
rapi
:api
rapi
rapi
:api
rapi
:api
rapi

:api

:classes

rjar

:assemble

:compileTestJava
:processTestResources

:testClasses

‘test

:check

:build
:services:person-service:compileJava
:services:person-service:processResources
:services:person-service:classes
:services:person-service:jar
:services:person-service:assemble
:services:person-service:compileTestJava
:services:person-service:processTestResources
:services:person-service:testClasses
:services:person-service:test
:services:person-service:check
:services:person-service:build
:services:person-service:buildDependents
:buildDependents

BUILD SUCCESSFUL in 0s

Finally, you can build and test everything in all projects. Any task you run in the root project folder

will cause that same-named task to be run on all the children.

You can run gradle build to build and test ALL projects.

Consult the Structuring Builds chapter to learn more.

Next Step: Learn about the Gradle Build Lifecycle >>

Build Lifecycle

As a build author, you define tasks and dependencies between tasks. Gradle guarantees that these

tasks will execute in order of their dependencies.

Your build scripts and plugins configure this dependency graph.

For example, if your project tasks include build, assemble, createDocs, your build script(s) can
ensure that they are executed in the order build — assemble — createDoc.

Task Graphs

Gradle builds the task graph before executing any task.

Across all projects in the build, tasks form a Directed Acyclic Graph (DAG).

This diagram shows two example task graphs, one abstract and the other concrete, with
dependencies between tasks represented as arrows:

Generic task graph Partial task graph for a standard Java build

€

I
I
I
|
«»

N
Depends on

‘ assemble '

T

Both plugins and build scripts contribute to the task graph via the task dependency mechanism and
annotated inputs/outputs.

Build Phases

A Gradle build has three distinct phases.

1. INITIALIZATION PHASE gmwy 2. CONFIGURATION PHASE gy 3. EXECUTION PHASE

Gradle runs these phases in order:

Phase 1. Initialization
* Detects the settings.gradle(.kts) file.

* Creates a Settings instance.

» Evaluates the settings file to determine which projects (and included builds) make up the
build.

* Creates a Project instance for every project.

http://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html

Phase 2. Configuration
 Evaluates the build scripts, build.gradle(.kts), of every project participating in the build.

* Creates a task graph for requested tasks.

Phase 3. Execution

* Schedules and executes the selected tasks.
* Dependencies between tasks determine execution order.

» Execution of tasks can occur in parallel.

% settings.gradle.kts ¢ d BUiId LifecyCIe

O,

c o
S 2
g &
= include("subProject1") Project()
-*é’ Settings() ———> include("subProject2") —> Project() _/\
- includeBuild("build-logic") Project()
A~

c o @build.gradle.kts
".c:) 8 'TaskF’

<
Sa X —- build.gradle.kts ¢ J
g) /_ (0 . <
2
c .
o Task B Task C Task D % build.gradle.kts
S

depends on

o
53— @ETHE @D O - ———
=

<
& D~~~ D -~ D~~~
L

Example

The following example shows which parts of settings and build files correspond to various build

phases:

settings.gradle.kts

rootProject.name = "basic"
println("This is executed during the initialization phase.")

build.gradle.kts

println("This is executed during the configuration phase.")

tasks.register("configured") {
println("This is also executed during the configuration phase, because
:configured is used in the build.")

}

tasks.register("test") {
dolLast {
println("This is executed during the execution phase.")
}
}

tasks.register("testBoth") {
doFirst {
println("This is executed first during the execution phase.")

}
dolLast {

println("This is executed last during the execution phase.")
}

println("This is executed during the configuration phase as well, because
:testBoth is used in the build.")

}

settings.gradle

rootProject.name = 'basic’
println 'This is executed during the initialization phase.'

build.gradle
println 'This is executed during the configuration phase.'

tasks.register('configured') {
println 'This is also executed during the configuration phase, because
:configured is used in the build.'

}

tasks.register('test") {
dolast {
println 'This is executed during the execution phase.'

}
}
tasks.register('testBoth') {
doFirst {
println 'This is executed first during the execution phase.'
}

dolLast {

println 'This is executed last during the execution phase.'

}

println 'This is executed during the configuration phase as well, because
:testBoth is used in the build.'
}

The following command executes the test and testBoth tasks specified above. Because Gradle only
configures requested tasks and their dependencies, the configured task never configures:

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Phase 1. Initialization

In the initialization phase, Gradle detects the set of projects (root and subprojects) and included
builds participating in the build.

Gradle first evaluates the settings file, settings.gradle(.kts), and instantiates a Settings object.
Then, Gradle instantiates Project instances for each project.

Phase 2. Configuration

In the configuration phase, Gradle adds tasks and other properties to the projects found by the
initialization phase.

Phase 3. Execution
In the execution phase, Gradle runs tasks.

Gradle uses the task execution graphs generated by the configuration phase to determine which
tasks to execute.

Next Step: Learn how to write Settings files >>

Writing Settings Files

The settings file is the entry point of every Gradle build.

settings.gradle(.kts) Gradle API

pluginManagement {

-ﬁ org.gradle.plugin.management.PluginManagementSpec

| |
repositories { 1- I
) | -- void repositories(Action<RepositoryHandler> repositoriesAction) |
gradlePluginPortal() | |

}
) I I
| |
plugins { 4+ -@mm org.gradle.plugin.use.PluginDependenciesSpec |
) id("org.gradle. toolchains™) : -- PluginDependencySpec id(java.lang.String id) :
. ; I a= i . . . I
rootProject.name = “my-project” € — T ~wmB org.gradle.api.initialization.ProjectDescriptor |
. | -- void setName(java.lang.String name) |
dependencyResolutionManagement { (—_ | |
repositories { L.o= |
mavenCentral() I -= org.gradle.api.initialization.Settings I
, } | -- void repositories(Action<RepositoryHandler> repositoryConfiguration)]
| |
include("“sub-project”) ‘I--ﬁ org.gradle.api.initialization.Settings |
: -- default void include(java.lang.String... projectPaths) :
e e J

Early in the Gradle Build lifecycle, the initialization phase finds the settings file in your project root
directory.

When the settings file settings.gradle(.kts) is found, Gradle instantiates a Settings object.

One of the purposes of the Settings object is to allow you to declare all the projects to be included in
the build.

https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html

Settings Scripts

The settings script is either a settings.gradle file in Groovy or a settings.gradle.kts file in Kotlin.

Before Gradle assembles the projects for a build, it creates a Settings instance and executes the
settings file against it.

[% settings.gradle(.kts)

As the settings script executes, it configures this Settings. Therefore, the settings file defines the
Settings object.

There is a one-to-one correspondence between a Settings instance and a

IMPORTANT
settings.gradle(.kts) file.

The Settings Object

The Settings object is part of the Gradle API.

* In the Groovy DSL, the Settings object documentation is found here.

* In the Kotlin DSL, the Settings object documentation is found here.
Many top-level properties and blocks in a settings script are part of the Settings API.
For example, we can set the root project name in the settings script using the Settings.rootProject
property:

settings.rootProject.name = "root"

Which is usually shortened to:

rootProject.name = "root"

Standard Settings properties

The Settings object exposes a standard set of properties in your settings script.

The following table lists a few commonly used properties:

Name Description
buildCache The build cache configuration.

plugins The container of plugins that have been applied to the settings.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/Settings.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.10/kotlin-dsl/gradle/org.gradle.api.initialization/-settings/index.html

Name Description

rootDir The root directory of the build. The root directory is the project directory of the root
project.

rootProjec The root project of the build.
t

settings Returns this settings object.

The following table lists a few commonly used methods:

Name Description
include() Adds the given projects to the build.
includeBuild() Includes a build at the specified path to the composite build.

Settings Script structure

A Settings script is a series of method calls to the Gradle API that often use { -+ }, a special
shortcut in both the Groovy and Kotlin languages. A { } block is called a lambda in Kotlin or a
closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
id("plugin")
3]

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The settings file is composed of Gradle API calls built on top of the DSLs. Gradle executes the script
line by line, top to bottom.

Let’s take a look at an example and break it down:

settings.gradle.kts

pluginManagement { O]
repositories {
gradlePluginPortal()
google()

https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

}
plugins { @
id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"

}

rootProject.name = "root-project”

dependencyResolutionManagement { @
repositories {
mavenCentral()
}
}
include("sub-project-a") ®

include("sub-project-b")
include("sub-project-c")

@ Define the location of plugins

@ Apply settings plugins.

® Define the root project name.

@ Define dependency resolution strategies.

® Add subprojects to the build.

settings.gradle

pluginManagement { O)
repositories {
gradlePluginPortal()
google()

}

plugins { @
id 'org.gradle.toolchains.foojay-resolver-convention' version '0.8.0'

¥
rootProject.name = 'root-project’

dependencyResolutionManagement {
repositories {
mavenCentral()
}
}

include('sub-project-a') ®
include('sub-project-b")

include('sub-project-c"')

@ Define the location of plugins.

@ Apply settings plugins.

® Define the root project name.

@ Define dependency resolution strategies.

® Add subprojects to the build.

1. Define the location of plugins

The settings file can optionally manage plugin versions and repositories for your build with
pluginManagement It provides a centralized way to define which plugins should be used in your
project and from which repositories they should be resolved.

pluginManagement {
repositories {
gradlePluginPortal()
google()

2. Apply settings plugins

The settings file can optionally apply plugins that are required for configuring the settings of the
project. These are commonly the Develocity plugin and the Toolchain Resolver plugin in the
example below.

Plugins applied in the settings file only affect the Settings object.

plugins {
id("org.gradle.toolchains.foojay-resolver-convention") version "0.8.0"

}

3. Define the root project name

The settings file defines your project name using the rootProject.name property:

rootProject.name = "root-project”

There is only one root project per build.

https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/management/PluginManagementSpec.html
https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html
https://plugins.gradle.org/plugin/com.gradle.develocity
https://plugins.gradle.org/plugin/org.gradle.toolchains.foojay-resolver-convention
https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/ProjectDescriptor.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

4. Define dependency resolution strategies
The settings file can optionally define rules and configurations for dependency resolution across

your project(s). It provides a centralized way to manage and customize dependency resolution.

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.PREFER_PROJECT)
repositories {
mavenCentral()

}

You can also include version catalogs in this section.

5. Add subprojects to the build

The settings file defines the structure of the project by adding all the subprojects using the include
statement:

include("app")
include("business-logic")
include("data-model")

You can also include entire builds using includeBuild.

Settings File Scripting

There are many more properties and methods on the Settings object that you can use to configure
your build.

It’s important to remember that while many Gradle scripts are typically written in short Groovy or
Kotlin syntax, every item in the settings script is essentially invoking a method on the Settings
object in the Gradle API:

include("app")
Is actually:
settings.include("app")

Additionally, the full power of the Groovy and Kotlin languages is available to you.

For example, instead of using include many times to add subprojects, you can iterate over the list of
directories in the project root folder and include them automatically:

rootDir.listFiles().filter { it.isDirectory && (new File(it,

https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/resolve/DependencyResolutionManagement.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/Settings.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/IncludedBuild.html

"build.gradle.kts").exists()) }.forEach {
include(it.name)

TIP This type of logic should be developed in a plugin.
Next Step: Learn how to write Build scripts >>

Writing Build Scripts

The initialization phase in the Gradle Build lifecycle finds the root project and subprojects included
in your project root directory using the settings file.

build.gradle(.kts)

plugins { ——-ﬁ org.gradle.plugin.use.PluginDependenciesSpec
) id("application”) -- PluginDependencySpec id(java.lang.String id)

repositories { — T —mmm org.gradle.api.artifacts.dsl.RepositoryHandler
mavenCentral() -- MavenArtifactRepository mavenCentral()
}
dependencies { <€ — T -@8 org.gradle.api.artifacts.dsl.DependencyHandler
) implementation(”com.google.guava:guava:32.1.1-jre") -- @Nullable Dependency add(java.lang.String configurationName)
application { — T -8B org.gradle.api.plugins.JavaApplication
) mainClass = “com.example.Main -- Property<java.lang.String> getMainClass()
tasks.named<Test>("test") { -T -ﬁ org.gradle.api.tasks.TaskContainer

useJUnitPlatform()

, -- public void useJUnitPlatform()

Then, for each project included in the settings file, Gradle creates a Project instance.

Gradle then looks for a corresponding build script file, which is used in the configuration phase.

Build Scripts
Every Gradle build comprises one or more projects; a root project and subprojects.

A project typically corresponds to a software component that needs to be built, like a library or an
application. It might represent a library JAR, a web application, or a distribution ZIP assembled
from the JARs produced by other projects.

On the other hand, it might represent a thing to be done, such as deploying your application to
staging or production environments.

Gradle scripts are written in either Groovy DSL or Kotlin DSL (domain-specific language).

A build script configures a project and is associated with an object of type Project.

https://docs.gradle.org/8.10/javadocorg/gradle/api/Project.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html

% build.gradle(.kts)

As the build script executes, it configures Project.

The build script is either a *.gradle file in Groovy or a *.gradle.kts file in Kotlin.

IMPORTANT Build scripts configure Project objects and their children.

The Project object

The Project object is part of the Gradle API:

* In the Groovy DSL, the Project object documentation is found here.

¢ In the Kotlin DSL, the Project object documentation is found here.
Many top-level properties and blocks in a build script are part of the Project API.

For example, the following build script uses the Project.name property to print the name of the
project:

build.gradle.kts

println(name)
println(project.name)

build.gradle

println name
println project.name

$ gradle -q check
project-api
project-api

Both println statements print out the same property.

The first uses the top-level reference to the name property of the Project object. The second
statement uses the project property available to any build script, which returns the associated
Project object.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.10/kotlin-dsl/gradle/org.gradle.api/-project/index.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

Standard project properties

The Project object exposes a standard set of properties in your build script.

The following table lists a few commonly used properties:

Name Type Description

name String The name of the project directory.

path String The fully qualified name of the project.
description String A description for the project.

dependencies DependencyHandler Returns the dependency handler of the project.

repositories RepositoryHandler Returns the repository handler of the project.

layout Projectlayout Provides access to several important locations for a project.
group Object The group of this project.
version Object The version of this project.

The following table lists a few commonly used methods:

Name Description
uri() Resolves a file path to a URI, relative to the project directory of this project.
task() Creates a Task with the given name and adds it to this project.

Build Script structure

The Build script is composed of { ‘- }, a special object in both Groovy and Kotlin. This object is
called a lambda in Kotlin or a closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
id("plugin")
)

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The build script is essentially composed of Gradle API calls built on top of the DSLs. Gradle executes
the script line by line, top to bottom.

Let’s take a look at an example and break it down:

https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle.kts

plugins {
id("org.jetbrains.kotlin.jvm") version "1.9.0"
id("application")

}

repositories {
mavenCentral()

}

dependencies {
testImplementation("org.jetbrains.kotlin:kotlin-test-junit5")
testImplementation("org.junit.jupiter:junit-jupiter-engine:5.9.3")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
implementation("com.google.guava:quava:32.1.1-jre")

}

application {
mainClass = "com.example.Main"

}

tasks.named<Test>("test") {
useJUnitPlatform()

}

@ Apply plugins to the build.

@ Define the locations where dependencies can be found.
® Add dependencies.

@ Set properties.

® Register and configure tasks.

build.gradle

plugins {
id 'org.jetbrains.kotlin.jvm' version '1.9.0'
id 'application’

}

repositories {
mavenCentral()

}

dependencies {
testImplementation 'org.jetbrains.kotlin:kotlin-test-junit5'
testImplementation 'org.junit.jupiter:junit-jupiter-engine:5.9.3"

testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
implementation 'com.google.guava:quava:32.1.1-jre’

}

application { @
mainClass = 'com.example.Main'

}

tasks.named('test') { ®
useJUnitPlatform()

}

@ Apply plugins to the build.

@ Define the locations where dependencies can be found.
® Add dependencies.

@ Set properties.

® Register and configure tasks.

1. Apply plugins to the build

Plugins are used to extend Gradle. They are also used to modularize and reuse project
configurations.

Plugins can be applied using the PluginDependenciesSpec plugins script block.

The plugins block is preferred:

plugins {
id("org.jetbrains.kotlin.jvm") version "1.9.0"
id("application")

In the example, the application plugin, which is included with Gradle, has been applied, describing
our project as a Java application.

The Kotlin gradle plugin, version 1.9.0, has also been applied. This plugin is not included with
Gradle and, therefore, has to be described using a plugin id and a plugin version so that Gradle can
find and apply it.

2. Define the locations where dependencies can be found

A project generally has a number of dependencies it needs to do its work. Dependencies include
plugins, libraries, or components that Gradle must download for the build to succeed.

The build script lets Gradle know where to look for the binaries of the dependencies. More than one
location can be provided:

repositories {
mavenCentral()
google()

In the example, the guava library and the JetBrains Kotlin plugin (org.jetbrains.kotlin.jvm) will be
downloaded from the Maven Central Repository.

3. Add dependencies

A project generally has a number of dependencies it needs to do its work. These dependencies are
often libraries of precompiled classes that are imported in the project’s source code.

Dependencies are managed via configurations and are retrieved from repositories.

Use the DependencyHandler returned by Project.getDependencies() method to manage the
dependencies. Use the RepositoryHandler returned by Project.getRepositories() method to manage
the repositories.

dependencies {
implementation("com.google.guava:quava:32.1.1-jre")

}

In the example, the application code uses Google’s guava libraries. Guava provides utility methods
for collections, caching, primitives support, concurrency, common annotations, string processing,
I/0, and validations.

4. Set properties

A plugin can add properties and methods to a project using extensions.

The Project object has an associated ExtensionContainer object that contains all the settings and
properties for the plugins that have been applied to the project.

In the example, the application plugin added an application property, which is used to detail the

main class of our Java application:

application {
mainClass = "com.example.Main"

}

5. Register and configure tasks

Tasks perform some basic piece of work, such as compiling classes, or running unit tests, or zipping
up a WAR file.

While tasks are typically defined in plugins, you may need to register or configure tasks in build

https://repo.maven.apache.org/maven2/
glossary.pdf#sub:terminology_configuration
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/ExtensionContainer.html

scripts.
Registering a task adds the task to your project.

You can register tasks in a project using the TaskContainer.register(java.lang.String) method:

tasks.register<Zip>("zip-reports") {
from 'Reports/’
include '*'
archiveName 'Reports.zip'
destinationDir(file('/dir"))

You may have seen usage of the TaskContainer.create(java.lang.String) method which should be
avoided:

tasks.create<Zip>("zip-reports") {
from 'Reports/’
include '*'
archiveName 'Reports.zip'
destinationDir(file('/dir'))

TIP register (), which enables task configuration avoidance, is preferred over create().

You can locate a task to configure it using the TaskCollection.named(java.lang.String) method:

tasks.named<Test>("test") {
useJUnitPlatform()
}

The example below configures the Javadoc task to automatically generate HTML documentation
from Java code:

tasks.named("javadoc").configure {
exclude 'app/Internal*.java'
exclude 'app/internal/*'
exclude 'app/internal/*'

Build Scripting

A build script is made up of zero or more statements and script blocks:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html
task_configuration_avoidance.pdf#task_configuration_avoidance
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.javadoc.Javadoc.html

println(project.layout.projectDirectory);

Statements can include method calls, property assignments, and local variable definitions:

version = '1.0.0.GA'

A script block is a method call which takes a closure/lambda as a parameter:

configurations {

}

The closure/lambda configures some delegate object as it executes:

repositories {
google()
}

A build script is also a Groovy or a Kotlin script:

build.gradle.kts

tasks.register("upper") {
dolast {
val someString = "mY_nAmE"
println("Original: $someString")
println("Upper case: ${someString.toUpperCase()}")

build.gradle

tasks.register('upper') {
dolLast {
String someString = 'mY_nAmE'
println "Original: $someString"
println "Upper case: ${someString.toUpperCase()}"

$ gradle -q upper

Original: mY_nAmE
Upper case: MY_NAME

It can contain elements allowed in a Groovy or Kotlin script, such as method definitions and class
definitions:

build.gradle.kts

tasks.register("count") {
dolast {
repeat(4) { print("$it ") }
}

build.gradle

tasks.register('count') {
dolast {
4.times { print "¢it " }
}

Flexible task registration

Using the capabilities of the Groovy or Kotlin language, you can register multiple tasks in a loop:

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")

}

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {
dolast {
println "I'm task number $counter"

}

$ gradle -q task1l
I'm task number 1

Declare Variables

Build scripts can declare two variables: local variables and extra properties.

Local Variables

Declare local variables with the val keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Kotlin language.

Declare local variables with the def keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Groovy language.

build.gradle.kts
val dest = "dest"
tasks.register<Copy>("copy") {

from("source")
into(dest)

build.gradle
def dest = 'dest'
tasks.register('copy', Copy) {

from 'source'
into dest

Extra Properties

Gradle’s enhanced objects, including projects, tasks, and source sets, can hold user-defined
properties.

Add, read, and set extra properties via the owning object’s extra property. Alternatively, you can
access extra properties via Kotlin delegated properties using by extra.

Add, read, and set extra properties via the owning object’s ext property. Alternatively, you can use
an ext block to add multiple properties simultaneously.

build.gradle.kts

plugins {
id("java-library")
¥

val springVersion by extra("3.1.0.RELEASE")
val emailNotification by extra { "build@emaster.org" }

sourceSets.all { extra["purpose"] = null }

sourceSets {
main {

extra["purpose"] = "production”
}
test {
extra["purpose"] = "test"
}
create("plugin") {
extra["purpose"] = "production”

}
}

tasks.register("printProperties") {
val springVersion = springVersion
val emailNotification = emailNotification
val productionSourceSets = provider {

sourceSets.matching { it.extra["purpose"] == "production" }.map {
it.name }
}
dolast {
println(springVersion)
println(emailNotification)
productionSourceSets.get().forEach { println(it) }
}

build.gradle

plugins {
id 'java-library'
}
ext {
springVersion = "3.1.0.RELEASE"
emailNotification = "build@emaster.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {

main {

purpose = "production”
}
test {

purpose = "test"
}
plugin {

purpose = "production”
}

}

tasks.register('printProperties') {
def springVersion = springVersion
def emailNotification = emailNotification
def productionSourceSets = provider {

sourceSets.matching { it.purpose == "production” }.collect { it.name
¥
}
dolLast {
println springVersion
println emailNotification
productionSourceSets.get().each { println it }
}
}

$ gradle -q printProperties
3.1.0.RELEASE
build@emaster.org

main

plugin

This example adds two extra properties to the project object via by extra. Additionally, this

example adds a property named purpose to each source set by setting extra["purpose”] to null. Once
added, you can read and set these properties via extra.

This example adds two extra properties to the project object via an ext block. Additionally, this
example adds a property named purpose to each source set by setting ext.purpose to null. Once
added, you can read and set all these properties just like predefined ones.

Gradle requires special syntax for adding a property so that it can fail fast. For example, this allows
Gradle to recognize when a script attempts to set a property that does not exist. You can access
extra properties anywhere where you can access their owning object. This gives extra properties a
wider scope than local variables. Subprojects can access extra properties on their parent projects.

For more information about extra properties, see ExtraPropertiesExtension in the API
documentation.

Configure Arbitrary Objects

The example greet() task shows an example of arbitrary object configuration:

build.gradle.kts

class UserInfo(
var name: String? = null,
var email: String? = null

tasks.register("greet") {
val user = UserInfo().apply {
name = "Isaac Newton"
email = "isaac@newton.me"

Iy
dolLast {
println(user.name)
println(user.email)
}
}
build.gradle

class UserInfo {
String name
String email

}

tasks.register('greet') {
def user = configure(new UserInfo()) {
name = "Isaac Newton"

https://docs.gradle.org/8.10/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

email = "isaac@newton.me"

}
dolLast {
println user.name
println user.email
}

$ gradle -q greet
Isaac Newton
isaac@newton.me

Closure Delegates

Each closure has a delegate object. Groovy uses this delegate to look up variable and method
references to nonlocal variables and closure parameters. Gradle uses this for configuration closures,
where the delegate object refers to the object being configured.

build.gradle

dependencies {
assert delegate == project.dependencies
testImplementation('junit:junit:4.13")
delegate.testImplementation('junit:junit:4.13")

Default imports
To make build scripts more concise, Gradle automatically adds a set of import statements to scripts.

As a result, instead of writing throw new org.gradle.api.tasks.StopExecutionException(), you can
write throw new StopExecutionException() instead.

Gradle implicitly adds the following imports to each script:

Gradle default imports

import org.gradle.*

import org.gradle.api.*

import org.gradle.api.artifacts.*

import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

api
api
api

api.
.artifacts.type.*
.artifacts.verification.*
.attributes.*
.attributes.java.*
.attributes.plugin.*
.cache.”*

.capabilities.*
.component.*
.configuration.*
.credentials.*
.distribution.*
.distribution.plugins.*
api.
file.*

api
api
api
api
api
api
api
api
api
api
api
api

api

api.
.initialization.*

api

api.
.initialization.dsl.*
.initialization.resolve.*
.invocation.*
.java.archives.*

.jvm.*

.launcher.cli.*
.logging.*
.logging.configuration.*
.model.*

.plugins.*
.plugins.antlr.*
.plugins.catalog.*
.plugins.jvm.*
.plugins.quality.*
.plugins.scala.*
.problems.*

.project.*

.provider.*

.publish.*
.publish.ivy.*
.publish.ivy.plugins.*
.publish.ivy.tasks.*
.publish.maven.*
.publish.maven.plugins.*
.publish.maven.tasks.*
.publish.plugins.*
.publish.tasks.*
.reflect.*

.reporting.*
.reporting.components.*

api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api

.artifacts.query.*
.artifacts.repositories.*
.artifacts.result.*

artifacts.transform.*

execution.*

flow.*

initialization.definition.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org

org

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
org.
.gradle
org.
.gradle
org.
org.
org.
org.
org.
org.
org.
org.

gradle
gradle

gradle
gradle
gradle
gradle
gradle
gradle
gradle
gradle

api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api.
api
api.
api
api.
api
api
api
api

.1de.
.ide.
.ide.
.1de.
.ide.
.1de.
Jvy.
.jvm.
.jvm.
.jvm.
.jvm.
.jvm.

tasks

tasks

tasks

.reporting.dependencies.*
.reporting.dependents.*
.reporting.model.*
.reporting.plugins.*
.resources.”*

.services.*

.Specs.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.
.tasks.

*

*

ant.*

application.*

bundling.*

compile.*

diagnostics.*
diagnostics.configurations.*
incremental.*

javadoc.*

.options.*
.tasks.
.testing.*
.tasks.
.testing.junitplatform.*
.tasks.
.tasks.
.tasks

scala.*
testing.junit.*

testing.testng.*
util.*

.wrapper.*
.toolchain.management.*
authentication.*
authentication.aws.*
authentication.http.*
build.event.*
buildconfiguration.tasks.*
buildinit.*
buildinit.plugins.*
buildinit.tasks.*
caching.*
caching.configuration.*
caching.http.*
caching.local.*
concurrent.”*
external.javadoc.*

visualstudio.*
visualstudio.plugins.*
visualstudio.tasks.*

xcode,
xcode.
xcode,

*

*

*

plugins.*
tasks.*

application.scripts.*
application.tasks.*

tasks.

*

toolchain.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

lanquage.*

lanquage.assembler.*

language.assembler.plugins.*
lanquage.assembler.tasks.*

lanquage.base.*

language.base.artifact.*
lanquage.base.compile.*
language.base.plugins.*
lanquage.base.sources.*

lanquage.c.*

lanquage.c.plugins.*

lanquage.c.task
lanquage.cpp.*

SR

lanquage.cpp.plugins.*

lanquage.cpp.tasks.*

lanquage.java.artifact.*

language.jvm.tasks.*

language.nativeplatform.*
lanquage.nativeplatform.tasks.*
language.objectivec.*
lanquage.objectivec.plugins.*
language.objectivec.tasks.*
lanquage.objectivecpp.*
lanquage.objectivecpp.plugins.*
language.objectivecpp.tasks.*

lanquage.plugin
lanquage.rc.*

S*

lanquage.rc.plugins.*

language.rc.tasks.*

lanquage.scala.
lanquage.swift.
language.swift.
lanquage.swift.
maven.*

model.*

nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.
nativeplatform.

tasks.*

*

plugins.*
tasks.*

*

platform.*
plugins.*
tasks.*

test.
test.
test.
test.
test.
test.
test.
test.
test.
test.
test.
test.

*

cpp.*
cpp.plugins.*
cunit.*
cunit.plugins.*
cunit.tasks.*
googletest.*
googletest.plugins.™
plugins.*
tasks.*

xctest.*
xctest.plugins.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

Using Tasks

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle
gradle.

nativepl
nativepl
nativepl
normaliz

platform.

platform
platform
platform
platform
plugin.d
plugin.d
plugin.d
plugin.m
plugin.u
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
plugins.
process.
swiftpm.
swiftpm.
swiftpm.
testing.
testing.
testing.
testing.
testing.
testkit.
util.*
ves.*
ves.git.

.work.*

workers.

atform.test.xctest.tasks.*
atform.toolchain.*
atform.toolchain.plugins.*
ation.*

*

.base.*

.base.binary.*
.base.component.*
.base.plugins.*

evel.*

evel.plugins.*
evel.tasks.*
anagement.*

se.*

ear.*

ear.descriptor.*

ide.*

ide.api.*

ide.eclipse.*
ide.idea.*

signing.*
signing.signatory.*
signing.signatory.pgp.*
signing.type.*
signing.type.pgp.*

*

*

plugins.*

tasks.*

base.*
base.plugins.*
jacoco.plugins.*
jacoco.tasks.*
jacoco.tasks.rules.*
runner.*

*

*

Next Step: Learn how to use Tasks >>

The work that Gradle can do on a project is defined by one or more tasks.

SubProjectB

build.gradle

— = 1. TASK NAME
A ‘ E/Z S
@ 'tasks.register('generateReport', Task) {
doLast {

file.text = ${results}
println "Generated file: ${file.path}"

}

dependsOn tasks.assemble

1 — - 3. TASK GROUP / DESCRIPTION

@ tasks.register('docFilesJar', Jar) {
group = 'documentation’ (
description = 'Generate documentation.'’
archiveVersion = null
archiveFileName = 'doc-files.jar'
from 'src/main/template’

} . —=- 5. TASK CONFIGURATION

tasks.named('jar', Jaf) {
from docFilesdar € — — — — — — — — — — — —_————

}

A task represents some independent unit of work that a build performs. This might be compiling
some classes, creating a JAR, generating Javadoc, or publishing some archives to a repository.

When a user runs ./gradlew build in the command line, Gradle will execute the build task along
with any other tasks it depends on.

List available tasks

Gradle provides several default tasks for a project, which are listed by running ./gradlew tasks:

> Task :tasks

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project
"myTutorial’.

Tasks either come from build scripts or plugins.

Once we apply a plugin to our project, such as the application plugin, additional tasks become
available:

build.gradle.kts

plugins {
id("application")
}

$./gradlew tasks

> Task :tasks

Tasks runnable from project ':app

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

Other tasks

compileJava - Compiles main Java source.

Many of these tasks, such as assemble, build, and run, should be familiar to a developer.

Task classification
There are two classes of tasks that can be executed:

1. Actionable tasks have some action(s) attached to do work in your build: compileJava.

2. Lifecycle tasks are tasks with no actions attached: assemble, build.

Typically, a lifecycle tasks depends on many actionable tasks, and is used to execute many tasks at
once.

Task registration and action

Let’s take a look at a simple "Hello World" task in a build script:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
}

build.gradle

tasks.register('hello') {
dolLast {
println "Hello world!"

}

In the example, the build script registers a single task called hello using the TaskContainer API,
and adds an action to it.

If the tasks in the project are listed, the hello task is available to Gradle:

$./gradlew app:tasks --all

> Task :app:tasks

Tasks runnable from project ':app'

compileJava - Compiles main Java source.

compileTest]ava - Compiles test Java source.

hello

processResources - Processes main resources.

processTestResources - Processes test resources.

startScripts - Creates 0S-specific scripts to run the project as a JVM application.

You can execute the task in the build script with ./gradlew hello:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html

$./gradlew hello
Hello world!

When Gradle executes the hello task, it executes the action provided. In this case, the action is
simply a block containing some code: println("Hello world!").

Task group and description

The hello task from the previous section can be detailed with a description and assigned to a
group with the following update:

build.gradle.kts
tasks.register("hello") {
group = "Custom"
description = "A lovely greeting task."
dolast {

println("Hello world!")
}

Once the task is assigned to a group, it will be listed by ./gradlew tasks:

$./gradlew tasks
> Task :tasks
Custom tasks

hello - A lovely greeting task.
To view information about a task, use the help --task <task-name>command:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
Task (org.gradle.api.Task)

Options

--rerun Causes the task to be re-run even if up-to-date.

Description
A lovely greeting task.

Group
Custom

As we can see, the hello task belongs to the custom group.

Task dependencies

You can declare tasks that depend on other tasks:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
}
}

tasks.register("intro") {
dependsOn("hello")
dolast {
println("I'm Gradle")

}

build.gradle

tasks.register('hello') {
dolLast {
println 'Hello world!’
}
}

tasks.register('intro') {
dependsOn tasks.hello
dolast {
println "I'm Gradle"

}

$ gradle -q intro
Hello world!

I'm Gradle

The dependency of taskX to taskY may be declared before taskY is defined:

build.gradle.kts

tasks.register("taskX") {
dependsOn("taskY")
dolast {
println("taskX")
}

}
tasks.register("taskY") {

dolLast {
println("taskY")
}

build.gradle

tasks.register('taskX') {
dependsOn 'taskY'
dolast {
println 'taskX'

}
}
tasks.register('taskY') {
dolast {
println 'taskY'
}
}

$ gradle -q taskX
tasky
taskX

The hello task from the previous example is updated to include a dependency:

build.gradle.kts

tasks.register("hello") {
group = "Custom"

description = "A lovely greeting task."
dolast {

println("Hello world!")
}

dependsOn(tasks.assemble)

The hello task now depends on the assemble task, which means that Gradle must execute the
assemble task before it can execute the hello task:

$./gradlew :app:hello

Task :app:compilelava UP-TO-DATE
Task :app:processResources NO-SOURCE
Task :app:classes UP-TO-DATE

Task :app:jar UP-TO-DATE

Task :app:startScripts UP-TO-DATE
Task :app:distTar UP-TO-DATE

Task :app:distZip UP-TO-DATE

Task :app:assemble UP-TO-DATE

V V V V V V V V

> Task :app:hello
Hello world!

Task configuration

Once registered, tasks can be accessed via the TaskProvider API for further configuration.

For instance, you can use this to add dependencies to a task at runtime dynamically:

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")
}
}

}
tasks.named("task@") { dependsOn("task2", "task3") }

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskProvider.html

dolast {
println "I'm task number $counter"
}
}

}
tasks.named('task@') { dependsOn('task2', '"task3') }

$ gradle -q tasko
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello Earth")

}
}
tasks.named("hello") {
doFirst {
println("Hello Venus")
}
}
tasks.named("hello") {
dolast {
println("Hello Mars")
}
}
tasks.named("hello") {
dolast {
println("Hello Jupiter")
}
}
build.gradle

tasks.register('hello') {
doLast {
println 'Hello Earth'

}

tasks.named('hello") {
doFirst {
println 'Hello Venus'

}
+
tasks.named('hello') {
dolast {
println 'Hello Mars'
}
+
tasks.named('hello') {
dolLast {
println 'Hello Jupiter'
}
}

$ gradle -q hello
Hello Venus

Hello Earth

Hello Mars

Hello Jupiter

The calls doFirst and doLast can be executed multiple times. They add an action to the
TIP beginning or the end of the task’s actions list. When the task executes, the actions in
the action list are executed in order.

Here is an example of the named method being used to configure a task added by a plugin:

tasks.named("dokkaHtml") {
outputDirectory.set(buildDir.resolve("dokka"))
+

Task types

Gradle tasks are a subclass of Task.
In the build script, the HelloTask class is created by extending DefaultTask:

build.gradle.kts

// Extend the DefaultTask class to create a HelloTask class
abstract class HelloTask : DefaultTask() {
@TaskAction
fun hello() {
println("hello from HelloTask")

}

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/DefaultTask.html

}

// Register the hello Task with type HelloTask
tasks.register<HelloTask>("hello") {

group = "Custom tasks"

description = "A lovely greeting task."

The hello task is registered with the type HelloTask.

Executing our new hello task:

$./gradlew hello

> Task :app:hello
hello from HelloTask

Now the hello task is of type HelloTask instead of type Task.

The Gradle help task reveals the change:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
HelloTask (Build_gradle$HelloTask)

Options
--rerun Causes the task to be re-run even if up-to-date.

Description
A Tovely greeting task.

Group
Custom tasks

Built-in task types

Gradle provides many built-in task types with common and popular functionality, such as copying
or deleting files.

This example task copies *.war files from the source directory to the target directory using the Copy
built-in task:

tasks.register("copyTask",Copy) {
from("source")
into("target")
include("*.war")

There are many task types developers can take advantage of, including GroovyDoc, Zip, Jar,
JacocoReport, Sign, or Delete, which are available in the link:DSI..

Next Step: Learn how to write Tasks >>

Writing Tasks
Gradle tasks are created by extending DefaultTask.

However, the generic DefaultTask provides no action for Gradle. If users want to extend the
capabilities of Gradle and their build script, they must either use a built-in task or create a custom
task:

1. Built-in task - Gradle provides built-in utility tasks such as Copy, Jar, Zip, Delete, etc...

2. Custom task - Gradle allows users to subclass DefaultTask to create their own task types.

Create a task
The simplest and quickest way to create a custom task is in a build script:
To create a task, inherit from the DefaultTask class and implement a @TaskAction handler:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@TaskAction
fun action() {
val file = File("myfile.txt")
file.createNewFile()
file.writeText("HELLO FROM MY TASK")

The CreateFileTask implements a simple set of actions. First, a file called "myfile.txt" is created in
the main project. Then, some text is written to the file.

Register a task

A task is registered in the build script using the TaskContainer.register() method, which allows it
to be then used in the build logic.

https://docs.gradle.org/8.10/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskAction.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@TaskAction
fun action() {
val file = File("myfile.txt")
file.createNewFile()
file.writeText("HELLO FROM MY TASK")

}

tasks.register<CreateFileTask>("createFileTask")

Task group and description

Setting the group and description properties on your tasks can help users understand how to use
your task:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@TaskAction
fun action() {
val file = File("myfile.txt")
file.createNewFile()
file.writeText("HELLO FROM MY TASK")

}

tasks.register<CreateFileTask>("createFileTask",) {
group = "custom"
description = "Create myfile.txt in the current directory"

Once a task is added to a group, it is visible when listing tasks.

Task input and outputs
For the task to do useful work, it typically needs some inputs. A task typically produces outputs.

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@Input

val fileText = "HELLO FROM MY TASK"

@Input
val fileName

"myfile.txt"

@0utputFile

val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText)

}

tasks.register<CreateFileTask>("createFileTask") {
group = "custom"
description = "Create myfile.txt in the current directory"

Configure a task
A task is optionally configured in a build script using the TaskCollection.named() method.
The CreateFileTask class is updated so that the text in the file is configurable:

build.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@get:Input
abstract val fileText: Property<String>

@Input
val fileName = "myfile.txt"

@0utputFile
val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText.qget())

}

tasks.register<CreateFileTask>("createFileTask") {
group = "custom"
description = "Create myfile.txt in the current directory"
fileText.convention("HELLO FROM THE CREATE FILE TASK METHOD") // Set convention
}

tasks.named<CreateFileTask>("createFileTask") {
fileText.set("HELLO FROM THE NAMED METHOD") // Override with custom message
+

In the named() method, we find the createFileTask task and set the text that will be written to the

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskCollection.html

file.

When the task is executed:

$./gradlew createFileTask
> Configure project :app
> Task :app:createFileTask

BUILD SUCCESSFUL in 5s
2 actionable tasks: 1 executed, 1 up-to-date

A text file called myfile.txt is created in the project root folder:

myfile.txt

HELLO FROM THE NAMED METHOD

Consult the Developing Gradle Tasks chapter to learn more.

Next Step: Learn how to use Plugins >>

Using Plugins

Much of Gradle’s functionality is delivered via plugins, including core plugins distributed with
Gradle, third-party plugins, and script plugins defined within builds.

Plugins introduce new tasks (e.g., JavaCompile), domain objects (e.g., SourceSet), conventions (e.g.,
locating Java source at src/main/java), and extend core or other plugin objects.

Plugins in Gradle are essential for automating common build tasks, integrating with external tools
or services, and tailoring the build process to meet specific project needs. They also serve as the
primary mechanism for organizing build logic.

Benefits of plugins

Writing many tasks and duplicating configuration blocks in build scripts can get messy. Plugins
offer several advantages over adding logic directly to the build script:

* Promotes Reusability: Reduces the need to duplicate similar logic across projects.
* Enhances Modularity: Allows for a more modular and organized build script.

* Encapsulates Logic: Keeps imperative logic separate, enabling more declarative build scripts.

Plugin distribution

You can leverage plugins from Gradle and the Gradle community or create your own.

Plugins are available in three ways:

1. Core plugins - Gradle develops and maintains a set of Core Plugins.

2. Community plugins - Gradle plugins shared in a remote repository such as Maven or the
Gradle Plugin Portal.

3. Local plugins - Gradle enables users to create custom plugins using APIs.

Types of plugins
Plugins can be implemented as binary plugins, precompiled script plugins, or script plugins:

Binary Plugins
Binary plugins are compiled plugins typically written in Java or Kotlin DSL that are packaged as

JAR files. They are applied to a project using the plugins {} block. They offer better performance
and maintainability compared to script plugins or precompiled script plugins.

Precompiled Script Plugins

Precompiled script plugins are Groovy DSL or Kotlin DSL scripts compiled and distributed as
Java class files packaged in a library. They are applied to a project using the plugins {} block.
They provide a way to reuse complex logic across projects and allow for better organization of
build logic.

Script Plugins

Script plugins are Groovy DSL or Kotlin DSL scripts that are applied directly to a Gradle build
script using the apply from: syntax. They are applied inline within a build script to add
functionality or customize the build process. They are simple to use.

A plugin often starts as a script plugin (because they are easy to write). Then, as the code becomes
more valuable, it’s migrated to a binary plugin that can be easily tested and shared between
multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

1. Resolving a plugin means finding the correct version of the JAR that contains a given plugin
and adding it to the script classpath. Once a plugin is resolved, its API can be used in a build
script. Script plugins are self-resolving in that they are resolved from the specific file path or
URL provided when applying them. Core binary plugins provided as part of the Gradle
distribution are automatically resolved.

2. Applying a plugin means executing the plugin’s Plugin.apply(T) on a project.
The plugins DSL is recommended to resolve and apply plugins in one step.

Resolving plugins

Gradle provides the core plugins (e.g., JavaPlugin, GroovyPlugin, MavenPublishPlugin, etc.) as part of

https://plugins.gradle.org
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html#apply-T-

its distribution, which means they are automatically resolved.

Core plugins are applied in a build script using the plugin name:

plugins {
id «plugin name»

}

For example:

build.gradle

plugins {
id("java")
}

Non-core plugins must be resolved before they can be applied. Non-core plugins are identified by a
unique ID and a version in the build file:

plugins {
id «plugin id» version «plugin version»

}

And the location of the plugin must be specified in the settings file:

settings.gradle

pluginManagement {
repositories {
gradlePluginPortal()
maven {
url 'https://maven.example.com/plugins’

}

There are additional considerations for resolving and applying plugins:

To Use For example:
1 Apply a core, community or The plugins block _
local plugin to a specific in the build file plugins {
project.

id("org.barfuin.gradle.taskinfo")
version "2.1.0"

}

To

2 Apply common core,
community or local plugin to
multiple subprojects.

3 Apply a core, community or
local plugin needed for the
build script itself.

4 Apply a local script plugins.

1. Applying plugins using the plugins{} block

Use

A build script in
the buildSrc
directory

The buildscript
block in the build
file

The legacy apply()

method in the
build file

For example:

plugins {

id("org.barfuin.gradle.taskinfo")
version "2.1.0"

}

repositories {
mavenCentral()

}

dependencies {

implementation(Libs.Kotlin.corouti
nes)

}

buildscript {
repositories {
maven {
url =
uri("https://plugins.gradle.org/m2
/")
}
}

dependencies {

classpath("org.barfuin.gradle.task
info:gradle-taskinfo:2.1.0")
}

}
plugins {

id("org.barfuin.gradle.taskinfo")
version "2.1.0"

}

apply(plugin =
"org.barfuin.gradle.taskinfo")
apply<MyPlugin>()

The plugin DSL provides a concise and convenient way to declare plugin dependencies.

The plugins block configures an instance of PluginDependenciesSpec:

plugins {

https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

application // by name
java // by name
id("java") // by id - recommended
id("org.jetbrains.kotlin.jvm") version "1.9.0" // by id - recommended

Core Gradle plugins are unique in that they provide short names, such as java for the core
JavaPlugin.

To apply a core plugin, the short name can be used:

build.gradle.kts

plugins {
java

}

build.gradle

plugins {
id 'java'

}

All other binary plugins must use the fully qualified form of the plugin id (e.g., com.github.foo.bar).

To apply a community plugin from Gradle plugin portal, the fully qualified plugin id, a globally
unique identifier, must be used:

build.gradle.kts

plugins {
id("org.springframework.boot") version "3.3.1"

}

build.gradle

plugins {
id 'org.springframework.boot' version '3.3.1'

}

https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://plugins.gradle.org

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

The plugins DSL provides a convenient syntax for users and the ability for Gradle to determine
which plugins are used quickly. This allows Gradle to:

» Optimize the loading and reuse of plugin classes.

* Provide editors with detailed information about the potential properties and values in the build
script.

However, the DSL requires that plugins be defined statically.

There are some key differences between the plugins {} block mechanism and the "traditional”
apply() method mechanism. There are also some constraints and possible limitations.

Constrained Syntax
The plugins {} block does not support arbitrary code.

It is constrained to be idempotent (produce the same result every time) and side effect-free (safe for
Gradle to execute at any time).

The form is:

build.gradle.kts

plugins {
id(«plugin id») @
id(«plugin id») version «plugin version» @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

build.gradle

plugins {
id «plugin id» @
id «plugin id» version «plugin version» @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

Where «plugin id» and «plugin version» are a string.
Where «plugin id» and «plugin version» must be constant, literal strings.

The plugins{} block must also be a top-level statement in the build script. It cannot be nested inside
another construct (e.g., an if-statement or for-loop).

Only in build scripts and settings file

The plugins{} block can only be used in a project’s build script build.gradle(.kts) and the
settings.gradle(.kts) file. It must appear before any other block. It cannot be used in script plugins
or init scripts.

Applying plugins to all subprojects

Suppose you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build but not to the root project.

While the default behavior of the plugins{} block is to immediately resolve and apply the plugins,
you can use the apply false syntax to tell Gradle not to apply the plugin to the current project.
Then, use the plugins{} block without the version in subprojects' build scripts:

settings.gradle.kts

include("hello-a")
include("hello-b")
include("goodbye-c")

build.gradle.kts

plugins {
id("com.example.hello") version "1.0.0" apply false
id("com.example.goodbye") version "1.0.0" apply false

hello-a/build.gradle.kts

plugins {
id("com.example.hello")

}

hello-b/build.gradle.kts

plugins {
id("com.example.hello")

}

goodbye-c/build.gradle.kts

plugins {
id("com.example.goodbye")

}

settings.gradle

include 'hello-a'
include 'hello-b'
include 'goodbye-c'

build.gradle

plugins {
id 'com.example.hello' version '1.0.0' apply false
id 'com.example.goodbye' version '1.0.0"' apply false

hello-a/build.gradle

plugins {
id 'com.example.hello'

}

hello-b/build.gradle

plugins {
id 'com.example.hello'

}

goodbye-c/build.gradle

plugins {
id 'com.example.goodbye'

}

You can also encapsulate the versions of external plugins by composing the build logic using your
own convention plugins.

2. Applying plugins from the buildSrc directory

buildSrc is an optional directory at the Gradle project root that contains build logic (i.e., plugins)
used in building the main project. You can apply plugins that reside in a project’s buildSrc directory

as long as they have a defined ID.

The following example shows how to tie the plugin implementation class my.MyPlugin, defined in
buildSrc, to the id "my-plugin™:

buildSrc/build.gradle.kts

plugins {
‘java-gradle-plugin®
}

gradlePlugin {
plugins {
create("myPlugins") {
id = "my-plugin”
implementationClass = "my.MyPlugin"

buildSrc/build.gradle

plugins {
id 'java-gradle-plugin’
}

gradlePlugin {
plugins {
myPlugins {
id = 'my-plugin’
implementationClass = "my.MyPlugin’

The plugin can then be applied by ID:

build.gradle.kts

plugins {
id("my-plugin")
¥

build.gradle

plugins {
id 'my-plugin’
}

3. Applying plugins using the buildscript{} block

The buildscript block is used for:

1. global dependencies and repositories required for building the project (applied in the
subprojects).

2. declaring which plugins are available for use in the build script (in the build.gradle(.kts) file
itself).

So when you want to use a library in the build script itself, you must add this library on the script
classpath using buildScript:

import org.apache.commons.codec.binary.Base64

buildscript {
repositories { // this is where the plugins are located
mavenCentral()
google()
}
dependencies { // these are the plugins that can be used in subprojects or in the
build file itself
classpath group: 'commons-codec', name: 'commons-codec', version: '1.2"' //
used in the task below
classpath 'com.android.tools.build:gradle:4.1.0" // used in subproject

}

tasks.register('encode') {
dolast {
def byte[] encodedString = new Base64().encode('hello world\n'.getBytes())
println new String(encodedString)

And you can apply the globally declared dependencies in the subproject that needs it:

plugins {
id 'com.android.application’

}

Binary plugins published as external jar files can be added to a project by adding the plugin to the
build script classpath and then applying the plugin.

External jars can be added to the build script classpath using the buildscript{} block as described
in External dependencies for the build script:

build.gradle.kts

buildscript {
repositories {
gradlePluginPortal()
}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:3.3.1")

}
}

apply(plugin = "org.springframework.boot")

build.gradle

buildscript {
repositories {
gradlePluginPortal()
}

dependencies {
classpath 'org.springframework.boot:spring-boot-gradle-plugin:3.3.1"

}
}

apply plugin: 'org.springframework.boot’

4. Applying script plugins using the legacy apply() method

A script plugin is an ad-hoc plugin, typically written and applied in the same build script. It is
applied using the legacy application method:

class MyPlugin : Plugin<Project> {
override fun apply(project: Project) {
println("Plugin ${this.javaClass.simpleName} applied on ${project.name}")

}

apply<MyPlugin>()

Let’s take a rudimentary example of a plugin written in a file called other.gradle located in the
same directory as the build.gradle file:

public class Other implements Plugin<Project> {
@Override
void apply(Project project) {
// Does something

}

First, import the external file using:
apply from: 'other.gradle'
Then you can apply it:
apply plugin: Other

Script plugins are automatically resolved and can be applied from a script on the local filesystem or
remotely:

build.gradle.kts

apply(from = "other.gradle.kts")

build.gradle

apply from: 'other.gradle'

Filesystem locations are relative to the project directory, while remote script locations are specified
with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

Plugin Management

The pluginManagement{} block is used to configure repositories for plugin resolution and to define
version constraints for plugins that are applied in the build scripts.

The pluginManagement{} block can be used in a settings.gradle(.kts) file, where it must be the first

block in the file:

settings.gradle.kts

pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {
}
}

rootProject.name = "plugin-management”

settings.gradle

pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {
}
}

rootProject.name = 'plugin-management’

The block can also be used in Initialization Script:

init.gradle.kts

settingsEvaluated {
pluginManagement {
plugins {
}
resolutionStrategy {

}
repositories {

}

init.gradle

settingsEvaluated { settings ->
settings.pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {

}

Custom Plugin Repositories

By default, the plugins{} DSL resolves plugins from the public Gradle Plugin Portal.

Many build authors would also like to resolve plugins from private Maven or Ivy repositories
because they contain proprietary implementation details or to have more control over what
plugins are available to their builds.

To specify custom plugin repositories, use the repositories{} block inside pluginManagement{}:

settings.gradle.kts

pluginManagement {
repositories {

maven(url = "./maven-repo")
gradlePluginPortal()
ivy(url = "./ivy-repo")
hy
}
settings.gradle

pluginManagement {
repositories {
maven {
url './maven-repo’
}
gradlePluginPortal()
ivy {
url './ivy-repo’

}

https://plugins.gradle.org

This tells Gradle to first look in the Maven repository at ../maven-repo when resolving plugins and
then to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you
don’t want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the
Ivy repository at ../ivy-repo will be checked.

Plugin Version Management

A plugins{} block inside pluginManagement{} allows all plugin versions for the build to be defined in
a single location. Plugins can then be applied by id to any build script via the plugins{} block.

One benefit of setting plugin versions this way is that the pluginManagement.plugins{} does not have
the same constrained syntax as the build script plugins{} block. This allows plugin versions to be
taken from gradle.properties, or loaded via another mechanism.

Managing plugin versions via pluginManagement:

settings.gradle.kts

pluginManagement {
val helloPluginVersion: String by settings
plugins {
id("com.example.hello") version "${helloPluginVersion}"
}
}

build.gradle.kts
plugins {

id("com.example.hello")

}

gradle.properties

helloPluginVersion=1.0.0

settings.gradle

pluginManagement {
plugins {
id 'com.example.hello' version "${helloPluginVersion}"

}

build.gradle

plugins {
id 'com.example.hello'

}

gradle.properties

helloPluginVersion=1.0.0

The plugin version is loaded from gradle.properties and configured in the settings script, allowing
the plugin to be added to any project without specifying the version.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins{} blocks, e.g., changing
the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy{} inside the pluginManagement{} block:

settings.gradle.kts

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == "com.example") {
useModule("com.example:sample-plugins:1.0.0")
}
}
}
repositories {
maven {
url = uri("./maven-repo")
}
gradlePluginPortal()
ivy {
url = uri("./ivy-repo")

}

settings.gradle

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == 'com.example') {
useModule('com.example:sample-plugins:1.0.0")

}
}
}
repositories {
maven {
url './maven-repo’

}
gradlePluginPortal()
ivy {

url './ivy-repo’

}

This tells Gradle to use the specified plugin implementation artifact instead of its built-in default
mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts and the artifacts
that implement the plugin. Read Gradle Plugin Development Plugin for more information on
publishing plugins to custom repositories.

See PluginManagementSpec for complete documentation for using the pluginManagement{} block.

Plugin Marker Artifacts

Since the plugins{} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact.

To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
a com.example.hello plugin and a com.example.goodbye plugin to both an Ivy and Maven repository
using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish
plugin.

java_gradle_plugin.pdf#java_gradle_plugin
https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/management/PluginManagementSpec.html
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

build.gradle.kts

plugins {
‘java-gradle-plugin’
‘maven-publish®
“ivy-publish®

}

group = "com.example"
version = "1.0.0"

gradlePlugin {
plugins {
create("hello") {
id = "com.example.hello"
implementationClass = "com.example.hello.HelloPlugin"
}
create("qoodbye") {
id = "com.example.goodbye"
implementationClass = "com.example.goodbye.GoodbyePlugin"

}

publishing {
repositories {
maven {
url = uri(layout.buildDirectory.dir("maven-repo"))

}
ivy {
url = uri(layout.buildDirectory.dir("ivy-repo"))
}
}
}
build.gradle
plugins {
id 'java-gradle-plugin’
id 'maven-publish’
id 'ivy-publish'
}

group 'com.example’
version '1.0.0'

gradlePlugin {

plugins {
hello {
id = 'com.example.hello’
implementationClass = 'com.example.hello.HelloPlugin'

}
goodbye {

id = 'com.example.goodbye'

implementationClass = 'com.example.goodbye.GoodbyePlugin'
¥

}

publishing {
repositories {
maven {
url layout.buildDirectory.dir("maven-repo")

}
ivy {

url layout.buildDirectory.dir("ivy-repo")
}

Running gradle publish in the sample directory creates the following Maven repository layout (the
Ivy layout is similar):

] —

maven-repo

groupld com.example.goodbye groupld com.example.hello
artifactld com.example.goodbye.gradle.plugin artifactld com.example.hello.gradle.plugin
version 1.0.0 version 1.0.0

groupld com.example
artifactld samplee.plugin
version 1.0.0

sample-plugins-1.0.0.jar

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugin DSL due to
restrictions in how it currently works.

build.gradle.kts

apply(plugin = "java")

build.gradle

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name "java" to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:

build.gradle.kts

apply<JavaPlugin>()

build.gradle

apply plugin: JavaPlugin

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports).

Furthermore, one needs to append the ::class suffix to identify a class literal in Kotlin instead of
.class in Java.

Furthermore, it is unnecessary to append .class to identify a class literal in Groovy as it is in Java.

Using a Version Catalog
When a project uses a version catalog, plugins can be referenced via aliases when applied.

Let’s take a look at a simple Version Catalog:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/JavaPlugin.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/JavaPlugin.html

gradle/libs.versions.toml

[versions]
intellij-plugin = "1.6"

[plugins]

jetbrains-intellij = { id = "org.jetbrains.intellij", version.ref = "intellij-plugin"

}

Then a plugin can be applied to any build script using the alias method:

build.gradle.kts
plugins {
alias(libs.plugins.jetbrains.intellij)
}
TIP jetbrains-intellij is available as the Gradle generated safe accessor:

jetbrains.intellij.

Next Step: Learn how to write Plugins >>

Writing Plugins

If Gradle or the Gradle community does not offer the specific capabilities your project needs,
creating your own plugin could be a solution.

Additionally, if you find yourself duplicating build logic across subprojects and need a better way to
organize it, custom plugins can help.

Custom plugin
A plugin is any class that implements the Plugin interface.
To create a "hello world" plugin:

import org.gradle.api.Plugin
import org.gradle.api.Project

abstract class SamplePlugin : Plugin<Project> { @
override fun apply(project: Project) { @
project.tasks.create("SampleTask") {
println("Hello world!")
}

@ Extend the org.gradle.api.Plugin interface.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html

@ Override the apply method.

1. Extend the org.gradle.api.Plugin interface
Create a class that extends the Plugin interface.
abstract class MyCreateFilePlugin : Plugin<Project> {

override fun apply() {}
}

2. Override the apply method
Add tasks and other logic in the apply() method.

When SamplePlugin is applied in your project, Gradle calls the fun apply() {} method defined. This
adds the SampleTask to your project.

You can then apply the plugin in your build script:

build.gradle.kts

import org.gradle.api.Plugin
import org.gradle.api.Project

plugins {
application

}

//
// More build script logic
//

abstract class SamplePlugin : Plugin<Project> {
override fun apply(project: Project) {
project.tasks.register("createFileTask") {
val fileText = "HELLO FROM MY PLUGIN"
val myFile = File("myfile.txt")
myFile.createNewFile()
myFile.writeText(fileText)

}

apply<SamplePlugin>() @

@ Apply the SamplePlugin.

Note that this is a simple hello-world example and does not reflect best practices.

IMPORTANT Script plugins are not recommended. Plugin code should not be in your

build.gradle(.kts) file.

Plugins should always be written as pre-compiled script plugins, convention plugins or binary
plugins.

Pre-compiled script plugin

Pre-compiled script plugins offer an easy way to rapidly prototype and experiment. They let you
package build logic as *.gradle(.kts) script files using the Groovy or Kotlin DSL. These scripts
reside in specific directories, such as src/main/groovy or src/main/kotlin.

To apply one, simply use its ID derived from the script filename (without .gradle). You can think of
the file itself as the plugin, so you do not need to subclass the Plugin interface in a precompiled
script.

Let’s take a look at an example with the following structure:

L—— buyildSrc
—— build.gradle.kts

L—— my-create-file-plugin.gradle.kts

Our my-create-file-plugin.gradle.kts file contains the following code:

buildSrc/src/main/kotlin/my-create-file-plugin.gradle.kts

abstract class CreateFileTask : DefaultTask() {
@get:Input
abstract val fileText: Property<String>

@Input
val fileName = "myfile.txt"

@0utputFile
val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText.get())

}

tasks.register("createFileTask", CreateFileTask::class) {
group = "from my plugin"
description = "Create myfile.txt in the current directory"
fileText.set("HELLO FROM MY PLUGIN")

And the buildSrc build file contains the following:

buildSrc/build.gradle.kts

plugins {
‘kotlin-dsl®
}

The pre-compiled script can now be applied in the build.gradle(.kts) file of any subproject:

plugins {
id("my-create-file-plugin") // Apply the plugin
¥

The createFileTask task from the plugin is now available in your subproject.

Convention Plugins

Convention plugins are a way to encapsulate and reuse common build logic in Gradle. They allow
you to define a set of conventions for a project, and then apply those conventions to other projects
or modules.

The example above has been re-written as a convention plugin as a Kotlin script called
MyConventionPlugin.kt and stored in buildSrc:

buildSrc/src/main/kotlin/MyConventionPlugin.kt

import org.gradle.api.DefaultTask
import org.gradle.api.Plugin

import org.gradle.api.Project

import org.gradle.api.provider.Property
import org.gradle.api.tasks.Input
import org.gradle.api.tasks.OutputFile
import org.gradle.api.tasks.TaskAction
import java.io.File

abstract class CreateFileTask : DefaultTask() {

@get:Input
abstract val fileText: Property<String>

@Input
val fileName = project.rootDir.toString() + "/myfile.txt"

@0utputFile
val myFile: File = File(fileName)

@TaskAction

fun action() {
myFile.createNewFile()
myFile.writeText(fileText.get())

}

class MyConventionPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.tasks.register("createFileTask", CreateFileTask::class.java) {
group = "from my plugin”
description = "Create myfile.txt in the current directory"
fileText.set("HELLO FROM MY PLUGIN")

The plugin can be given an id using a gradlePlugin{} block so that it can be referenced in the root:

buildSrc/build.gradle.kts

gradlePlugin {
plugins {
create("my-convention-plugin") {
id = "my-convention-plugin”
implementationClass = "MyConventionPlugin"

The gradlePlugin{} block defines the plugins being built by the project. With the newly created 1id,
the plugin can be applied in other build scripts accordingly:

build.gradle.kts

plugins {
application
id("my-convention-plugin") // Apply the plugin

Binary Plugins

A binary plugin is a plugin that is implemented in a compiled language and is packaged as a JAR
file. It is resolved as a dependency rather than compiled from source.

For most use cases, convention plugins must be updated infrequently. Having each developer
execute the plugin build as part of their development process is wasteful, and we can instead
distribute them as binary dependencies.

There are two ways to update the convention plugin in the example above into a binary plugin.

1. Use composite builds:

settings.gradle.kts

includeBuild("my-plugin")

2. Publish the plugin to a repository:

build.gradle.kts
plugins {

id("com.gradle.plugin.myconventionplugin") version "1.0.0"

}

Consult the Developing Plugins chapter to learn more.

STRUCTURING BUILDS

Structuring Projects with Gradle

It is important to structure your Gradle project to optimize build performance. A multi-project build
is the standard in Gradle.
my-gradle-project (root project)

defines build and

[% settings.gradle.kts — .
project structure

app (subproject)

% build.gradle.kts applies build logic

1ib (subproject)

% build.gradle.kts

A multi-project build consists of one root project and one or more subprojects. Gradle can build the
root project and any number of the subprojects in a single execution.

Project locations
Multi-project builds contain a single root project in a directory that Gradle views as the root path: ..
Subprojects are located physically under the root path: ./subproject.

A subproject has a path, which denotes the position of that subproject in the multi-project build. In
most cases, the project path is consistent with its location in the file system.

The project structure is created in the settings.gradle(.kts) file. The settings file must be present
in the root directory.

A simple multi-project build
Let’s look at a basic multi-project build example that contains a root project and a single subproject.

The root project is called basic-multiproject, located somewhere on your machine. From Gradle’s
perspective, the root is the top-level directory ..

The project contains a single subproject called ./app:

—— app
I
| L—— build.gradle.kts
L—— settings.gradle.kts

—— app
|

| L—— build.gradle
lL—— settings.gradle

This is the recommended project structure for starting any Gradle project. The build init plugin also
generates skeleton projects that follow this structure - a root project with a single subproject:

The settings.gradle(.kts) file describes the project structure to Gradle:

settings.gradle.kts

rootProject.name
include("app")

"basic-multiproject”

settings.gradle

rootProject.name
include 'app'

'basic-multiproject’

In this case, Gradle will look for a build file for the app subproject in the ./app directory.

You can view the structure of a multi-project build by running the projects command:

$./gradlew -q projects

Projects:

Root project 'basic-multiproject’

\--- Project ':app

build_init_plugin.pdf#build_init_plugin

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :app:tasks

In this example, the app subproject is a Java application that applies the application plugin and
configures the main class. The application prints Hello World to the console:

app/build.gradle.kts

plugins {
id("application")
}

application {
mainClass = "com.example.Hello"

}

app/build.gradle

plugins {
id 'application’

}

application {
mainClass = 'com.example.Hello'

}

app/src¢/main/java/com/example/Hello.java
package com.example;

public class Hello {
public static void main(String[] args) {
System.out.println("Hello, world!");

}

You can run the application by executing the run task from the application plugin in the project
root:

$./gradlew -q run
Hello, world!

Adding a subproject

In the settings file, you can use the include method to add another subproject to the root project:

settings.gradle.kts

include("project1”, "project2:child1", "project3:child1")

settings.gradle

include 'project1', 'project2:child1', 'project3:childl’

The include method takes project paths as arguments. The project path is assumed to be equal to
the relative physical file system path. For example, a path services:api is mapped by default to a
folder ./services/api (relative to the project root .).

More examples of how to work with the project path can be found in the DSL documentation of
Settings.include(java.lang.String[]).

Let’s add another subproject called 1ib to the previously created project.

All we need to do is add another include statement in the root settings file:

settings.gradle.kts

rootProject.name
include("app")
include("1ib")

"basic-multiproject”

settings.gradle

rootProject.name
include 'app'
include '1lib’

'basic-multiproject’

Gradle will then look for the build file of the new 1ib subproject in the ./1ib/ directory:

https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

—— app
[
| L—— build.gradle.kts
F—— 1ib

[
| L—— build.gradle.kts
L—— settings.gradle.kts

—— app
..
| L—— build.gradle
F—— 1ib

...
| L—— build.gradle
L—— settings.gradle

Project Descriptors

To further describe the project architecture to Gradle, the settings file provides project descriptors.
You can modify these descriptors in the settings file at any time.

To access a descriptor, you can:

settings.gradle.kts
include("project-a")

println(rootProject.name)
println(project(":project-a").name)

settings.gradle
include('project-a')

println rootProject.name
println project(':project-a").name

Using this descriptor, you can change the name, project directory, and build file of a project:

settings.gradle.kts

rootProject.name = "main"

include("project-a")

project(":project-a").projectDir = file("custom/my-project-a")
project(":project-a").buildFileName = "project-a.gradle.kts"

settings.gradle

rootProject.name = 'main’

include('project-a')

project(':project-a').projectDir = file('custom/my-project-a")
project(':project-a').buildFileName = 'project-a.gradle’

Consult the ProjectDescriptor class in the API documentation for more information.

Modifying a subproject path

Let’s take a hypothetical project with the following structure:

—— app
| ...
| L—— build.gradle.kts

—— subs // Gradle may see this as a subproject

| L—— web // Gradle may see this as a subproject
| L—— my-web-module // Intended subproject

! e
| —— build.gradle.kts
L—— settings.gradle.kts

ﬁ app
| L—— build.gradle

—— subs // Gradle may see this as a subproject

! L—— web // Gradle may see this as a subproject
| L —— my-web-module // Intended subproject
|

|

l—— build.gradle

https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

lL—— settings.gradle

If your settings.gradle(.kts) looks like this:
include(':subs:web:my-web-module")

Gradle sees a subproject with a logical project name of :subs:web:my-web-module and two, possibly
unintentional, other subprojects logically named :subs and :subs:web. This can lead to phantom
build directories, especially when using allprojects{} or subproject{}.

To avoid this, you can use:

include(' :my-web-module")
project(':my-web-module').projectDir = "subs/web/my-web-module"

So that you only end up with a single subproject named :my-web-module.

So, while the physical project layout is the same, the logical results are different.

Naming recommendations

As your project grows, naming and consistency get increasingly more important. To keep your
builds maintainable, we recommend the following:

1. Keep default project names for subprojects: It is possible to configure custom project names
in the settings file. However, it’s an unnecessary extra effort for the developers to track which
projects belong to what folders.

2. Use lower case hyphenation for all project names: All letters are lowercase, and words are
separated with a dash (-) character.

3. Define the root project name in the settings file: The rootProject.name effectively assigns a
name to the build, used in reports like Build Scans. If the root project name is not set, the name
will be the container directory name, which can be unstable (i.e., you can check out your project
in any directory). The name will be generated randomly if the root project name is not set and
checked out to a file system’s root (e.g., / or C:\).

Declaring Dependencies between Subprojects

What if one subproject depends on another subproject? What if one project needs the artifact
produced by another project?

my-gradle-project (root project)

defines build and
project structure

@ settings.gradle.kts «——

api

™ % build.gradle.ktsdi
applies build logic

shared ‘depends on

> % build.gradle.kts
services

L [% build.gradle.kts

depends on

This is a common use case for multi-project builds. Gradle offers project dependencies for this.

Depending on another project

Let’s explore a theoretical multi-project build with the following layout:

| L—— build.gradle.kts
—— services

L—— person-service
—— src
| ...
L—— build.gradle.kts
——— shared
! F— src

s

| L—— build.gradle.kts
L—— settings.gradle.kts

api
| F—— src

| | e

! L—— build.gradle

—— services

| L—— person-service

declaring_dependencies_adv.pdf#sub:project_dependencies

| —— src

| | L— ..

| L—— build.gradle
——— shared

| F— src

| | ...

| L—— build.gradle
L—— settings.gradle

In this example, there are three subprojects called shared, api, and person-service:

1. The person-service subproject depends on the other two subprojects, shared and api.

2. The api subproject depends on the shared subproject.

We use the : separator to define a project path such as services:person-service or :shared. Consult
the DSL documentation of Settings.include(java.lang.String[]) for more information about defining
project paths.

settings.gradle.kts

rootProject.name = "dependencies-java"
include("api", "shared", "services:person-service")

shared/build.gradle.kts

plugins {
id("java")
¥

repositories {
mavenCentral()

}

dependencies {
testImplementation("junit:junit:4.13")
}

api/build.gradle.kts

plugins {
id("java")

}

repositories {

mavenCentral()

}

https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

dependencies {
testImplementation("junit:junit:4.13")
implementation(project(":shared"))

services/person-service/build.gradle.kts

plugins {
id("java")
}

repositories {
mavenCentral()

}

dependencies {
testImplementation("junit:junit:4.13")
implementation(project(":shared"))
implementation(project(":api"))

settings.gradle

rootProject.name = 'basic-dependencies’

include 'api', 'shared', 'services:person-service'

shared/build.gradle

plugins {
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
testImplementation "junit:junit:4.13"

}

api/build.gradle

plugins {
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
testImplementation "junit:junit:4.13"
implementation project(':shared")

services/person-service/build.gradle

plugins {
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
testImplementation "junit:junit:4.13"
implementation project(':shared")
implementation project(':api")

A project dependency affects execution order. It causes the other project to be built first and adds
the output with the classes of the other project to the classpath. It also adds the dependencies of the
other project to the classpath.

If you execute ./gradlew :api:compile, first the shared project is built, and then the api project is
built.

Depending on artifacts produced by another project

Sometimes, you might want to depend on the output of a specific task within another project rather
than the entire project. However, explicitly declaring a task dependency from one project to
another is discouraged as it introduces unnecessary coupling between tasks.

The recommended way to model dependencies, where a task in one project depends on the output
of another, is to produce the output and mark it as an "outgoing" artifact. Gradle’s dependency
management engine allows you to share arbitrary artifacts between projects and build them on
demand.

Sharing Build Logic between Subprojects

Subprojects in a multi-project build typically share some common dependencies.

my-gradle-project (root project)

defines build and

@ settings.gradle.kts <_proiect structure
buildSrc

contains shared

@ build.gradle.kts |« build logic

api

T @ build.gradle.kts
applies build logic

shared vdepends on and shared build
logic

aig % build.gradle.kts <«

depends on -
services

N % build.gradle.kts 4+

Instead of copying and pasting the same Java version and libraries in each subproject build script,
Gradle provides a special directory for storing shared build logic that can be automatically applied
to subprojects.

Share logic in buildSrc
buildSrc is a Gradle-recognized and protected directory which comes with some benefits:
1. Reusable Build Logic:

buildSrc allows you to organize and centralize your custom build logic, tasks, and plugins in a
structured manner. The code written in buildSrc can be reused across your project, making it
easier to maintain and share common build functionality.

2. Isolation from the Main Build:

Code placed in buildSrc is isolated from the other build scripts of your project. This helps keep
the main build scripts cleaner and more focused on project-specific configurations.

3. Automatic Compilation and Classpath:

The contents of the buildSrc directory are automatically compiled and included in the classpath
of your main build. This means that classes and plugins defined in buildSrc can be directly used
in your project’s build scripts without any additional configuration.

4. Ease of Testing:

Since buildSrc is a separate build, it allows for easy testing of your custom build logic. You can
write tests for your build code, ensuring that it behaves as expected.

5. Gradle Plugin Development:

If you are developing custom Gradle plugins for your project, buildSrc is a convenient place to
house the plugin code. This makes the plugins easily accessible within your project.

The buildSrc directory is treated as an included build.

For multi-project builds, there can be only one buildSrc directory, which must be in the root project
directory.

The downside of using buildSrc is that any change to it will invalidate every task in

NOTE . .
your project and require a rerun.

buildSrc uses the same source code conventions applicable to Java, Groovy, and Kotlin projects. It
also provides direct access to the Gradle API.

A typical project including buildSrc has the following layout:

o
c
—_
—
a
wm
=
(]

| L——kotlin

| L——MyCustomTask.kt @
—— shared.gradle.kts @

L—— build.gradle.kts

N
Ik

src
[

L—— build.gradle.kts ®
services
L—— person-service

—— src

| L— .

L—— build.gradle.kts @
—— shared

| F—— sre

T

| L—— build.gradle.kts
L—— settings.gradle.kts

| _

@ Create the MyCustomTask task.
@ A shared build script.
® Uses the MyCustomTask task and shared build script.

java_plugin.pdf#javalayout

o
c
=
—
a
wm
=
(@]

F— src
\ L—main
| L——groovy

| L——MyCustomTask.groovy @
—— shared.gradle @

L—— build.gradle
api

src
[

L—— build.gradle ®
services
L—— person-service

—— src

| . ..

L—— build.gradle ®
—— shared

| F—— src

| | ...

| L—— build.gradle
L—— settings.gradle

[__|
|

@ Create the MyCustomTask task.
@ A shared build script.
® Uses the MyCustomTask task and shared build script.

In the buildSrc, the build script shared.gradle(.kts) is created. It contains dependencies and other
build information that is common to multiple subprojects:

shared.gradle.kts

repositories {
mavenCentral()

}

dependencies {
implementation("org.s1f4j:s1f4j-api:1.7.32")
}

shared.gradle
repositories {

mavenCentral()

}

dependencies {

implementation 'org.slf4j:slf4j-api:1.7.32'

In the buildSrc, the MyCustomTask is also created. It is a helper task that is used as part of the build
logic for multiple subprojects:

MyCustomTask.kt

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

open class MyCustomTask : DefaultTask() {
@TaskAction
fun calculateSum() {
// Custom logic to calculate the sum of two numbers
val numl = 5
val num2 = 7
val sum = numl + num2

// Print the result
println("Sum: $sum")

MyCustomTask.groovy

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class MyCustomTask extends DefaultTask {

void calculateSum() {
// Custom logic to calculate the sum of two numbers
int numl = 5
int num2 = 7
int sum = numl + num2

// Print the result
println "Sum: $sum"

The MyCustomTask task is used in the build script of the api and shared projects. The task is
automatically available because it’s part of buildSrc.

The shared.build(.kts) file is also applied:

build.gradle.kts

// Apply any other configurations specific to your project

// Use the build script defined in buildSrc
apply(from = rootProject.file("buildSrc/shared.gradle"))

// Use the custom task defined in buildSrc
tasks.register<MyCustomTask>("myCustomTask")

build.gradle
// Apply any other configurations specific to your project

// Use the build script defined in buildSrc
apply from: rootProject.file('buildSrc/shared.gradle')

// Use the custom task defined in buildSrc
tasks.register('myCustomTask’, MyCustomTask)

Share logic using convention plugins
Gradle’s recommended way of organizing build logic is to use its plugin system.

We can write a plugin that encapsulates the build logic common to several subprojects in a project.
This kind of plugin is called a convention plugin.

While writing plugins is outside the scope of this section, the recommended way to build a Gradle
project is to put common build logic in a convention plugin located in the buildSrc.

Let’s take a look at an example project:

|

]

! \ L——*kotlin
| | L——myproject.java-conventions.gradle.kts @
| L—— build.gradle.kts

| L—— build.gradle.kts)
—— services

| L—— person-service

| —— src

| | ...

| L—— build.gradle.kts @
—— shared

| F—— sre

T

| L—— build.gradle.kts @
L—— settings.gradle.kts

@ Create the myproject.java-conventions convention plugin.

@ Applies the myproject.java-conventions convention plugin.

|

| L——groovy

| L——myproject.java-conventions.gradle @
L—— build.gradle

|
—— api
|
|
|

T

src
[

L—— build.gradle @
—— services

! L—— person-service

| —— src

| | ...

| L—— build.gradle @
——— shared

| F—— src

o B

| L—— build.gradle @
L—— settings.gradle

@ Create the myproject.java-conventions convention plugin.

@ Applies the myproject.java-conventions convention plugin.

This build contains three subprojects:

settings.gradle.kts

rootProject.name = "dependencies-java"
include("api", "shared", "services:person-service")

settings.gradle

rootProject.name = 'dependencies-java'
include 'api', 'shared', 'services:person-service'

The source code for the convention plugin created in the buildSrc directory is as follows:

buildSrc/src¢/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
id("java")
+

group = "com.example"
version = "1.0"

repositories {
mavenCentral()

}

dependencies {
testImplementation("junit:junit:4.13")
}

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
id "java'

}

group = 'com.example'
version = '1.0'

repositories {
mavenCentral()

}

dependencies {
testImplementation "junit:junit:4.13"
}

For the convention plugin to compile, basic configuration needs to be applied in the build file of the
buildSrc directory:

buildSrc/build.gradle.kts

plugins {
‘kotlin-dsl®
}

repositories {
mavenCentral()

}

buildSrc/build.gradle
plugins {

id 'groovy-gradle-plugin’
}

The convention plugin is applied to the api, shared, and person-service subprojects:

api/build.gradle.kts

plugins {
id("myproject.java-conventions")

}

dependencies {
implementation(project(":shared"))

}

shared/build.gradle.kts

plugins {
id("myproject.java-conventions")

services/person-service/build.gradle.kts

plugins {
id("myproject.java-conventions")

}

dependencies {
implementation(project(":shared"))
implementation(project(":api"))

api/build.gradle

plugins {
id 'myproject.java-conventions'

}

dependencies {
implementation project(':shared")

}

shared/build.gradle

plugins {
id 'myproject.java-conventions'

}

services/person-service/build.gradle

plugins {
id 'myproject.java-conventions'

}

dependencies {
implementation project(':shared")
implementation project(':api')

Do not use cross-project configuration

An improper way to share build logic between subprojects is cross-project configuration via the
subprojects {} and allprojects {} DSL constructs.

https://docs.gradle.org/8.10/javadoc//org/gradle/api/Project.html#subprojects-groovy.lang.Closure-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#allprojects-groovy.lang.Closure-

TIP Avoid using subprojects {} and allprojects {}.

With cross-configuration, build logic can be injected into a subproject which is not obvious when
looking at its build script.

In the long run, cross-configuration usually grows in complexity and becomes a burden. Cross-
configuration can also introduce configuration-time coupling between projects, which can prevent
optimizations like configuration-on-demand from working properly.

Convention plugins versus cross-configuration
The two most common uses of cross-configuration can be better modeled using convention plugins:

1. Applying plugins or other configurations to subprojects of a certain type.
Often, the cross-configuration logic is if subproject is of type X, then configure Y. This is
equivalent to applying X-conventions plugin directly to a subproject.

2. Extracting information from subprojects of a certain type.
This use case can be modeled using outgoing configuration variants.

Composite Builds

A composite build is a build that includes other builds.

my-composite my-app
app
internal-app [% build.gradle.kts

[% build.gradle.kts

main class

% settings.gradle.kts

my-utils
. . number-utils
includeBuild
% build.gradle.kts
numbers class
can contain any number of string-utils
subprojects
includeBuild % build.gradle.kts

string class

% settings.gradle.kts <——includes other builds)
settings.gradle.kts

A composite build is similar to a Gradle multi-project build, except that instead of including
subprojects, entire builds are included.

Composite builds allow you to:

* Combine builds that are usually developed independently, for instance, when trying out a bug
fix in a library that your application uses.

* Decompose a large multi-project build into smaller, more isolated chunks that can be worked on
independently or together as needed.

A build that is included in a composite build is referred to as an included build. Included builds do
not share any configuration with the composite build or the other included builds. Each included
build is configured and executed in isolation.

Defining a composite build

The following example demonstrates how two Gradle builds, normally developed separately, can be
combined into a composite build.

my-composite
—— gradle
—— gradlew
—— settings.gradle.kts
—— build.gradle.kts
—— my-app
—— settings.gradle.kts
—— app
—— build.gradle.kts
L—— src/main/java/org/sample/my-app/Main.java
L—— my-utils
—— settings.gradle.kts
—— number-utils
| —— build.gradle.kts
| L—— src/main/java/org/sample/numberutils/Numbers.java
L—— string-utils
—— build.gradle.kts
L—— src/main/java/org/sample/stringutils/Strings.java

The my-utils multi-project build produces two Java libraries, number-utils and string-utils. The my-
app build produces an executable using functions from those libraries.

The my-app build does not depend directly on my-utils. Instead, it declares binary dependencies on
the libraries produced by my-utils:

my-app/app/build.gradle.kts

plugins {
id("application")
}

application {
mainClass = "org.sample.myapp.Main"

}

dependencies {

implementation("org.sample:number-utils:1.0")
implementation("org.sample:string-utils:1.0")

my-app/app/build.gradle

plugins {
id 'application’

}

application {
mainClass = 'org.sample.myapp.Main'

}

dependencies {
implementation 'org.sample:number-utils:1.0'
implementation 'org.sample:string-utils:1.0'

Defining a composite build via --include-build

The --include-build command-line argument turns the executed build into a composite,
substituting dependencies from the included build into the executed build.

For example, the output of ./gradlew run --include-build ../my-utils run from my-app

$./gradlew --include-build ../my-utils run
link:https://docs.gradle.org/8.10/samples/build-organization/composite-
builds/basic/tests/basicCli.out[role=include]

Defining a composite build via the settings file

It’s possible to make the above arrangement persistent by using
Settings.includeBuild(java.lang.Object) to declare the included build in the settings.gradle(.kts)
file.

The settings file can be used to add subprojects and included builds simultaneously.
Included builds are added by location:

settings.gradle.kts

includeBuild("my-utils")

In the example, the settings.gradle(.kts) file combines otherwise separate builds:

https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

settings.gradle.kts
rootProject.name = "my-composite"

includeBuild("my-app")
includeBuild("my-utils")

settings.gradle
rootProject.name = 'my-composite’

includeBuild 'my-app'
includeBuild 'my-utils'

To execute the run task in the my-app build from my-composite, run ./gradlew my-app:app:run.

You can optionally define a run task in my-composite that depends on my-app:app:run so that you can
execute ./gradlew run:

build.gradle.kts

tasks.register("run") {
dependsOn(gradle.includedBuild("my-app").task(":app:run"))
}

build.gradle

tasks.register('run') {
dependsOn gradle.includedBuild('my-app").task(':app:run')
}

Including builds that define Gradle plugins

A special case of included builds are builds that define Gradle plugins.

These builds should be included using the includeBuild statement inside the pluginManagement {}
block of the settings file.

Using this mechanism, the included build may also contribute a settings plugin that can be applied

in the settings file itself:

settings.gradle.kts

pluginManagement {
includeBuild("../url-verifier-plugin")
}

settings.gradle

pluginManagement {
includeBuild '../url-verifier-plugin’

}

Restrictions on included builds

Most builds can be included in a composite, including other composite builds. There are some
restrictions.

In a regular build, Gradle ensures that each project has a unique project path. It makes projects
identifiable and addressable without conflicts.

In a composite build, Gradle adds additional qualification to each project from an included build to
avoid project path conflicts. The full path to identify a project in a composite build is called a build-
tree path. It consists of a build path of an included build and a project path of the project.

By default, build paths and project paths are derived from directory names and structure on disk.
Since included builds can be located anywhere on disk, their build path is determined by the name
of the containing directory. This can sometimes lead to conflicts.

To summarize, the included builds must fulfill these requirements:

* Each included build must have a unique build path.

* Each included build path must not conflict with any project path of the main build.
These conditions guarantee that each project can be uniquely identified even in a composite build.
If conflicts arise, the way to resolve them is by changing the build name of an included build:

settings.gradle.kts

includeBuild("some-included-build") {
name = "other-name"

}

When a composite build is included in another composite build, both builds have

NOTE . . .
the same parent. In other words, the nested composite build structure is flattened.

Interacting with a composite build

Interacting with a composite build is generally similar to a regular multi-project build. Tasks can be
executed, tests can be run, and builds can be imported into the IDE.

Executing tasks

Tasks from an included build can be executed from the command-line or IDE in the same way as
tasks from a regular multi-project build. Executing a task will result in task dependencies being
executed, as well as those tasks required to build dependency artifacts from other included builds.

You can call a task in an included build using a fully qualified path, for example, :included-build-
name:project-name:taskName. Project and task names can be abbreviated.

$./gradlew :included-build:subproject-a:compileJava
> Task :included-build:subproject-a:compilelava

$./gradlew :i-b:sA:c]
> Task :included-build:subproject-a:compileJava

To exclude a task from the command line, you need to provide the fully qualified path to the task.

Included build tasks are automatically executed to generate required dependency

NOTE artifacts, or the including build can declare a dependency on a task from an
included build.
Importing into the IDE

One of the most useful features of composite builds is IDE integration.

Importing a composite build permits sources from separate Gradle builds to be easily developed
together. For every included build, each subproject is included as an Intelli] IDEA Module or Eclipse
Project. Source dependencies are configured, providing cross-build navigation and refactoring.

Declaring dependencies substituted by an included build

By default, Gradle will configure each included build to determine the dependencies it can provide.
The algorithm for doing this is simple. Gradle will inspect the group and name for the projects in
the included build and substitute project dependencies for any external dependency matching
${project.group}:${project.name}.

By default, substitutions are not registered for the main build.

NOTE To make the (sub)projects of the main build addressable by

${project.group}:${project.name}, you can tell Gradle to treat the main build like an

included build by self-including it: includeBuild(".").

There are cases when the default substitutions determined by Gradle are insufficient or must be

corrected for a particular composite. For these cases, explicitly declaring the substitutions for an
included build is possible.

For example, a single-project build called anonymous-1library, produces a Java utility library but does
not declare a value for the group attribute:

build.gradle.kts

plugins {
java

}

build.gradle

plugins {
id 'java'

}

When this build is included in a composite, it will attempt to substitute for the dependency module
undefined:anonymous-library (undefined being the default value for project.group, and anonymous-
library being the root project name). Clearly, this isn’t useful in a composite build.

To use the unpublished library in a composite build, you can explicitly declare the substitutions
that it provides:

settings.gradle.kts

includeBuild("anonymous-library") {
dependencySubstitution {
substitute(module("org.sample:number-utils")).using(project(":"))

}

settings.gradle

includeBuild('anonymous-library') {
dependencySubstitution {
substitute module('org.sample:number-utils') using project(':")

With this configuration, the my-app composite build will substitute any dependency on
org.sample:number-utils with a dependency on the root project of anonymous-1library.

Deactivate included build substitutions for a configuration

If you need to resolve a published version of a module that is also available as part of an included
build, you can deactivate the included build substitution rules on the ResolutionStrategy of the
Configuration that is resolved. This is necessary because the rules are globally applied in the build,
and Gradle does not consider published versions during resolution by default.

For example, we create a separate publishedRuntimeClasspath configuration that gets resolved to the
published versions of modules that also exist in one of the local builds. This is done by deactivating
global dependency substitution rules:

build.gradle.kts

configurations.create("publishedRuntimeClasspath") {
resolutionStrateqgy.useGlobalDependencySubstitutionRules = false

extendsFrom(configurations.runtimeClasspath.get())

isCanBeConsumed = false

attributes.attribute(Usage.USAGE_ATTRIBUTE,
objects.named(Usage.JAVA_RUNTIME))

}

build.gradle

configurations.create('publishedRuntimeClasspath') {
resolutionStrateqgy.useGlobalDependencySubstitutionRules = false

extendsFrom(configurations.runtimeClasspath)

canBeConsumed = false

attributes.attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
}

A use-case would be to compare published and locally built JAR files.

declaring_dependencies_adv.pdf#sec:resolvable-consumable-configs
https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Cases where included build substitutions must be declared

Many builds will function automatically as an included build, without declared substitutions. Here
are some common cases where declared substitutions are required:

* When the archivesBaseName property is used to set the name of the published artifact.

* When a configuration other than default is published.

When the MavenPom.addFilter() is used to publish artifacts that don’t match the project name.

* When the maven-publish or ivy-publish plugins are used for publishing and the publication
coordinates don’t match ${project.group}:${project.name}.

Cases where composite build substitutions won’t work

Some builds won’t function correctly when included in a composite, even when dependency
substitutions are explicitly declared. This limitation is because a substituted project dependency
will always point to the default configuration of the target project. Any time the artifacts and
dependencies specified for the default configuration of a project don’t match what is published to a
repository, the composite build may exhibit different behavior.

Here are some cases where the published module metadata may be different from the project
default configuration:

* When a configuration other than default is published.
* When the maven-publish or ivy-publish plugins are used.

* When the POM or ivy.xml file is tweaked as part of publication.

Builds using these features function incorrectly when included in a composite build.

Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a
composite build can declare task dependencies on its included builds. The included builds are
accessed using Gradle.getincludedBuilds() or Gradle.includedBuild(java.lang.String), and a task
reference is obtained via the IncludedBuild.task(java.lang.String) method.

Using these APIs, it is possible to declare a dependency on a task in a particular included build:

build.gradle.kts

tasks.register("run") {
dependsOn(gradle.includedBuild("my-app").task(":app:run"))
}

https://docs.gradle.org/8.10/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
https://docs.gradle.org/8.10/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

build.gradle

tasks.register('run') {
dependsOn gradle.includedBuild('my-app").task(':app:run')

}

Or you can declare a dependency on tasks with a certain path in some or all of the included builds:

build.gradle.kts

tasks.register("publishDeps") {
dependsOn(gradle.includedBuilds.map {
it.task(":publishMavenPublicationToMavenRepository") })

}

build.gradle

tasks.register('publishDeps") {
dependsOn gradle.includedBuilds*.task(
":publishMavenPublicationToMavenRepository")

}

Limitations of composite builds
Limitations of the current implementation include:

* No support for included builds with publications that don’t mirror the project default
configuration.
See Cases where composite builds won’t work.

* Multiple composite builds may conflict when run in parallel if more than one includes the same
build.
Gradle does not share the project lock of a shared composite build between Gradle invocations
to prevent concurrent execution.

Configuration On Demand

Configuration-on-demand attempts to configure only the relevant projects for the requested tasks,
i.e, it only evaluates the build script file of projects participating in the build. This way, the
configuration time of a large multi-project build can be reduced.

The configuration-on-demand feature is incubating, so only some builds are guaranteed to work
correctly. The feature works well for decoupled multi-project builds.

In configuration-on-demand mode, projects are configured as follows:

* The root project is always configured.

* The project in the directory where the build is executed is also configured, but only when
Gradle is executed without any tasks.
This way, the default tasks behave correctly when projects are configured on demand.

» The standard project dependencies are supported, and relevant projects are configured.
If project A has a compile dependency on project B, then building A causes the configuration of
both projects.

* The task dependencies declared via the task path are supported and cause relevant projects to
be configured.
Example: someTask.dependsOn(":some-other-project:someOtherTask")

* A task requested via task path from the command line (or tooling API) causes the relevant
project to be configured.
For example, building project-a:project-b:someTask causes configuration of project-b.

Enable configuration-on-demand

You can enable configuration-on-demand using the --configure-on-demand flag or adding
org.gradle.configureondemand=true to the gradle.properties file.

To configure on demand with every build run, see Gradle properties.

To configure on demand for a given build, see command-line performance-oriented options.

Decoupled projects

Gradle allows projects to access each other’s configurations and tasks during the configuration and
execution phases. While this flexibility empowers build authors, it limits Gradle’s ability to perform
optimizations such as parallel project builds and configuration on demand.

Projects are considered decoupled when they interact solely through declared dependencies and
task dependencies. Any direct modification or reading of another project’s object creates coupling
between the projects. Coupling during configuration can result in flawed build outcomes when
using 'configuration on demand’, while coupling during execution can affect parallel execution.

One common source of coupling is configuration injection, such as using allprojects{} or
subprojects{} in build scripts.

To avoid coupling issues, it’s recommended to:

* Refrain from referencing other subprojects' build scripts and prefer cross-configuration from
the root project.

* Avoid dynamically changing other projects' configurations during execution.

As Gradle evolves, it aims to provide features that leverage decoupled projects while offering
solutions for common use cases like configuration injection without introducing coupling.

Parallel projects

Gradle’s parallel execution feature optimizes CPU utilization to accelerate builds by concurrently
executing tasks from different projects.

To enable parallel execution, use the --parallel command-line argument or configure your build
environment. Gradle automatically determines the optimal number of parallel threads based on
CPU cores.

During parallel execution, each worker handles a specific project exclusively. Task dependencies
are respected, with workers prioritizing upstream tasks. However, tasks may not execute in
alphabetical order, as in sequential mode. It’s crucial to correctly declare task dependencies and
inputs/outputs to avoid ordering issues.

DEVELOPING TASKS

Understanding Tasks

A task represents some independent unit of work that a build performs, such as compiling classes,
creating a JAR, generating Javadoc, or publishing archives to a repository.

SubProject

build.gradle

= 1. TASK REGISTRATION

tasks.register('docFilesJar', Jar) {

}

group = 'documentation’

description = 'Generate documentation.'
archiveVersion = null

archiveFileName = 'doc-files.jar'

from 'src/main/template’

tasks.named('jar', Jar) {
from docFilesJar

}

abstract class DocFilesCreationTask : DefaultTask() {

}

Before

— - 3. TASK IMPLEMENTATION

reading this chapter, it’s recommended that you first read the Learning The Basics and

complete the Tutorial.

Listing tasks

All available tasks in your project come from Gradle plugins and build scripts.

You can list all the available tasks in a project by running the following command in the terminal:

$./gradlew tasks

Let’s take a very basic Gradle project as an example. The project has the following structure:

gradle-project

—— app

| —— build.gradle.kts // empty file - no build logic
| — // some java code

—— settings.gradle.kts // includes app subproject

—— gradle

| ...

partr1_gradle_init.pdf#partr1_gradle_init

—— gradlew

L—— gradlew.bat

gradle-project

—— app

| —— build.gradle // empty file - no build logic
! — .. // some java code

—— settings.gradle // 1includes app subproject
—— gradle

| — ...

—— gradle

L—— gradlew.bat

The settings file contains the following:

settings.gradle.kts

rootProject.name = "gradle-project”
include("app")

settings.gradle

rootProject.name
include('app")

'gradle-project’

Currently, the app subproject’s build file is empty.

To see the tasks available in the app subproject, run ./gradlew :app:tasks:

$./gradlew :app:tasks

> Task :app:tasks

1 1

Tasks runnable from project ':app

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.

dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.

javaToolchains - Displays the detected java toolchains.

kotlinDslAccessorsReport - Prints the Kotlin code for accessing the currently
available project extensions and conventions.

outgoingVariants - Displays the outgoing variants of project ':app'.

projects - Displays the sub-projects of project ':app'.

properties - Displays the properties of project ':app'.

resolvableConfigurations - Displays the configurations that can be resolved in project
"rapp'.

tasks - Displays the tasks runnable from project ':app'.

We observe that only a small number of help tasks are available at the moment. This is because the
core of Gradle only provides tasks that analyze your build. Other tasks, such as the those that build
your project or compile your code, are added by plugins.

Let’s explore this by adding the Gradle core base plugin to the app build script:

app/build.gradle.kts

plugins {
id("base")
}

app/build.gradle

plugins {
id('base")
¥

The base plugin adds central lifecycle tasks. Now when we run ./gradlew app:tasks, we can see the
assemble and build tasks are available:

$./gradlew :app:tasks

> Task :app:tasks

Tasks runnable from project ':app

Build tasks

base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
clean - Deletes the build directory.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app
dependencies - Displays all dependencies declared in project ':app'

dependencyInsight - Displays the insight into a specific dependency in project ':app'
help - Displays a help message.

javaToolchains - Displays the detected java toolchains.

outgoingVariants - Displays the outgoing variants of project ':app'

projects - Displays the sub-projects of project ':app'

properties - Displays the properties of project ':app’

resolvableConfigurations - Displays the configurations that can be resolved in project
":app'.

tasks - Displays the tasks runnable from project ':app'

Verification tasks

check - Runs all checks.

Task outcomes
When Gradle executes a task, it labels the task with outcomes via the console.

[XON) T2 solution — -zsh — 135x25

lkassovic@MacBook-Pro solution % ./gradlew run

> Task :buildSrc:generateExternalPluginSpecBuilders UP-TO-DATE

> Task :buildSrc:extractPrecompiledScriptPluginPlugins UP-TO-DATE
> Task :buildSrc:compilePluginsBlocks UP-TO-DATE

> Task :buildSrc:generatePrecompiledScriptPluginAccessors UP-TO-DATE
> Task :buildSrc:generateScriptPluginAdapters UP-TO-DATE

> Task :buildSrc:compileKotlin UP-TO-DATE

> Task :buildSrc:compilelava NO-SOURCE

> Task :buildSrc:compileGroovy NO-SOURCE

> Task :buildSrc:pluginDescriptors UP-TO-DATE

> Task :buildSrc:processResources UP-TO-DATE

> Task :buildSrc:classes UP-TO-DATE

> Task :buildSrc:jar UP-TO-DATE

> Task :buildSrc:inspectClassesForKotlinIC UP-TO-DATE
> Task :app:generatelocalUniqueValue SKIPPED

> Task :app:compileJava FROM-CACHE

> Task :app:processResources NO-SOURCE

> Task :app:classes UP-TO-DATE

> Task :app:run
Hello World!

BUILD SUCCESSFUL in 1s
12 actionable tasks: 1 executed, 1 from cache, 10 up-to-date
lkassovic@MacBook-Pro solution %

These labels are based on whether a task has actions to execute and if Gradle executed them.
Actions include, but are not limited to, compiling code, zipping files, and publishing archives.

(no label) or EXECUTED

Task executed its actions.

» Task has actions and Gradle executed them.

» Task has no actions and some dependencies, and Gradle executed one or more of the

dependencies. See also Lifecycle Tasks.

UP-TO-DATE

Task’s outputs did not change.

» Task has outputs and inputs but they have not changed. See Incremental Build.
» Task has actions, but the task tells Gradle it did not change its outputs.

» Task has no actions and some dependencies, but all the dependencies are UP-T0-DATE, SKIPPED
or FROM-CACHE. See Lifecycle Tasks.

» Task has no actions and no dependencies.

FROM-CACHE

Task’s outputs could be found from a previous execution.

 Task has outputs restored from the build cache. See Build Cache.

SKIPPED

Task did not execute its actions.

» Task has been explicitly excluded from the command-line. See Excluding tasks from
execution.

» Task has an onlyIf predicate return false. See Using a predicate.

NO-SOURCE

Task did not need to execute its actions.

» Task has inputs and outputs, but no sources (i.e., inputs were not found).

Task group and description

Task groups and descriptions are used to organize and describe tasks.

Groups

Task groups are used to categorize tasks. When you run ./gradlew tasks, tasks are listed under
their respective groups, making it easier to understand their purpose and relationship to other
tasks. Groups are set using the group property.

Descriptions

Descriptions provide a brief explanation of what a task does. When you run ./gradlew tasks, the
descriptions are shown next to each task, helping you understand its purpose and how to use it.
Descriptions are set using the description property.

Let’s consider a basic Java application as an example. The build contains a subproject called app.

Let’s list the available tasks in app at the moment:

$./gradlew :app:tasks

> Task :app:tasks

organizing_tasks.pdf#sec:lifecycle_tasks
organizing_tasks.pdf#sec:lifecycle_tasks
controlling_task_execution.pdf#sec:using_a_predicate

Tasks runnable from project ':app'

run - Runs this project as a JVM application.
Build tasks

assemble - Assembles the outputs of this project.

Here, the :run task is part of the Application group with the description Runs this project as a JVM
application. In code, it would look something like this:

app/build.gradle.kts

tasks.register("run") {
group = "Application”
description = "Runs this project as a JVM application."”

app/build.gradle
tasks.register("run") {

group = "Application”
description = "Runs this project as a JVM application."

Private and hidden tasks

Gradle doesn’t support marking a task as private.

However, tasks will only show up when running :tasks if task.group is set or no other task depends
on it.

For instance, the following task will not appear when running ./gradlew :app:tasks because it does
not have a group; it is called a hidden task:

app/build.gradle.kts

tasks.register("helloTask") {

println("Hello")

app/build.gradle

tasks.register("helloTask") {
println 'Hello'
}

Although helloTask is not listed, it can still be executed by Gradle:

$./gradlew :app:tasks

> Task :app:tasks

Tasks runnable from project ':app'

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.

Let’s add a group to the same task:

app/build.gradle.kts

tasks.register("helloTask") {
group = "Other"
description = "Hello task"
println("Hello")

app/build.gradle

tasks.register("helloTask") {
group = "Other"
description = "Hello task"

println 'Hello'

Now that the group is added, the task is visible:

$./gradlew :app:tasks

> Task :app:tasks

Tasks runnable from project ':app

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.

Other tasks

helloTask - Hello task

In contrast, ./gradlew tasks --all will show all tasks; hidden and visible tasks are listed.

Grouping tasks

If you want to customize which tasks are shown to users when listed, you can group tasks and set
the visibility of each group.

NOTE Remember, even if you hide tasks, they are still available, and Gradle can still run
them.

Let’s start with an example built by Gradle init for a Java application with multiple subprojects.

The project structure is as follows:

gradle-project

—— app

| —— build.gradle.kts

| L—— sre // some java code
| L
F—— utilities
| —— build.gradle.kts

w0
=
(@]

// some java code

|

-
[z

build.gradle.kts
S

re // some java code
I—lll

buildSrc
build.gradle.kts
settings.gradle.kts

src // common build logic
L

oo
1

—— settings.gradle.kts
—— gradle
—— gradlew

L—— gradlew.bat

gradle-project
—— app
| —— build.gradle

| —— g // some java code
I—lll

|

—— utilities
| —— build.gradle

! L—— src // some java code

—— build.gradle

src // some java code
I—lll

—— buildSrc
—— build.gradle
—— settings.gradle

src // common build logic
L

|

|

|
|
|
| e
—— settings.gradle
—— gradle

—— gradlew

L—— gradlew.bat

Run app:tasks to see available tasks in the app subproject:

$./gradlew :app:tasks

> Task :app:tasks

Tasks runnable from project ':app

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.

classes - Assembles main classes.

clean - Deletes the build directory.

jar - Assembles a jar archive containing the classes of the 'main' feature.
testClasses - Assembles test classes.

Distribution tasks

assembleDist - Assembles the main distributions

distTar - Bundles the project as a distribution.

distZip - Bundles the project as a distribution.
installDist - Installs the project as a distribution as-is.

Documentation tasks

javadoc - Generates Javadoc API documentation for the 'main' feature.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.

dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.

javaToolchains - Displays the detected java toolchains.

kotlinDslAccessorsReport - Prints the Kotlin code for accessing the currently
available project extensions and conventions.

outgoingVariants - Displays the outgoing variants of project ':app'.

projects - Displays the sub-projects of project ':app'.

properties - Displays the properties of project ':app'.

resolvableConfigurations - Displays the configurations that can be resolved in project
"rapp'.

tasks - Displays the tasks runnable from project ':app'.

Verification tasks

check - Runs all checks.
test - Runs the test suite.

If we look at the list of tasks available, even for a standard Java project, it’s extensive. Many of these
tasks are rarely required directly by developers using the build.

We can configure the :tasks task and limit the tasks shown to a certain group.

Let’s create our own group so that all tasks are hidden by default by updating the app build script:

app/build.gradle.kts
val myBuildGroup = "my app build" // Create a group name

tasks.register<TaskReportTask>("tasksA1l") { // Register the tasksAll task
group = myBuildGroup
description = "Show additional tasks.

setShowDetail(true)
b
tasks.named<TaskReportTask>("tasks") { // Move all existing tasks to
the group
displayGroup = myBuildGroup
}
app/build.gradle
def myBuildGroup = "my app build" // Create a group name

tasks.register(TaskReportTask, "tasksAll") { // Register the tasksAll task
group = myBuildGroup
description = "Show additional tasks."

setShowDetail(true)
}
tasks.named(TaskReportTask, "tasks") { // Move all existing tasks to
the group
displayGroup = myBuildGroup
}

Now, when we list tasks available in app, the list is shorter:

$./gradlew :app:tasks

> Task :app:tasks

Tasks runnable from project ':app

tasksAll - Show additional tasks.

Task categories
Gradle distinguishes between two categories of tasks:

1. Lifecycle tasks

2. Actionable tasks

Lifecycle tasks define targets you can call, such as :build your project. Lifecycle tasks do not
provide Gradle with actions. They must be wired to actionable tasks. The base Gradle plugin only
adds lifecycle tasks.

Actionable tasks define actions for Gradle to take, such as :compilelava, which compiles the Java
code of your project. Actions include creating JARs, zipping files, publishing archives, and much
more. Plugins like the java-library plugin adds actionable tasks.

Let’s update the build script of the previous example, which is currently an empty file so that our
app subproject is a Java library:

app/build.gradle.kts
plugins {

id("java-library")
¥

app/build.gradle
plugins {

id('java-library')
}

Once again, we list the available tasks to see what new tasks are available:

$./gradlew :app:tasks

> Task :app:tasks

base_plugin.pdf#base_plugin
base_plugin.pdf#base_plugin

Tasks runnable from project ':app'

assemble - Assembles the outputs of this project.

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.

classes - Assembles main classes.

clean - Deletes the build directory.

jar - Assembles a jar archive containing the classes of the 'main' feature.
testClasses - Assembles test classes.

Documentation tasks

javadoc - Generates Javadoc API documentation for the 'main' feature.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in project ':app'.
dependencies - Displays all dependencies declared in project ':app'.

dependencyInsight - Displays the insight into a specific dependency in project ':app'.
help - Displays a help message.

javaToolchains - Displays the detected java toolchains.

outgoingVariants - Displays the outgoing variants of project '":app'.

projects - Displays the sub-projects of project ':app'.

properties - Displays the properties of project ':app'.

resolvableConfigurations - Displays the configurations that can be resolved in project
":app’.

tasks - Displays the tasks runnable from project ':app'.

Verification tasks
check - Runs all checks.
test - Runs the test suite.

We see that many new tasks are available such as jar and test(lasses.

Additionally, the java-library plugin has wired actionable tasks to lifecycle tasks. If we call the
:build task, we can see several tasks have been executed, including the :app:compileJava task.

$./gradlew :app:build

Task :app:compilelava

Task :app:processResources NO-SOURCE
Task :app:classes

Task :app:jar

Task :app:assemble

Task :app:compileTestl]ava

V V V V V V

Task :app:processTestResources NO-SOURCE
Task :app:testClasses

Task :app:test

Task :app:check

Task :app:build

vV V V V V

The actionable :compilelava task is wired to the lifecycle :build task.

Incremental tasks
A key feature of Gradle tasks is their incremental nature.

Gradle can reuse results from prior builds. Therefore, if we’ve built our project before and made
only minor changes, rerunning :build will not require Gradle to perform extensive work.

For example, if we modify only the test code in our project, leaving the production code unchanged,
executing the build will solely recompile the test code. Gradle marks the tasks for the production
code as UP-TO-DATE, indicating that it remains unchanged since the last successful build:

$./gradlew :app:build

lkassovic@MacBook-Pro temp1 % ./gradlew :app:build
Task :app:compileJava UP-TO-DATE

Task :app:processResources NO-SOURCE
Task :app:classes UP-TO-DATE

Task :app:jar UP-TO-DATE

Task :app:assemble UP-TO-DATE

Task :app:compileTest]ava

Task :app:processTestResources NO-SOURCE
Task :app:testClasses

Task :app:test

Task :app:check UP-TO-DATE

Task :app:build UP-TO-DATE

V V V V V V V V V V V

Caching tasks
Gradle can reuse results from past builds using the build cache.

To enable this feature, activate the build cache by using the --build-cache command line parameter
or by setting org.gradle.caching=true in your gradle.properties file.

This optimization has the potential to accelerate your builds significantly:

$./gradlew :app:clean :app:build --build-cache

> Task :app:compileJava FROM-CACHE
> Task :app:processResources NO-SOURCE
> Task :app:classes UP-TO-DATE

Task :app:jar

Task :app:assemble

Task :app:compileTestJava FROM-CACHE
Task :app:processTestResources NO-SOURCE
Task :app:testClasses UP-TO-DATE

Task :app:test FROM-CACHE

Task :app:check UP-TO-DATE

Task :app:build

vV V V V V V V V

When Gradle can fetch outputs of a task from the cache, it labels the task with FROM-CACHE.

The build cache is handy if you switch between branches regularly. Gradle supports both local and
remote build caches.

Developing tasks
When developing Gradle tasks, you have two choices:

1. Use an existing Gradle task type such as Zip, Copy, or Delete

2. Create your own Gradle task type such as MyResolveTask or CustomTaskUsingToolchains.
Task types are simply subclasses of the Gradle Task class.
With Gradle tasks, there are three states to consider:

1. Registering a task - using a task (implemented by you or provided by Gradle) in your build
logic.

2. Configuring a task - defining inputs and outputs for a registered task.

3. Implementing a task - creating a custom task class (i.e., custom class type).

Registration is commonly done with the register() method.
Configuring a task is commonly done with the named() method.
Implementing a task is commonly done by extending Gradle’s DefaultTask class:

tasks.register<Copy>("myCopy")

tasks.named<Copy>("myCopy") {
from("resources")
into("target")
include("**/* . txt", "**/*.xml", "**/* . properties")

}

abstract class MyCopyTask : DefaultTask() { ®
@TaskAction
fun copyFiles() {
val sourceDir = File("sourceDir")
val destinationDir = File("destinationDir")

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskCollection.html#named-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/DefaultTask.html

sourceDir.listFiles()?.forEach { file ->
if (file.isFile && file.extension == "txt") {
file.copyTo(File(destinationDir, file.name))

}

@ Register the myCopy task of type Copy to let Gradle know we intend to use it in our build
logic.

@ Configure the registered myCopy task with the inputs and outputs it needs according to
its API.

® Implement a custom task type called MyCopyTask which extends DefaultTask and defines
the copyFiles task action.

tasks.register(Copy, "myCopy") @

tasks.named(Copy, "myCopy") {
from "resources"
into "target"
include "**/*.txt", "**/*.xml", "**/*.properties"

}
abstract class MyCopyTask extends DefaultTask { ©)
void copyFiles() {
fileTree('sourceDir").matching {
include '**/*. txt'
}.forEach { file ->
file.copyTo(file.path.replace('sourceDir', 'destinationDir'))
}
}
}

@ Register the myCopy task of type Copy to let Gradle know we intend to use it in our build
logic.

@ Configure the registered myCopy task with the inputs and outputs it needs according to
its API.

® Implement a custom task type called MyCopyTask which extends DefaultTask and defines
the copyFiles task action.

1. Registering tasks

You define actions for Gradle to take by registering tasks in build scripts or plugins.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/Copy.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/Copy.html

Tasks are defined using strings for task names:

build.gradle.kts

tasks.register("hello") {
dolast {
println("hello")

}

build.gradle

tasks.register('hello') {
doLast {
println 'hello'

}

In the example above, the task is added to the TasksCollection using the register() method in
TaskContainer.

2. Configuring tasks

Gradle tasks must be configured to complete their action(s) successfully. If a task needs to ZIP a file,
it must be configured with the file name and location. You can refer to the API for the Gradle Zip
task to learn how to configure it appropriately.

Let’s look at the Copy task provided by Gradle as an example. We first register a task called myCopy of
type Copy in the build script:

build.gradle.kts

tasks.register<Copy>("myCopy")

build.gradle

tasks.register('myCopy', Copy)

This registers a copy task with no default behavior. Since the task is of type Copy, a Gradle supported

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskCollection.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/bundling/Zip.html

task type, it can be configured using its APIL.

The following examples show several ways to achieve the same configuration:

1. Using the named() method:

Use named() to configure an existing task registered elsewhere:

build.gradle.kts

tasks.named<Copy>("myCopy") {
from("resources")
into("target")
include("**/* . txt", "**/*.xml", "**/* . properties")

build.gradle

tasks.named('myCopy") {
from 'resources'
into 'target'
include('**/*.txt', "**/*.xml', "**/*.properties')

2. Using a configuration block:

Use a block to configure the task immediately upon registering it:

build.gradle.kts

tasks.register<Copy>("copy") {
from("resources")
into("target")
include("**/* . txt", "**/*.xml", "**/*.properties")

build.gradle

tasks.register('copy', Copy) {
from 'resources’
into 'target'
include('**/*.txt"', "**/*.xml', "**/*.properties')

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/Copy.html

3. Name method as call:

A popular option that is only supported in Groovy is the shorthand notation:

copy {
from("resources")
into("target")
include("**/* . txt", "**/*.xml", "**/*.properties")

NOTE This option breaks task configuration avoidance and is not recommended!

Regardless of the method chosen, the task is configured with the name of the files to be copied and
the location of the files.

3. Implementing tasks

Gradle provides many task types including Delete, Javadoc, Copy, Exec, Tar, and Pmd. You can
implement a custom task type if Gradle does not provide a task type that meets your build logic
needs.

To create a custom task class, you extend DefaultTask and make the extending class abstract:

app/build.gradle.kts
abstract class MyCopyTask : DefaultTask() {

}

app/build.gradle
abstract class MyCopyTask extends DefaultTask {

}

Unresolved directive in userguide_single.adoc - include::lifecycle_tasks.adoc[leveloffset=+2]
Unresolved directive in userguide_single.adoc - include::actionable_tasks.adoc[leveloffset=+2]
:leveloffset: +2

https://docs.gradle.org/8.10/javadoc/org/gradle/api/DefaultTask.html

Configuring Tasks Lazily

Knowing when and where a particular value is configured is difficult to track as a build grows in
complexity. Gradle provides several ways to manage this using lazy configuration.

Eager Project Lazy Project

build.gradle build.gradle

task('generateDocumentation') { tasks.register('generateDocumentation') {

// expensive task configuration code // expensive task configuration code

} }

Understanding Lazy properties

Gradle provides lazy properties, which delay calculating a property’s value until it’s actually
required.

Lazy properties provide three main benefits:

1. Deferred Value Resolution: Allows wiring Gradle models without needing to know when a
property’s value will be known. For example, you may want to set the input source files of a
task based on the source directories property of an extension, but the extension property value
isn’t known until the build script or some other plugin configures them.

2. Automatic Task Dependency Management: Connects output of one task to input of another,
automatically determining task dependencies. Property instances carry information about
which task, if any, produces their value. Build authors do not need to worry about keeping task
dependencies in sync with configuration changes.

3. Improved Build Performance: Avoids resource-intensive work during configuration,
impacting build performance positively. For example, when a configuration value comes from
parsing a file but is only used when functional tests are run, using a property instance to
capture this means that the file is parsed only when the functional tests are run (and not when
clean is run, for example).

Gradle represents lazy properties with two interfaces:

Provider

Represents a value that can only be queried and cannot be changed.

» Properties with these types are read-only.

* The method Provider.get() returns the current value of the property.

* A Provider can be created from another Provider using Provider.map(Transformer).
* Many other types extend Provider and can be used wherever a Provider is required.

Property

Represents a value that can be queried and changed.

» Properties with these types are configurable.
* Property extends the Provider interface.

* The method Property.set(T) specifies a value for the property, overwriting whatever value
may have been present.

* The method Property.set(Provider) specifies a Provider for the value for the property,
overwriting whatever value may have been present. This allows you to wire together
Provider and Property instances before the values are configured.

A Property can be created by the factory method ObjectFactory.property(Class).

Lazy properties are intended to be passed around and only queried when required. This typically
happens during the execution phase.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

The following demonstrates a task with a configurable greeting property and a read-only message
property:

build.gradle.kts

abstract class Greeting : DefaultTask() { ®
@get:Input
abstract val greeting: Property<String> @

@Internal
val message: Provider<String> = greeting.map { it + " from Gradle" } ®

@TaskAction
fun printMessage() {
logger.quiet(message.get())
}
}

tasks.register<Greeting>("greeting") {

greeting.set("Hi") @
greeting = "Hi" ®

build.gradle

abstract class Greeting extends DefaultTask { @

abstract Property<String> getGreeting() @

final Provider<String> message = greeting.map { it + ' from Gradle' } ®

void printMessage() {
logger.quiet(message.get())
}
}

tasks.register("greeting”, Greeting) {
greeting.set('Hi') @
greeting = 'Hi' ®

@ A task that displays a greeting

@ A configurable greeting
® Read-only property calculated from the greeting
@ Configure the greeting

® Alternative notation to calling Property.set()

$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

The Greeting task has a property of type Property<String> to represent the configurable greeting
and a property of type Provider<String> to represent the calculated, read-only, message. The
message Provider is created from the greeting Property using the map() method; its value is kept up-
to-date as the value of the greeting property changes.

Creating a Property or Provider instance

Neither Provider nor its subtypes, such as Property, are intended to be implemented by a build
script or plugin. Gradle provides factory methods to create instances of these types instead.

In the previous example, two factory methods were presented:

* ObjectFactory.property(Class) create a new Property instance. An instance of the ObjectFactory
can be referenced from Project.getObjects() or by injecting ObjectFactory through a constructor
or method.

* Provider.map(Transformer) creates a new Provider from an existing Provider or Property
instance.

See the Quick Reference for all of the types and factories available.

A Provider can also be created by the factory method ProviderFactory.provider(Callable).

There are no specific methods to create a provider using a groovy.lang.Closure.

When writing a plugin or build script with Groovy, you can use the map(Transformer)
NOTE method with a closure, and Groovy will convert the closure to a Transformer.

Similarly, when writing a plugin or build script with Kotlin, the Kotlin compiler will
convert a Kotlin function into a Transformer.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#getObjects--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:provider(java.util.concurrent.Callable)

Connecting properties together

An important feature of lazy properties is that they can be connected together so that changes to
one property are automatically reflected in other properties.

Here is an example where the property of a task is connected to a property of a project extension:

build.gradle.kts

// A project extension
interface MessageExtension {
// A configurable greeting
abstract val greeting: Property<String>

}

// A task that displays a greeting

abstract class Greeting : DefaultTask() {
// Confiqurable by the user
@get:Input
abstract val greeting: Property<String>

// Read-only property calculated from the greeting
@Internal
val message: Provider<String> = greeting.map { it + " from Gradle" }

@TaskAction
fun printMessage() {
logger.quiet(message.get())
}
}

// Create the project extension
val messages = project.extensions.create<MessageExtension>("messages")

// Create the greeting task
tasks.register<Greeting>("greeting") {

// Attach the greeting from the project extension

// Note that the values of the project extension have not been configured
yet

greeting = messages.greeting

}

messages.apply {
// Configure the greeting on the extension
// Note that there is no need to reconfigure the task's ‘greeting’
property. This is automatically updated as the extension property changes
greeting = "Hi"

}

build.gradle

// A project extension
interface MessageExtension {
// A configurable greeting
Property<String> getGreeting()
}

// A task that displays a greeting

abstract class Greeting extends DefaultTask {
// Confiqurable by the user
@Input
abstract Property<String> getGreeting()

// Read-only property calculated from the greeting
@Internal
final Provider<String> message = greeting.map { it + ' from Gradle' }

@TaskAction
void printMessage() {
logger.quiet(message.get())
}
}

// Create the project extension
project.extensions.create('messages', MessageExtension)

// Create the greeting task
tasks.register("greeting”, Greeting) {

// Attach the greeting from the project extension

// Note that the values of the project extension have not been configured
yet

greeting = messages.greeting

}

messages {
// Configure the greeting on the extension
// Note that there is no need to reconfigure the task's ‘greeting’
property. This is automatically updated as the extension property changes
greeting = 'Hi'

}

$ gradle greeting

> Task :greeting
Hi from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

This example calls the Property.set(Provider) method to attach a Provider to a Property to supply the
value of the property. In this case, the Provider happens to be a Property as well, but you can
connect any Provider implementation, for example one created using Provider.map()

https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html#set-org.gradle.api.provider.Provider-

Working with files

In Working with Files, we introduced four collection types for File-like objects:

Read-only Type Configurable Type
FileCollection = ConfigurableFileCollection

FileTree ConfigurableFileTree

All of these types are also considered lazy types.

There are more strongly typed models used to represent elements of the file system: Directory and
RegularFile. These types shouldn’t be confused with the standard Java File type as they are used to
tell Gradle that you expect more specific values such as a directory or a non-directory, regular file.

Gradle provides two specialized Property subtypes for dealing with values of these types:
RegularFileProperty and DirectoryProperty. ObjectFactory has methods to create these:
ObjectFactory.fileProperty() and ObjectFactory.directoryProperty().

A DirectoryProperty can also be used to create a lazily evaluated Provider for a Directory and
RegularFile via DirectoryProperty.dir(String) and DirectoryProperty.file(String) respectively. These
methods create providers whose values are calculated relative to the location for the
DirectoryProperty they were created from. The values returned from these providers will reflect
changes to the DirectoryProperty.

build.gradle.kts

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource : DefaultTask() {
// The configuration file to use to generate the source file
@get:InputFile
abstract val configFile: ReqularFileProperty

// The directory to write source files to
@get:OutputDirectory
abstract val outputDir: DirectoryProperty

@TaskAction

fun compile() {
val inFile = configFile.get().asFile
logger.quiet("configuration file = $inFile")
val dir = outputDir.get().asFile
logger.quiet("output dir = $dir")
val className = inFile.readText().trim()
val srcFile = File(dir, "${className}.java")
srcFile.writeText("public class ${className} { }")

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/RegularFile.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-

}

// Create the source generation task
tasks.register<GenerateSource>("generate") {
// Configure the locations, relative to the project and build directories
configFile = layout.projectDirectory.file("src/config.txt")
outputDir = layout.buildDirectory.dir("generated-source")

}

// Change the build directory

// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir("output")

build.gradle

// A task that generates a source file and writes the result to an output
directory
abstract class GenerateSource extends DefaultTask {
// The configuration file to use to generate the source file
@InputFile
abstract RegularFileProperty getConfigFile()

// The directory to write source files to
@OutputDirectory
abstract DirectoryProperty getOutputDir()

@TaskAction

def compile() {
def inFile = configFile.get().asFile
logger.quiet("configuration file = $inFile")
def dir = outputDir.get().asFile
logger.quiet("output dir = $dir")
def className = inFile.text.trim()
def srcFile = new File(dir, "${className}.java")
srcFile.text = "public class ${className} { ... }"

}

// Create the source generation task

tasks.register('generate', GenerateSource) {
// Configure the locations, relative to the project and build directories
configFile = layout.projectDirectory.file('src/config.txt")
outputDir = layout.buildDirectory.dir('generated-source")

}

// Change the build directory
// Don't need to reconfigure the task properties. These are automatically
updated as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir('output")

$ gradle generate

> Task :generate
configuration file = /home/user/gradle/samples/src/config.txt
output dir = /home/user/gradle/samples/output/generated-source

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

$ gradle generate

> Task :generate
configuration file = /home/user/gradle/samples/kotlin/src/config.txt
output dir = /home/user/gradle/samples/kotlin/output/generated-source

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

This example creates providers that represent locations in the project and build directories through
Project.getLayout() with ProjectLayout.getBuildDirectory() and ProjectLayout.getProjectDirectory().

To close the loop, note that a DirectoryProperty, or a simple Directory, can be turned into a FileTree
that allows the files and directories contained in the directory to be queried with
DirectoryProperty.getAsFileTree() or Directory.getAsFileTree(). From a DirectoryProperty or a
Directory, you can create FileCollection instances containing a set of the files contained in the
directory with DirectoryProperty.files(Object...) or Directory.files(Object...).

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ProjectLayout.html#getProjectDirectory--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/Directory.html#getAsFileTree--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/Directory.html#files-java.lang.Object...-

Working with task inputs and outputs

Many builds have several tasks connected together, where one task consumes the outputs of
another task as an input.

To make this work, we need to configure each task to know where to look for its inputs and where
to place its outputs. Ensure that the producing and consuming tasks are configured with the same
location and attach task dependencies between the tasks. This can be cumbersome and brittle if any
of these values are configurable by a user or configured by multiple plugins, as task properties need
to be configured in the correct order and locations, and task dependencies kept in sync as values
change.

The Property API makes this easier by keeping track of the value of a property and the task that
produces the value.

As an example, consider the following plugin with a producer and consumer task which are wired
together:

build.gradle.kts

abstract class Producer : DefaultTask() {
@get:OutputFile
abstract val outputFile: RegularFileProperty

@TaskAction
fun produce() {
val message = "Hello, World!"
val output = outputFile.get().asFile
output.writeText(message)
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer : DefaultTask() {
@get:InputFile
abstract val inputFile: RegularFileProperty

@TaskAction

fun consume() {
val input = inputFile.get().asFile
val message = input.readText()
logger.quiet("Read '${message}' from ${input}")

}

val producer = tasks.register<Producer>("producer")
val consumer = tasks.register<Consumer>("consumer™)

consumer {

// Connect the producer task output to the consumer task input

// Don't need to add a task dependency to the consumer task. This is
automatically added

inputFile = producer.flatMap { it.outputFile }
}

producer {

// Set values for the producer lazily

// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes

outputFile = layout.buildDirectory.file("file.txt")

}

// Change the build directory.

// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir("output")

build.gradle
abstract class Producer extends DefaultTask {

abstract ReqularFileProperty getOutputFile()

void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")

+
abstract class Consumer extends DefaultTask {

abstract RegularFileProperty getInputFile()

void consume() {
def input = inputFile.get().asFile
def message = input.text
logger.quiet("Read '${message}' from ${input}")

}

def producer = tasks.register("producer”, Producer)
def consumer = tasks.register("consumer", Consumer)

consumer.configure {

// Connect the producer task output to the consumer task input

// Don't need to add a task dependency to the consumer task. This is
automatically added

inputFile = producer.flatMap { it.outputFile }
}

producer.configure {

// Set values for the producer lazily

// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes

outputFile = layout.buildDirectory.file('file.txt")
}

// Change the build directory.

// Don't need to update producer.outputFile and consumer.inputFile. These are
automatically updated as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir('output")

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/output/file.txt

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/file.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/file.txt

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

In the example above, the task outputs and inputs are connected before any location is defined. The
setters can be called at any time before the task is executed, and the change will automatically
affect all related input and output properties.

Another important thing to note in this example is the absence of any explicit task dependency.

Task outputs represented using Providers keep track of which task produces their value, and using
them as task inputs will implicitly add the correct task dependencies.

Implicit task dependencies also work for input properties that are not files:

build.gradle.kts

abstract class Producer : DefaultTask() {
@get:OutputFile
abstract val outputFile: ReqularFileProperty

@TaskAction
fun produce() {
val message = "Hello, World!"
val output = outputFile.get().asFile
output.writeText(message)
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer : DefaultTask() {
@get:Input
abstract val message: Property<String>

@TaskAction
fun consume() {
logger.quiet(message.get())
}
}

val producer = tasks.register<Producer>("producer") {

// Set values for the producer lazily

// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes

outputFile = layout.buildDirectory.file("file.txt")
}
tasks.register<Consumer>("consumer") {

// Connect the producer task output to the consumer task input

// Don't need to add a task dependency to the consumer task. This is
automatically added

message = producer.flatMap { it.outputFile }.map { it.asFile.readText() }
¥

build.gradle

abstract class Producer extends DefaultTask {

abstract RegularFileProperty getOutputFile()

@TaskAction
void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer extends DefaultTask {
@Input
abstract Property<String> getMessage()

@TaskAction
void consume() {
logger.quiet(message.get())
}
}

def producer = tasks.register('producer', Producer) {

// Set values for the producer lazily

// Don't need to update the consumer.inputFile property. This is
automatically updated as producer.outputFile changes

outputFile = layout.buildDirectory.file('file.txt")
¥
tasks.register('consumer', Consumer) {

// Connect the producer task output to the consumer task input

// Don't need to add a task dependency to the consumer task. This is
automatically added

message = producer.flatMap { it.outputFile }.map { it.asFile.text }
¥

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

$ gradle consumer

> Task :producer
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/build/file.txt

> Task :consumer
Hello, World!

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Working with collections

Gradle provides two lazy property types to help configure Collection properties.

These work exactly like any other Provider and, just like file providers, they have additional
modeling around them:

» For List values the interface is called ListProperty.
You can create a new ListProperty using ObjectFactory.listProperty(Class) and specifying the
element type.

» For Set values the interface is called SetProperty.
You can create a new SetProperty using ObjectFactory.setProperty(Class) and specifying the
element type.

This type of property allows you to overwrite the entire collection value with
HasMultipleValues.set(Iterable) and HasMultipleValues.set(Provider) or add new elements through
the various add methods:

* HasMultipleValues.add(T): Add a single element to the collection
* HasMultipleValues.add(Provider): Add a lazily calculated element to the collection

» HasMultipleValues.addAll(Provider): Add a lazily calculated collection of elements to the list

Just like every Provider, the collection is calculated when Provider.get() is called. The following
example shows the ListProperty in action:

build.gradle.kts

abstract class Producer : DefaultTask() {
@get:OutputFile
abstract val outputFile: RegularFileProperty

@TaskAction
fun produce() {
val message = "Hello, World!"
val output = outputFile.get().asFile
output.writeText(message)
logger.quiet("Wrote '${message}' to ${output}")

}

abstract class Consumer : DefaultTask() {
@get:InputFiles
abstract val inputFiles: ListProperty<RegularFile>

@TaskAction
fun consume() {
inputFiles.get().forEach { inputFile ->

https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-java.lang.Iterable-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/HasMultipleValues.html#set-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-T-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/HasMultipleValues.html#add-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/HasMultipleValues.html#addAll-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#get--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/ListProperty.html

val input = inputFile.asFile
val message = input.readText()
logger.quiet("Read '${message}' from ${input}")

}

val producerOne = tasks.register<Producer>("producerOne")
val producerTwo = tasks.register<Producer>("producerTwo")
tasks.register<Consumer>("consumer") {
// Connect the producer task outputs to the consumer task input
// Don't need to add task dependencies to the consumer task. These are
automatically added
inputFiles.add(producerOne.get().outputFile)
inputFiles.add(producerTwo.get().outputFile)

}

// Set values for the producer tasks lazily

// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes

producerOne { outputFile = layout.buildDirectory.file("one.txt") }
producerTwo { outputFile = layout.buildDirectory.file("two.txt") }

// Change the build directory.

// Don't need to update the task properties. These are automatically updated
as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir("output")

build.gradle
abstract class Producer extends DefaultTask {
abstract ReqularFileProperty getOutputFile()
void produce() {
String message = 'Hello, World!'
def output = outputFile.get().asFile
output.text = message
logger.quiet("Wrote '${message}' to ${output}")
}

abstract class Consumer extends DefaultTask {

abstract ListProperty<ReqgularFile> getInputFiles()

void consume() {

inputFiles.get().each { inputFile ->
def input = inputFile.asFile
def message = input.text
logger.quiet("Read '${message}' from ${input}")

}

def producerOne = tasks.register('producerOne', Producer)
def producerTwo = tasks.register('producerTwo', Producer)
tasks.register('consumer', Consumer) {
// Connect the producer task outputs to the consumer task input
// Don't need to add task dependencies to the consumer task. These are
automatically added
inputFiles.add(producerOne.get().outputFile)
inputFiles.add(producerTwo.get().outputFile)
}

// Set values for the producer tasks lazily

// Don't need to update the consumer.inputFiles property. This is
automatically updated as producer.outputFile changes

producerOne.configure { outputFile = layout.buildDirectory.file('one.txt') }
producerTwo.configure { outputFile = layout.buildDirectory.file('two.txt") }

// Change the build directory.

// Don't need to update the task properties. These are automatically updated
as the build directory changes

layout.buildDirectory = layout.projectDirectory.dir('output")

$ gradle consumer

> Task :producerOne
Wrote 'Hello, World!' to /home/user/gradle/samples/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/output/two.txt

> Task :consumer
Read 'Hello, World!"' from /home/user/gradle/samples/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/output/two.txt

BUILD SUCCESSFUL in @s
3 actionable tasks: 3 executed

$ gradle consumer

> Task :producerOne

Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/one.txt

> Task :producerTwo
Wrote 'Hello, World!' to /home/user/gradle/samples/kotlin/output/two.txt

> Task :consumer
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/one.txt
Read 'Hello, World!' from /home/user/gradle/samples/kotlin/output/two.txt

BUILD SUCCESSFUL in @s
3 actionable tasks: 3 executed

Working with maps

Gradle provides a lazy MapProperty type to allow Map values to be configured. You can create a
MapProperty instance using ObjectFactory.mapProperty(Class, Class).

Similar to other property types, a MapProperty has a set() method that you can use to specify the
value for the property. Some additional methods allow entries with lazy values to be added to the
map.

build.gradle.kts

abstract class Generator: DefaultTask() {
@get:Input
abstract val properties: MapProperty<String, Int>

@TaskAction
fun generate() {
properties.get().forEach { entry ->
logger.quiet("${entry.key} = ${entry.value}")

}
}
}
// Some values to be configured later
var b = 0
var ¢ = 0

tasks.register<Generator>("generate") {
properties.put("a", 1)
// Values have not been configured yet
properties.put("b", providers.provider { b })
properties.putAll(providers.provider { mapOf("c" to c, "d" toc + 1) })
}

// Configure the values. There is no need to reconfigure the task
b=2
c=3

build.gradle
abstract class Generator extends DefaultTask {

abstract MapProperty<String, Integer> getProperties()

void generate() {

https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/MapProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#mapProperty-java.lang.Class-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/MapProperty.html#set-java.util.Map-

properties.get().each { key, value ->
logger.quiet("${key} = ${value}")

}
}
}
// Some values to be configured later
def b =10
def c =0

tasks.register('generate', Generator) {
properties.put("a", 1)
// Values have not been configured yet
properties.put("b", providers.provider { b })
properties.putAll(providers.provider { [c: c, d: c + 1] })
}

// Configure the values. There is no need to reconfigure the task
b=2
c=3

$ gradle generate

> Task :generate
a=1
b=2
c=3
d=14

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Applying a convention to a property

Often, you want to apply some convention, or default value to a property to be used if no value has
been configured. You can use the convention() method for this. This method accepts either a value
or a Provider, and this will be used as the value until some other value is configured.

build.gradle.kts

tasks.register("show") {
val property = objects.property(String::class)

// Set a convention
property.convention("convention 1")

println("value = " + property.get())

// Can replace the convention
property.convention("convention 2")

println("value = " + property.get())
property.set("explicit value")

// Once a value is set, the convention is ignored
property.convention("ignored convention")

dolast {
println("value = " + property.get())
}
}
build.gradle

tasks.register("show") {
def property = objects.property(String)

// Set a convention
property.convention("convention 1")

println("value = " + property.get())

// Can replace the convention
property.convention("convention 2")

n

println("value = " + property.get())

property.set("explicit value")

// Once a value is set, the convention is ignored
property.convention("ignored convention")

dolast {
println("value = " + property.get())
}

$ gradle show
value = convention 1
value = convention 2

> Task :show
value = explicit value

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Where to apply conventions from?

There are several appropriate locations for setting a convention on a property at configuration time
(i.e., before execution).

build.gradle.kts

// setting convention when registering a task from plugin
class GreetingPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.getTasks().register<GreetingTask>("hello") {
greeter.convention("Greeter")

}
}

apply<GreetingPlugin>()

tasks.withType<GreetingTask>().configureEach {
// setting convention from build script
guest.convention("Guest")

}

abstract class GreetingTask : DefaultTask() {
// setting convention from constructor
@get:Input
abstract val guest: Property<String>

init {
guest.convention("person2")

}

// setting convention from declaration
@Input
val greeter = project.objects.property<String>().convention("person1")

@TaskAction
fun greet() {

println("hello, ${quest.get()}, from ${greeter.get()}")
}

build.gradle

// setting convention when registering a task from plugin
class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
project.getTasks().register("hello", GreetingTask) {
greeter.convention("Greeter")

}
}

apply plugin: GreetingPlugin

tasks.withType(GreetingTask).configureEach {
// setting convention from build script
guest.convention("Guest")

}

abstract class GreetingTask extends DefaultTask {
// setting convention from constructor
@Input
abstract Property<String> getGuest()

GreetingTask() {
guest.convention("person2")

}

// setting convention from declaration

@Input

final Property<String> greeter = project.objects.property(String)
.convention("person1")

@TaskAction
void greet() {

println("hello, ${quest.get()}, from ${greeter.get()}")

From a plugin’s apply() method

Plugin authors may configure a convention on a lazy property from a plugin’s apply() method,
while performing preliminary configuration of the task or extension defining the property. This
works well for regular plugins (meant to be distributed and used in the wild), and internal
convention plugins (which often configure properties defined by third party plugins in a uniform
way for the entire build).

build.gradle.kts

// setting convention when registering a task from plugin
class GreetingPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.qgetTasks().register<GreetingTask>("hello") {
greeter.convention("Greeter")

}

build.gradle

// setting convention when registering a task from plugin
class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
project.getTasks().register("hello", GreetingTask) {
greeter.convention("Greeter")

}

From a build script

Build engineers may configure a convention on a lazy property from shared build logic that is
configuring tasks (for instance, from third-party plugins) in a standard way for the entire build.

build.gradle.kts
apply<GreetingPlugin>()

tasks.withType<GreetingTask>().configureEach {
// setting convention from build script
guest.convention("Guest")

build.gradle

tasks.withType(GreetingTask).configureEach {
// setting convention from build script
guest.convention("Guest")

Note that for project-specific values, instead of conventions, you should prefer setting explicit
values (using Property.set(::*) or ConfigurableFileCollection.setFrom(:--), for instance), as
conventions are only meant to define defaults.

From the task initialization

A task author may configure a convention on a lazy property from the task constructor or (if in
Kotlin) initializer block. This approach works for properties with trivial defaults, but it is not
appropriate if additional context (external to the task implementation) is required in order to set a
suitable default.

build.gradle.kts
// setting convention from constructor
@get:Input

abstract val guest: Property<String>

init {
guest.convention("person2")

build.gradle

// setting convention from constructor

abstract Property<String> getGuest()

GreetingTask() {
guest.convention("person2")

}

Next to the property declaration

You may configure a convention on a lazy property next to the place where the property is
declared. Note this option is not available for managed properties, and has the same caveats as
configuring a convention from the task constructor.

build.gradle.kts
// setting convention from declaration

@Input
val greeter = project.objects.property<String>().convention("person1")

build.gradle
// setting convention from declaration

final Property<String> greeter = project.objects.property(String).convention
("person1")

properties_providers.pdf#managed_properties

Making a property unmodifiable

Most properties of a task or project are intended to be configured by plugins or build scripts so that
they can use specific values for that build.

For example, a property that specifies the output directory for a compilation task may start with a
value specified by a plugin. Then a build script might change the value to some custom location,
then this value is used by the task when it runs. However, once the task starts to run, we want to
prevent further property changes. This way we avoid errors that result from different consumers,
such as the task action, Gradle’s up-to-date checks, build caching, or other tasks, using different
values for the property.

Lazy properties provide several methods that you can use to disallow changes to their value once
the value has been configured. The finalizeValue() method calculates the final value for the
property and prevents further changes to the property.

libVersioning.version.finalizeValue()

When the property’s value comes from a Provider, the provider is queried for its current value, and
the result becomes the final value for the property. This final value replaces the provider and the
property no longer tracks the value of the provider. Calling this method also makes a property
instance unmodifiable and any further attempts to change the value of the property will fail. Gradle
automatically makes the properties of a task final when the task starts execution.

The finalizeValueOnRead() method is similar, except that the property’s final value is not calculated
until the value of the property is queried.

modifiedFiles.finalizeValueOnRead()

In other words, this method calculates the final value lazily as required, whereas finalizeValue()
calculates the final value eagerly. This method can be used when the value may be expensive to
calculate or may not have been configured yet. You also want to ensure that all consumers of the
property see the same value when they query the value.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html#finalizeValue--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/HasConfigurableValue.html#finalizeValueOnRead--

Using the Provider API

Guidelines to be successful with the Provider API:
1. The Property and Provider types have all of the overloads you need to query or configure a
value. For this reason, you should follow the following guidelines:
o For configurable properties, expose the Property directly through a single getter.
- For non-configurable properties, expose an Provider directly through a single getter.

2. Avoid simplifying calls like obj.getProperty().get() and obj.getProperty().set(T) in your code
by introducing additional getters and setters.

3. When migrating your plugin to use providers, follow these guidelines:
o If it’s a new property, expose it as a Property or Provider using a single getter.
o If it’s incubating, change it to use a Property or Provider using a single getter.

o If it’s a stable property, add a new Property or Provider and deprecate the old one. You
should wire the old getter/setters into the new property as appropriate.

Provider Files API Reference

Use these types for read-only values:

Provider<RegularFile>
File on disk

Factories

* Provider.map(Transformer).
* Provider.flatMap(Transformer).
* DirectoryProperty.file(String)

Provider<Directory>

Directory on disk

Factories

* Provider.map(Transformer).
» Provider.flatMap(Transformer).
* DirectoryProperty.dir(String)

FileCollection

Unstructured collection of files

Factories
* Project.files(Object[])

* ProjectLayout.files(Object...)

* DirectoryProperty.files(Object...)

https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/RegularFile.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#file-java.lang.String-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/Directory.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#dir-java.lang.String-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#files-java.lang.Object...-

FileTree

Hierarchy of files

Factories

* Project.fileTree(Object) will produce a ConfigurableFileTree, or you can use
Project.zipTree(Object) and Project.tarTree(Object)

* DirectoryProperty.getAsFileTree()

Property Files API Reference
Use these types for mutable values:

RegularFileProperty
File on disk

Factories

* ObjectFactory.fileProperty()

DirectoryProperty

Directory on disk

Factories

* ObjectFactory.directoryProperty()

ConfigurableFileCollection

Unstructured collection of files

Factories

* ObjectFactory.fileCollection()

ConfigurableFileTree

Hierarchy of files

Factories

* ObjectFactory.fileTree()

SourceDirectorySet

Hierarchy of source directories

Factories

* ObjectFactory.sourceDirectorySet(String, String)

Lazy Collections API Reference

Use these types for mutable values:

ListProperty<T>

a property whose value is List<T>

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#zipTree-java.lang.Object-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#tarTree-java.lang.Object-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html#getAsFileTree--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#fileProperty--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#directoryProperty--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#fileCollection--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFileTree.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#fileTree--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/SourceDirectorySet.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#sourceDirectorySet-java.lang.String-java.lang.String-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/ListProperty.html

Factories

* ObjectFactory.listProperty(Class)

SetProperty<T>

a property whose value is Set<T>

Factories

* ObjectFactory.setProperty(Class)

Lazy Objects API Reference

Use these types for read only values:

Provider<T>

a property whose value is an instance of T

Factories

* Provider.map(Transformer).
* Provider.flatMap(Transformer).

* ProviderFactory.provider(Callable). Always prefer one of the other factory methods over
this method.

Use these types for mutable values:

Property<T>

a property whose value is an instance of T

Factories

* ObjectFactory.property(Class)

Developing Parallel Tasks

Gradle provides an API that can split tasks into sections that can be executed in parallel.
Without Worker API With Worker API

work 1

Task 2 . Task 7 Task 7 Task 8
work 2 work 4
.

12s 10s

Task 1 Task 6 Task 1

Task 3 Task 5 Task 7 Task 11

Task 3 Task 11

ug
0,0

N4
N

This allows Gradle to fully utilize the resources available and complete builds faster.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#listProperty-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/SetProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#setProperty-java.lang.Class-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#map-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Provider.html#flatMap-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:provider(java.util.concurrent.Callable)
https://docs.gradle.org/8.10/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-

The Worker API

The Worker API provides the ability to break up the execution of a task action into discrete units of
work and then execute that work concurrently and asynchronously.

Worker API example

The best way to understand how to use the API is to go through the process of converting an
existing custom task to use the Worker API:

1. You’ll start by creating a custom task class that generates MD5 hashes for a configurable set of
files.

2. Then, you’ll convert this custom task to use the Worker APIL

3. Then, we’ll explore running the task with different levels of isolation.

In the process, you’ll learn about the basics of the Worker API and the capabilities it provides.

Step 1. Create a custom task class

First, create a custom task that generates MD5 hashes of a configurable set of files.

In a new directory, create a buildSrc/build.gradle(.kts) file:

buildSrc/build.gradle.kts

repositories {
mavenCentral()

}

dependencies {
implementation("commons-io:commons-i0:2.5")
implementation("commons-codec:commons-codec:1.9") @®

buildSrc/build.gradle

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-io:2.5'
implementation 'commons-codec:commons-codec:1.9" @®

@ Your custom task class will use Apache Commons Codec to generate MD5 hashes.

Next, create a custom task class in your buildSrc/src/main/java directory. You should name this
class CreateMD5

buildSrc/src/main/java/CreateMD5.java

import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.io.FileUtils;

import org.gradle.api.file.DirectoryProperty;
import org.gradle.api.file.ReqularFile;

import org.gradle.api.provider.Provider;

import org.gradle.api.tasks.OutputDirectory;

import org.gradle.api.tasks.SourceTask;

import org.gradle.api.tasks.TaskAction;

import org.gradle.workers.WorkerExecutor;

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;

abstract public class CreateMD5 extends SourceTask { @

abstract public DirectoryProperty getDestinationDirectory(); @

public void createHashes() {
for (File sourceFile : getSource().getFiles()) { ®
try {
InputStream stream = new FileInputStream(sourceFile);
System.out.println("Generating MD5 for " + sourceFile.getName() + "
oo)8
// Artificially make this task slower.
Thread.sleep(3000); @
Provider<ReqularFile> md5File = getDestinationDirectory().file
(sourceFile.getName() + ".md5"); ®
FileUtils.writeStringToFile(md5File.get().getAsFile(), DigestUtils
.md5Hex(stream), (String) null);
} catch (Exception e) {
throw new RuntimeException(e);

}

@ SourceTask is a convenience type for tasks that operate on a set of source files.
@ The task output will go into a configured directory.

® The task iterates over all the files defined as "source files" and creates an MD5 hash of each.

https://commons.apache.org/proper/commons-codec/
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/SourceTask.html

@ Insert an artificial sleep to simulate hashing a large file (the sample files won’t be that large).

® The MD5 hash of each file is written to the output directory into a file of the same name with an
"md5" extension.

Next, create a build.gradle(.kts) that registers your new CreateMD5 task:

build.gradle.kts
plugins { id("base") } @
tasks.register<CreateMDd5>("md5") {

destinationDirectory = project.layout.buildDirectory.dir("md5") @
source(project.layout.projectDirectory.file("src")) ®

build.gradle
plugins { id 'base' } @
tasks.register("md5", CreateMD5) {

destinationDirectory = project.layout.buildDirectory.dir("md5") @
source(project.layout.projectDirectory.file('src')) ®

@ Apply the base plugin so that youw’ll have a clean task to use to remove the output.
@ MD?5 hash files will be written to build/md5.

® This task will generate MD5 hash files for every file in the src directory.
You will need some source to generate MD5 hashes from. Create three files in the src directory:

src/einstein.txt

Intellectual growth should commence at birth and cease only at death.

src/feynman.txt

I was born not knowing and have had only a little time to change that here and there.

src¢/hawking.txt

Intelligence is the ability to adapt to change.

At this point, you can test your task by running it ./gradlew md5:

$ gradle md5

The output should look similar to:

> Task :md5

Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 9s
3 actionable tasks: 3 executed

In the build/md5 directory, you should now see corresponding files with an md5 extension containing
MD?5 hashes of the files from the src directory. Notice that the task takes at least 9 seconds to run
because it hashes each file one at a time (i.e., three files at ~3 seconds apiece).

Step 2. Convert to the Worker API

Although this task processes each file in sequence, the processing of each file is independent of any
other file. This work can be done in parallel and take advantage of multiple processors. This is
where the Worker API can help.

To use the Worker API, you need to define an interface that represents the parameters of each unit
of work and extends org.gradle.workers.WorkParameters.

For the generation of MD5 hash files, the unit of work will require two parameters:

1. the file to be hashed and,

2. the file to write the hash to.

There is no need to create a concrete implementation because Gradle will generate one for us at
runtime.

buildSrc/src/main/java/MD5WorkParameters.java

import org.gradle.api.file.ReqularFileProperty;
import org.gradle.workers.WorkParameters;

public interface MD5WorkParameters extends WorkParameters {

ReqularFileProperty getSourceFile(); @
RegularFileProperty getMD5File();

@ Use Property objects to represent the source and MD5 hash files.

Then, you need to refactor the part of your custom task that does the work for each individual file

into a separate class. This class is your "unit of work" implementation, and it should be an abstract
class that extends org.gradle.workers.WorkAction:

buildSrc/src/main/java/GenerateMD5.java

import
import
import

import
import

import

public

org.apache.commons.codec.digest.DigestUtils;
org.apache.commons.io.FileUtils;
org.gradle.workers.WorkAction;

java.io.File;
java.io.FileInputStream;

java.io.InputStream;

abstract class GenerateMD5 implements WorkAction<MD5WorkParameters> { @

public void execute() {

null);

try {

File sourceFile = getParameters().getSourceFile().getAsFile().get();

File md5File = getParameters().getMD5File().qgetAsFile().get();
InputStream stream = new FileInputStream(sourceFile);
System.out.println("Generating MD5 for " + sourceFile.getName() + "...");
// Artificially make this task slower.

Thread.sleep(3000);

FileUtils.writeStringToFile(md5File, DigestUtils.md5Hex(stream), (String)

} catch (Exception e) {

throw new RuntimeException(e);

® Do not implement the getParameters() method - Gradle will inject this at runtime.

Now, change your custom task class to submit work to the WorkerExecutor instead of doing the

work itself.

buildSrc/src/main/java/CreateMD5.java

import
import
import
import
import
import

import
import

org.gradle.api.Action;
org.gradle.api.file.ReqularFile;
org.gradle.api.provider.Provider;
org.gradle.api.tasks.*;
org.gradle.workers.*;
org.gradle.api.file.DirectoryProperty;

javax.inject.Inject;
java.io.File;

abstract public class CreateMD5 extends SourceTask {

https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkerExecutor.html

abstract public DirectoryProperty getDestinationDirectory();

abstract public WorkerExecutor getWorkerExecutor(); @

public void createHashes() {
WorkQueue workQueue = getWorkerExecutor().noIsolation(); @

for (File sourceFile : getSource().getFiles()) {
Provider<RegularFile> md5File = getDestinationDirectory().file(sourceFile
.getName() + ".md5");
workQueue.submit(GenerateMD5.class, parameters -> { @
parameters.getSourceFile().set(sourceFile);
parameters.getMD5File().set(md5File);

H;

® The WorkerExecutor service is required in order to submit your work. Create an abstract getter
method annotated javax.inject.Inject, and Gradle will inject the service at runtime when the
task is created.

@ Before submitting work, get a WorkQueue object with the desired isolation mode (described
below).

® When submitting the unit of work, specify the unit of work implementation, in this case

GenerateMD5, and configure its parameters.

At this point, you should be able to rerun your task:

$ gradle clean md5

> Task :md5

Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 3s
3 actionable tasks: 3 executed

The results should look the same as before, although the MD5 hash files may be generated in a
different order since the units of work are executed in parallel. This time, however, the task runs
much faster. This is because the Worker API executes the MD5 calculation for each file in parallel
rather than in sequence.

Step 3. Change the isolation mode

The isolation mode controls how strongly Gradle will isolate items of work from each other and the

https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkerExecutor.html

rest of the Gradle runtime.
There are three methods on WorkerExecutor that control this:

1. nolsolation()
2. classlLoaderIsolation()

3. processIsolation()

The nolsolation() mode is the lowest level of isolation and will prevent a unit of work from
changing the project state. This is the fastest isolation mode because it requires the least overhead
to set up and execute the work item. However, it will use a single shared classloader for all units of
work. This means that each unit of work can affect one another through static class state. It also
means that every unit of work uses the same version of libraries on the buildscript classpath. If you
wanted the user to be able to configure the task to run with a different (but compatible) version of
the Apache Commons Codec library, you would need to use a different isolation mode.

First, you must change the dependency in buildSrc/build.gradle to be compileOnly. This tells Gradle
that it should use this dependency when building the classes, but should not put it on the build
script classpath:

buildSrc/build.gradle.kts

repositories {
mavenCentral()

}

dependencies {
implementation("commons-io:commons-io:2.5")
compileOnly("commons-codec:commons-codec:1.9")

buildSrc/build.gradle

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-io:2.5'
compileOnly 'commons-codec:commons-codec:1.9'

Next, change the CreatelMD5 task to allow the user to configure the version of the codec library that
they want to use. It will resolve the appropriate version of the library at runtime and configure the

https://commons.apache.org/proper/commons-codec/

workers to use this version.

The classloaderIsolation() method tells Gradle to run this work in a thread with an isolated
classloader:

buildSrc/src/main/java/CreateMD5.java

import org.gradle.api.Action;

import org.gradle.api.file.ConfiqgurableFileCollection;
import org.gradle.api.file.DirectoryProperty;

import org.gradle.api.file.ReqularFile;

import org.gradle.api.provider.Provider;

import org.gradle.api.tasks.*;

import org.gradle.process.JavaForkOptions;

import org.gradle.workers.*;

import javax.inject.Inject;
import java.io.File;
import java.util.Set;

abstract public class CreateMD5 extends SourceTask {

abstract public ConfigurableFileCollection getCodecClasspath(); @

abstract public DirectoryProperty getDestinationDirectory();

abstract public WorkerExecutor getWorkerExecutor();

public void createHashes() {
WorkQueue workQueue = getWorkerExecutor().classLoaderIsolation(workerSpec -> {
workerSpec.getClasspath().from(getCodecClasspath()); @
b

for (File sourceFile : getSource().getFiles()) {
Provider<RegularFile> md5File = getDestinationDirectory().file(sourceFile
.getName() + ".md5");
workQueue.submit(GenerateMD5.class, parameters -> {
parameters.getSourceFile().set(sourceFile);
parameters.getMD5File().set(md5File);
Ik

@ Expose an input property for the codec library classpath.

@ Configure the classpath on the ClassLoaderWorkerSpec when creating the work queue.

https://docs.gradle.org/8.10/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html

Next, you need to configure your build so that it has a repository to look up the codec version at
task execution time. We also create a dependency to resolve our codec library from this repository:

build.gradle.kts
plugins { id("base") }

repositories {
mavenCentral() @
}

val codec = confiqurations.create("codec") { @
attributes {
attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage.JAVA_RUNTIME))
}
isVisible = false
isCanBeConsumed = false

}

dependencies {
codec("commons-codec:commons-codec:1.10") ®

}

tasks.register<CreateMd5>("md5") {
codecClasspath.from(codec) @
destinationDirectory = project.layout.buildDirectory.dir("md5")
source(project.layout.projectDirectory.file("src"))

build.gradle
plugins { id 'base' }

repositories {
mavenCentral() @
}

configurations.create('codec') { @
attributes {
attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage
.JAVA_RUNTIME))
}
visible = false
canBeConsumed = false

}

dependencies {

codec 'commons-codec:commons-codec:1.10" ®

tasks.register('md5"', CreateMD5) {
codecClasspath.from(configurations.codec) @
destinationDirectory = project.layout.buildDirectory.dir('md5")
source(project.layout.projectDirectory.file('src"))

@ Add a repository to resolve the codec library - this can be a different repository than the one
used to build the CreateMD5 task class.

@ Add a configuration to resolve our codec library version.
® Configure an alternate, compatible version of Apache Commons Codec.

@ Configure the md5 task to use the configuration as its classpath. Note that the configuration will
not be resolved until the task is executed.

Now, if you run your task, it should work as expected using the configured version of the codec
library:

$ gradle clean md5

> Task :md5

Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 3s
3 actionable tasks: 3 executed

Step 4. Create a Worker Daemon

Sometimes, it is desirable to utilize even greater levels of isolation when executing items of work.
For instance, external libraries may rely on certain system properties to be set, which may conflict
between work items. Or a library might not be compatible with the version of JDK that Gradle is
running with and may need to be run with a different version.

The Worker API can accommodate this using the processIsolation() method that causes the work
to execute in a separate "worker daemon". These worker processes will be session-scoped and can
be reused within the same build session, but they won’t persist across builds. However, if system
resources get low, Gradle will stop unused worker daemons.

To utilize a worker daemon, use the processIsolation() method when creating the WorkQueue. You
may also want to configure custom settings for the new process:

https://commons.apache.org/proper/commons-codec/

buildSrc/src/main/java/CreateMD5.java

import
import
import
import
import
import
import
import

import
import
import

org.
.gradle.
org.
org.
org.
org.
org.
org.

org

gradle.

gradle.
gradle.
gradle.
gradle.
gradle.
gradle.

api
api
api
api
api
api

.Action;
.file.ConfigurableFileCollection;
.file.DirectoryProperty;
.file.RegularFile;
.provider.Provider;

.tasks.*;

process.JavaForkOptions;
workers.*;

javax.inject.Inject;
java.io.File;
java.util.Set;

abstract public class CreateMD5 extends SourceTask {

abstract public ConfigurableFileCollection getCodecClasspath(); @

abstract public DirectoryProperty getDestinationDirectory();

abstract public WorkerExecutor getWorkerExecutor();

public void createHashes() {

WorkQueue workQueue = getWorkerExecutor().processIsolation(workerSpec -> {
workerSpec.getClasspath().from(getCodecClasspath());
workerSpec.forkOptions(options -> {

options.setMaxHeapSize("64m"); @

b

b

for (File sourceFile : getSource().getFiles()) {

Provider<RegularFile> md5File = getDestinationDirectory().file(sourceFile

.getName() + ".md5");

workQueue.submit(GenerateMD5.class, parameters -> {
parameters.getSourceFile().set(sourceFile);
parameters.getMD5File().set(md5File);

1)

@ Change the isolation mode to PROCESS.

@ Set up the JavaForkOptions for the new process.

https://docs.gradle.org/8.10/javadoc/org/gradle/process/JavaForkOptions.html

Now, you should be able to run your task, and it will work as expected but using worker daemons
instead:

$ gradle clean md5

> Task :md5

Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 3s
3 actionable tasks: 3 executed

Note that the execution time may be high. This is because Gradle has to start a new process for each
worker daemon, which is expensive.

However, if you run your task a second time, you will see that it runs much faster. This is because
the worker daemon(s) started during the initial build have persisted and are available for use
immediately during subsequent builds:

$ gradle clean md5

> Task :md5

Generating MD5 for einstein.txt...
Generating MD5 for feynman.txt...
Generating MD5 for hawking.txt...

BUILD SUCCESSFUL in 1s
3 actionable tasks: 3 executed

Isolation modes

Gradle provides three isolation modes that can be configured when creating a WorkQueue and are
specified using one of the following methods on WorkerExecutor:

WorkerExecutor.noIsolation()

This states that the work should be run in a thread with minimal isolation.
For instance, it will share the same classloader that the task is loaded from. This is the fastest
level of isolation.

WorkerExecutor.classlLoaderIsolation()

This states that the work should be run in a thread with an isolated classloader.

The classloader will have the classpath from the classloader that the unit of work
implementation class was loaded from as well as any additional classpath entries added through
ClassLoaderWorkerSpec.getClasspath().

https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkQueue.html
https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkerExecutor.html
https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkerExecutor.html#noIsolation--
https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkerExecutor.html#classLoaderIsolation-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html#getClasspath--

WorkerExecutor.processIsolation()

This states that the work should be run with a maximum isolation level by executing the work in
a separate process.

The classloader of the process will use the classpath from the classloader that the unit of work
was loaded from as well as any additional classpath entries added through
(lassLoaderWorkerSpec.getClasspath(). Furthermore, the process will be a worker daemon that
will stay alive and can be reused for future work items with the same requirements. This
process can be configured with different settings than the Gradle JVM using
ProcessWorkerSpec.forkOptions(org.gradle.api.Action).

Worker Daemons

When using processIsolation(), Gradle will start a long-lived worker daemon process that can be
reused for future work items.

build.gradle.kts

// Create a WorkQueue with process isolation
val workQueue = workerExecutor.processIsolation() {
// Configure the options for the forked process
forkOptions {
maxHeapSize = "512m"
systemProperty("org.gradle.sample.showFileSize", "true")

}

// Create and submit a unit of work for each file
source.forEach { file ->
workQueue.submit(ReverseFile::class) {
fileToReverse = file
destinationDir = outputDir

build.gradle

// Create a WorkQueue with process isolation
WorkQueue workQueue = workerExecutor.processIsolation() { ProcessWorkerSpec
spec ->
// Confiqure the options for the forked process
forkOptions { JavaForkOptions options ->
options.maxHeapSize = "512m"
options.systemProperty "org.gradle.sample.showFileSize", "true"

https://docs.gradle.org/8.10/javadoc/org/gradle/workers/WorkerExecutor.html#processIsolation-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/workers/ClassLoaderWorkerSpec.html#getClasspath--
https://docs.gradle.org/8.10/javadoc/org/gradle/workers/ProcessWorkerSpec.html#forkOptions-org.gradle.api.Action-

// Create and submit a unit of work for each file
source.each { file ->
workQueue.submit(ReverseFile.class) { ReverseParameters parameters ->
parameters.fileToReverse = file
parameters.destinationDir = outputDir

When a unit of work for a worker daemon is submitted, Gradle will first look to see if a compatible,
idle daemon already exists. If so, it will send the unit of work to the idle daemon, marking it as
busy. If not, it will start a new daemon. When evaluating compatibility, Gradle looks at a number of
criteria, all of which can be controlled through
ProcessWorkerSpec.forkOptions(org.gradle.api.Action).

By default, a worker daemon starts with a maximum heap of 512MB. This can be changed by
adjusting the workers' fork options.

executable

A daemon is considered compatible only if it uses the same Java executable.

classpath

A daemon is considered compatible if its classpath contains all the classpath entries requested.
Note that a daemon is considered compatible only if the classpath exactly matches the requested
classpath.

heap settings

A daemon is considered compatible if it has at least the same heap size settings as requested.
In other words, a daemon that has higher heap settings than requested would be considered
compatible.

jvm arguments

A daemon is compatible if it has set all the JVM arguments requested.
Note that a daemon is compatible if it has additional JVM arguments beyond those requested
(except for those treated especially, such as heap settings, assertions, debug, etc.).

system properties

A daemon is considered compatible if it has set all the system properties requested with the
same values.
Note that a daemon is compatible if it has additional system properties beyond those requested.

environment variables

A daemon is considered compatible if it has set all the environment variables requested with the
same values.
Note that a daemon is compatible if it has more environment variables than requested.

bootstrap classpath

A daemon is considered compatible if it contains all the bootstrap classpath entries requested.

https://docs.gradle.org/8.10/javadoc/org/gradle/workers/ProcessWorkerSpec.html#forkOptions-org.gradle.api.Action-

Note that a daemon is compatible if it has more bootstrap classpath entries than requested.

debug

A daemon is considered compatible only if debug is set to the same value as requested (true or
false).

enable assertions

A daemon is considered compatible only if enable assertions are set to the same value as
requested (true or false).

default character encoding

A daemon is considered compatible only if the default character encoding is set to the same
value as requested.

Worker daemons will remain running until the build daemon that started them is stopped or
system memory becomes scarce. When system memory is low, Gradle will stop worker daemons to
minimize memory consumption.

A step-by-step description of converting a normal task action to use the worker API

NOTE
can be found in the section on developing parallel tasks.

Cancellation and timeouts

To support cancellation (e.g., when the user stops the build with CTRL+C) and task timeouts, custom
tasks should react to interrupting their executing thread. The same is true for work items submitted
via the worker API If a task does not respond to an interrupt within 10s, the daemon will shut
down to free up system resources.

Advanced Tasks

Incremental tasks

In Gradle, implementing a task that skips execution when its inputs and outputs are already UP-T0-
DATE is simple and efficient, thanks to the Incremental Build feature.

However, there are times when only a few input files have changed since the last execution, and it
is best to avoid reprocessing all the unchanged inputs. This situation is common in tasks that
transform input files into output files on a one-to-one basis.

To optimize your build process you can use an incremental task. This approach ensures that only
out-of-date input files are processed, improving build performance.

Implementing an incremental task
For a task to process inputs incrementally, that task must contain an incremental task action.

This is a task action method that has a single InputChanges parameter. That parameter tells Gradle
that the action only wants to process the changed inputs.

https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html

In addition, the task needs to declare at least one incremental file input property by using either
@Incremental or @SkipWhenEmpty:

build.gradle.kts

public class IncrementalReverseTask : DefaultTask() {

@get:Incremental
@get:InputDirectory
val inputDir: DirectoryProperty = project.objects.directoryProperty()

@get:OutputDirectory
val outputDir: DirectoryProperty = project.objects.directoryProperty()

@get:Input
val inputProperty: RegularFileProperty = project.objects.fileProperty()
// File input property
@TaskAction
fun execute(inputs: InputChanges) { // InputChanges parameter
val msg = if (inputs.isIncremental) "CHANGED inputs are out of date"

else "ALL inputs are out of date"
println(msq)

build.gradle

class IncrementalReverseTask extends DefaultTask {

def File inputDir

def File outputDir

def inputProperty // File input property

void execute(InputChanges inputs) { // InputChanges parameter
println inputs.incremental ? "CHANGED inputs are out of date"
: "ALL inputs are out of date"

https://docs.gradle.org/8.10/javadoc/org/gradle/work/Incremental.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html

To query incremental changes for an input file property, that property must

always return the same instance. The easiest way to accomplish this is to use

one of the following property types: ReqularFileProperty, DirectoryProperty
IMPORTANT or ConfigurableFileCollection.

You can learn more about ReqularFileProperty and DirectoryProperty in Lazy
Configuration.

The incremental task action can use InputChanges.getFileChanges() to find out what files have
changed for a given file-based input property, be it of type ReqularFileProperty, DirectoryProperty
or ConfigurableFileCollection.

The method returns an Iterable of type FileChanges, which in turn can be queried for the
following:

the affected file
* the change type (ADDED, REMOVED or MODIFIED)

» the normalized path of the changed file

the file type of the changed file

The following example demonstrates an incremental task that has a directory input. It assumes that
the directory contains a collection of text files and copies them to an output directory, reversing the
text within each file:

build.gradle.kts

abstract class IncrementalReverseTask : DefaultTask() {
@get:Incremental
@get:PathSensitive(PathSensitivity.NAME_ONLY)
@get:InputDirectory
abstract val inputDir: DirectoryProperty

@get:OutputDirectory
abstract val outputDir: DirectoryProperty

@get:Input
abstract val inputProperty: Property<String>

@TaskAction
fun execute(inputChanges: InputChanges) {
println(
if (inputChanges.isIncremental) "Executing incrementally"
else "Executing non-incrementally"

)

inputChanges.getFileChanges(inputDir).forEach { change ->
if (change.fileType == FileType.DIRECTORY) return@forEach

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/RegularFileProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFileCollection.html
https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.10/javadoc/org/gradle/work/FileChange.html
https://docs.gradle.org/8.10/javadoc/org/gradle/work/FileChange.html#getFile--
https://docs.gradle.org/8.10/javadoc/org/gradle/work/FileChange.html#getChangeType--
https://docs.gradle.org/8.10/javadoc/org/gradle/work/FileChange.html#getNormalizedPath--
https://docs.gradle.org/8.10/javadoc/org/gradle/work/FileChange.html#getFileType--

println("${change.changeType}: ${change.normalizedPath}")
val targetFile =
outputDir.file(change.normalizedPath).qget().asFile

if (change.changeType == ChangeType.REMOVED) {
targetFile.delete()

} else {
targetFile.writeText(change.file.readText().reversed())

}

build.gradle
abstract class IncrementalReverseTask extends DefaultTask {
(PathSensitivity.NAME_ONLY)

abstract DirectoryProperty getInputDir()

abstract DirectoryProperty getOutputDir()

abstract Property<String> getInputProperty()

void execute(InputChanges inputChanges) {
println(inputChanges.incremental
? 'Executing incrementally’
: 'Executing non-incrementally’

)

inputChanges.getFileChanges(inputDir).each { change ->
if (change.fileType == FileType.DIRECTORY) return

println "¢{change.changeType}: ${change.normalizedPath}"
def targetFile = outputDir.file(change.normalizedPath).get()

.asFile

if (change.changeType == ChangeType.REMOVED) {
targetFile.delete()

} else {
targetFile.text = change.file.text.reverse()

}

}
}

The type of the inputDir property, its annotations, and the execute() action use
NOTE getFileChanges() to process the subset of files that have changed since the last build.
The action deletes a target file if the corresponding input file has been removed.

If, for some reason, the task is executed non-incrementally (by running with --rerun-tasks, for
example), all files are reported as ADDED, irrespective of the previous state. In this case, Gradle
automatically removes the previous outputs, so the incremental task must only process the given
files.

For a simple transformer task like the above example, the task action must generate output files for
any out-of-date inputs and delete output files for any removed inputs.

IMPORTANT A task may only contain a single incremental task action.

Which inputs are considered out of date?

When a task has been previously executed, and the only changes since that execution are to
incremental input file properties, Gradle can intelligently determine which input files need to be
processed, a concept known as incremental execution.

In this scenario, the InputChanges.getFileChanges() method, available in the
org.gradle.work.InputChanges class, provides details for all input files associated with the given
property that have been ADDED, REMOVED or MODIFIED.

However, there are many cases where Gradle cannot determine which input files need to be
processed (i.e., non-incremental execution). Examples include:
* There is no history available from a previous execution.

* You are building with a different version of Gradle. Currently, Gradle does not use task history
from a different version.

e An upToDatelWhen criterion added to the task returns false.
* An input property has changed since the previous execution.
* A non-incremental input file property has changed since the previous execution.

* One or more output files have changed since the previous execution.

In these cases, Gradle will report all input files as ADDED, and the getFileChanges() method will
return details for all the files that comprise the given input property.

You can check if the task execution is incremental or not with the InputChanges.isIncremental()
method.

An incremental task in action

Consider an instance of IncrementalReverseTask executed against a set of inputs for the first time.

In this case, all inputs will be considered ADDED, as shown here:

https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-
https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges.html##org.gradle.work.InputChanges:incremental

build.gradle.kts

tasks.register<IncrementalReverseTask>("incrementalReverse") {

inputDir = file("inputs")

outputDir = layout.buildDirectory.dir("outputs")

inputProperty = project.findProperty("taskInputProperty") as String? ?:
"original"

}

build.gradle

tasks.register('incrementalReverse', IncrementalReverseTask) {
inputDir = file('inputs')
outputDir = layout.buildDirectory.dir("outputs")
inputProperty = project.properties['taskInputProperty'] ?: 'original'

The build layout:

—— build.gradle

L—— inputs
F—— 1.txt
F—— 2.txt

L—— 3.txt

$ gradle -q incrementalReverse
Executing non-incrementally
ADDED: 1.txt

ADDED: 2.txt

ADDED: 3.txt

Naturally, when the task is executed again with no changes, then the entire task is UP-T0-DATE, and
the task action is not executed:

$ gradle incrementalReverse
> Task :incrementalReverse UP-TO-DATE

BUILD SUCCESSFUL 1in @s
1 actionable task: 1 up-to-date

When an input file is modified in some way or a new input file is added, then re-executing the task
results in those files being returned by InputChanges.getFileChanges().

The following example modifies the content of one file and adds another before running the
incremental task:

build.gradle.kts

tasks.register("updateInputs") {
val inputsDir = layout.projectDirectory.dir("inputs")
outputs.dir(inputsDir)
dolast {
inputsDir.file("1.txt").asFile.writeText("Changed content for
existing file 1.")
inputsDir.file("4.txt").asFile.writeText("Content for new file 4.")
}

build.gradle

tasks.register('updateInputs') {
def inputsDir = layout.projectDirectory.dir('inputs")
outputs.dir(inputsDir)
dolLast {
inputsDir.file('1.txt").asFile.text
file 1.
inputsDir.file('4.txt").asFile.text

'Changed content for existing

"Content for new file 4.'

$ gradle -q updatelInputs incrementalReverse
Executing incrementally

MODIFIED: 1.txt

ADDED: 4.txt

The various mutation tasks (updatelnputs, removelnput, etc) are only present to
NOTE demonstrate the behavior of incremental tasks. They should not be viewed as the
kinds of tasks or task implementations you should have in your own build scripts.

When an existing input file is removed, then re-executing the task results in that file being returned
by InputChanges.getFileChanges() as REMOVED.

The following example removes one of the existing files before executing the incremental task:

https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

build.gradle.kts

tasks.register<Delete>("removeInput") {
delete("inputs/3.txt")

}

build.gradle

tasks.register('removeInput', Delete) {
delete 'inputs/3.txt'

}

$ gradle -q removelInput incrementalReverse
Executing incrementally
REMOVED: 3.txt

Gradle cannot determine which input files are out-of-date when an output file is deleted (or
modified). In this case, details for all the input files for the given property are returned by
InputChanges.getFileChanges().

The following example removes one of the output files from the build directory. However, all the
input files are considered to be ADDED:

build.gradle.kts

tasks.register<Delete>("removeQutput") {
delete(layout.buildDirectory.file("outputs/1.txt"))

}

build.gradle

tasks.register('removeOQutput', Delete) {
delete layout.buildDirectory.file("outputs/1.txt")
}

$ gradle -q removeOutput incrementalReverse
Executing non-incrementally
ADDED: 1.txt

https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)

ADDED: 2.txt
ADDED: 3.txt

The last scenario we want to cover concerns what happens when a non-file-based input property is
modified. In such cases, Gradle cannot determine how the property impacts the task outputs, so the
task is executed non-incrementally. This means that all input files for the given property are
returned by InputChanges.getFileChanges() and they are all treated as ADDED.

The following example sets the project property taskInputProperty to a new value when running
the incrementalReverse task. That project property is used to initialize the task’s inputProperty
property, as you can see in the first example of this section.

Here is the expected output in this case:

$ gradle -q -PtaskInputProperty=changed incrementalReverse
Executing non-incrementally

ADDED: 1.txt
ADDED: 2.txt
ADDED: 3.txt

Command Line options

Sometimes, a user wants to declare the value of an exposed task property on the command line
instead of the build script. Passing property values on the command line is particularly helpful if
they change more frequently.

The task API supports a mechanism for marking a property to automatically generate a
corresponding command line parameter with a specific name at runtime.

Step 1. Declare a command-line option

To expose a new command line option for a task property, annotate the corresponding setter
method of a property with Option:

@0ption(option = "flag", description = "Sets the flag")

An option requires a mandatory identifier. You can provide an optional description.
A task can expose as many command line options as properties available in the class.

Options may be declared in superinterfaces of the task class as well. If multiple interfaces declare
the same property but with different option flags, they will both work to set the property.

In the example below, the custom task UrlVerify verifies whether a URL can be resolved by making
an HTTP call and checking the response code. The URL to be verified is configurable through the

https://docs.gradle.org/8.10/dsl/org.gradle.work.InputChanges.html#org.gradle.work.InputChanges:getFileChanges(org.gradle.api.file.FileCollection)
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/options/Option.html

property url. The setter method for the property is annotated with @Option:

UrlVerifyjava
import org.gradle.api.tasks.options.Option;

public class UrlVerify extends DefaultTask {
private String url;

(option = "url", description = "Configures the URL to be verified.")
public void setUrl(String url) {
this.url = url;

}

public String getUr1l() {
return url;

}

public void verify() {
getlLogger().quiet("Verifying URL '{}'", url);

// verify URL by making a HTTP call

All options declared for a task can be rendered as console output by running the help task and the
--task option.

Step 2. Use an option on the command line

There are a few rules for options on the command line:
* The option uses a double-dash as a prefix, e.g., --url. A single dash does not qualify as valid
syntax for a task option.

*» The option argument follows directly after the task declaration, e.g., verifyUrl
--url=http://www.google.com/.

* Multiple task options can be declared in any order on the command line following the task
name.

Building upon the earlier example, the build script creates a task instance of type UrlVerify and
provides a value from the command line through the exposed option:

build.gradle.kts

tasks.register<Ur1Verify>("verifyUrl")

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/options/Option.html

build.gradle

tasks.register('verifyUrl', UrlVerify)

$ gradle -q verifyUrl --url=http://www.google.com/
Verifying URL 'http://www.google.com/'

Supported data types for options
Gradle limits the data types that can be used for declaring command line options.
The use of the command line differs per type:

boolean, Boolean, Property<Boolean>

Describes an option with the value true or false.

Passing the option on the command line treats the value as true. For example, --foo equates to
true.

The absence of the option uses the default value of the property. For each boolean option, an
opposite option is created automatically. For example, --no-foo is created for the provided
option --foo and --bar is created for --no-bar. Options whose name starts with --no are disabled
options and set the option value to false. An opposite option is only created if no option with the
same name already exists for the task.

Double, Property<Double>

Describes an option with a double value.
Passing the option on the command line also requires a value, e.g., --factor=2.2 or --factor 2.2.

Integer, Property<Integer>

Describes an option with an integer value.
Passing the option on the command line also requires a value, e.g., --network-timeout=5000 or
--network-timeout 5000.

Long, Property<Long>

Describes an option with a long value.
Passing the option on the command line also requires a value, e.g., --threshold=2147483648 or
--threshold 2147483648.

String, Property<String>

Describes an option with an arbitrary String value.
Passing the option on the command line also requires a value, e.g., --container-id=2x94held or
--container-id 2x94held.

enum, Property<enum>

Describes an option as an enumerated type.
Passing the option on the command line also requires a value e.g., --1og-level=DEBUG or --log

-level debug.
The value is not case-sensitive.

List<T> where T is Double, Integer, Long, String, enum

Describes an option that can take multiple values of a given type.

The values for the option have to be provided as multiple declarations, e.g., --image-id=123
--image-1id=456.

Other notations, such as comma-separated lists or multiple values separated by a space
character, are currently not supported.

ListProperty<T>, SetProperty<T> where T is Double, Integer, Long, String, enum

Describes an option that can take multiple values of a given type.

The values for the option have to be provided as multiple declarations, e.g., --image-id=123
--image-1id=456.

Other notations, such as comma-separated lists or multiple values separated by a space
character, are currently not supported.

DirectoryProperty, ReqularFileProperty

Describes an option with a file system element.

Passing the option on the command line also requires a value representing a path, e.g., --output
-file=file.txt or --output-dir outputDir.

Relative paths are resolved relative to the project directory of the project that owns this property
instance. See FileSystemLocationProperty.set().

Documenting available values for an option

Theoretically, an option for a property type String or List<String> can accept any arbitrary value.
Accepted values for such an option can be documented programmatically with the help of the
annotation OptionValues:

@ptionValues('file')

This annotation may be assigned to any method that returns a List of one of the supported data
types. You need to specify an option identifier to indicate the relationship between the option and
available values.

Passing a value on the command line not supported by the option does not fail the
NOTE build or throw an exception. You must implement custom logic for such behavior in
the task action.

The example below demonstrates the use of multiple options for a single task. The task
implementation provides a list of available values for the option output-type:

UrlProcess.java

import org.gradle.api.tasks.options.Option;
import org.gradle.api.tasks.options.OptionValues;

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileSystemLocationProperty.html#set-java.io.File
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/options/OptionValues.html

public abstract class UrlProcess extends DefaultTask {
private String url;
private OutputType outputType;

@Input

@0ption(option = "http", description = "Configures the http protocol to be
allowed.")

public abstract Property<Boolean> getHttp();

@ption(option = "url", description = "Configures the URL to send the request to.
")
public void setUrl(String url) {
if (!getHttp().getOrElse(true) && url.startsWith("http://")) {
throw new I1legalArqumentException("HTTP is not allowed");
} else {
this.url = url;
}
}

@Input
public String getUr1l() {
return url;

}

@ption(option = "output-type", description = "Configures the output type.")
public void setOutputType(OutputType outputType) {

this.outputType = outputType;
}

@0ptionValues("output-type")
public List<OutputType> getAvailableOQutputTypes() {

return new ArraylList<OutputType>(Arrays.asList(OutputType.values()));
}

@Input

public OutputType getOutputType() {
return outputType;

}

@TaskAction
public void process() {
getLogger().quiet("Writing out the URL response from '{}' to '{}
outputType);

, url,

// retrieve content from URL and write to output

}

private static enum OutputType {
CONSOLE, FILE

}

Listing command line options

Command line options using the annotations Option and OptionValues are self-documenting.

You will see declared options and their available values reflected in the console output of the help
task. The output renders options alphabetically, except for boolean disable options, which appear
following the enable option:

$ gradle -q help --task processUrl
Detailed task information for processUrl

Path
:processUrl

Type
Ur1Process (UrlProcess)

Options
--http Configures the http protocol to be allowed.

--no-http Disables option --http.

--output-type Configures the output type.
Available values are:
CONSOLE
FILE

--url Configures the URL to send the request to.
--rerun Causes the task to be re-run even if up-to-date.

Description

Group

Limitations

Support for declaring command line options currently comes with a few limitations.
* Command line options can only be declared for custom tasks via annotation. There’s no
programmatic equivalent for defining options.
» Options cannot be declared globally, e.g., on a project level or as part of a plugin.

* When assigning an option on the command line, the task exposing the option needs to be
spelled out explicitly, e.g., gradle check --tests abc does not work even though the check task

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/options/OptionValues.html

depends on the test task.

* If you specify a task option name that conflicts with the name of a built-in Gradle option, use the
-- delimiter before calling your task to reference that option. For more information, see
Disambiguate Task Options from Built-in Options.

Verification failures

Normally, exceptions thrown during task execution result in a failure that immediately terminates
a build. The outcome of the task will be FAILED, the result of the build will be FAILED, and no further
tasks will be executed. When running with the --continue flag, Gradle will continue to run other
requested tasks in the build after encountering a task failure. However, any tasks that depend on a
failed task will not be executed.

There is a special type of exception that behaves differently when downstream tasks only rely on
the outputs of a failing task. A task can throw a subtype of VerificationException to indicate that it
has failed in a controlled manner such that its output is still valid for consumers. A task depends on
the outcome of another task when it directly depends on it using dependsOn. When Gradle is run
with --continue, consumer tasks that depend on a producer task’s output (via a relationship
between task inputs and outputs) can still run after the producer fails.

A failed unit test, for instance, will cause a failing outcome for the test task. However, this doesn’t
prevent another task from reading and processing the (valid) test results the task produced.
Verification failures are used in exactly this manner by the Test Report Aggregation Plugin.

Verification failures are also useful for tasks that need to report a failure even after producing
useful output consumable by other tasks.

build.gradle.kts

val process = tasks.register("process") {
val outputFile = layout.buildDirectory.file("processed.log")
outputs.files(outputFile) @

dolast {
val logFile = outputFile.get().asFile
logFile.appendText("Step 1 Complete.") @
throw VerificationException("Process failed!") ®
logFile.appendText("Step 2 Complete.") @

}

tasks.register("postProcess") {
inputs.files(process) ®

dolLast {
println("Results: ${inputs.files.singleFile.readText()}") ®

}

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/VerificationException.html
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin

build.gradle

tasks.register("process") {
def outputFile = layout.buildDirectory.file("processed.log")
outputs.files(outputFile) @

dolLast {
def logFile = outputFile.get().asFile
logFile << "Step 1 Complete." @
throw new VerificationException("Process failed!") ®
logFile << "Step 2 Complete." @

}

tasks.register("postProcess") {
inputs.files(tasks.named("process")) ®

dolast {
println("Results: ${inputs.files.singleFile.text}") ®
}

$ gradle postProcess --continue
> Task :process FAILED

> Task :postProcess
Results: Step 1 Complete.
2 actionable tasks: 2 executed

FAILURE: Build failed with an exception.

@ Register Output: The process task writes its output to a log file.

@ Modify Output: The task writes to its output file as it executes.

® Task Failure: The task throws a VerificationException and fails at this point.

@ Continue to Modify Output: This line never runs due to the exception stopping the task.

® Consume Output: The postProcess task depends on the output of the process task due to using
that task’s outputs as its own inputs.

® Use Partial Result: With the --continue flag set, Gradle still runs the requested postProcess task
despite the process task’s failure. postProcess can read and display the partial (though still valid)
result.

DEVELOPING PLUGINS

Understanding Plugins

Gradle comes with a set of powerful core systems such as dependency management, task execution,
and project configuration. But everything else it can do is supplied by plugins.

Plugins encapsulate logic for specific tasks or integrations, such as compiling code, running tests, or
deploying artifacts. By applying plugins, users can easily add new features to their build process
without having to write complex code from scratch.

This plugin-based approach allows Gradle to be lightweight and modular. It also promotes code
reuse and maintainability, as plugins can be shared across projects or within an organization.

Before reading this chapter, it’s recommended that you first read Learning The Basics and complete
the Tutorial.

Plugins Introduction

Plugins can be sourced from Gradle or the Gradle community. But when users want to organize
their build logic or need specific build capabilities not provided by existing plugins, they can
develop their own.

As such, we distinguish between three different kinds of plugins:

1. Core Plugins - plugins that come from Gradle.
2. Community Plugins - plugins that come from Gradle Plugin Portal or a public repository.

3. Local or Custom Plugins - plugins that you develop yourself.

Core Plugins

The term core plugin refers to a plugin that is part of the Gradle distribution such as the Java
Library Plugin. They are always available.

Community Plugins

The term community plugin refers to a plugin published to the Gradle Plugin Portal (or another
public repository) such as the Spotless Plugin.

Local or Custom Plugins

The term local or custom plugin refers to a plugin you write yourself for your own build.

Custom plugins

There are three types of custom plugins:

partr1_gradle_init.pdf#partr1_gradle_init
https://plugins.gradle.org/
https://plugins.gradle.org/plugin/com.diffplug.gradle.spotless

Type Location: Most likely: Benefit:

1 Script plugins A .gradle(.kts) Alocal plugin Plugin is
script file automatically
compiled and
included in the

classpath of the
build script.
2 Precompiled script buildSrc folder or A convention Plugin is
plugins composite build plugin automatically

compiled, tested,
and available on
the classpath of
the build script.
The plugin is
visible to every
build script used
by the build.

3 Binary plugins Standalone project A shared plugin Plugin JAR is
produced and
published. The
plugin can be used
in multiple builds
and shared with
others.

Script plugins

Script plugins are typically small, local plugins written in script files for tasks specific to a single
build or project. They do not need to be reused across multiple projects. Script plugins are not
recommended but many other forms of plugins evolve from script plugins.

To create a plugin, you need to write a class that implements the Plugin interface.

The following sample creates a GreetingPlugin, which adds a hello task to a project when applied:

build.gradle.kts

class GreetingPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.task("hello") {
dolLast {
println("Hello from the GreetingPlugin")
¥

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html

// Apply the plugin
apply<GreetingPlugin>()

build.gradle

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
project.task('hello") {
dolLast {
println 'Hello from the GreetingPlugin'

}

}

// Apply the plugin
apply plugin: GreetingPlugin

$ gradle -q hello
Hello from the GreetingPlugin

"file_name.gradle.kts") or apply from:

The Project object is passed as a parameter in apply(), which the plugin can use to configure the
project however it needs to (such as adding tasks, configuring dependencies, etc.). In this example,
the plugin is written directly in the build file which is not a recommended practice.

When the plugin is written in a separate script file, it can be applied using apply(from
'file_name.gradle'. In the example below, the plugin is
coded in the other.gradle(.kts) script file. Then, the other.gradle(.kts)

build.gradle(.kts) using apply from

other.gradle.kts

class GreetingScriptPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.task("hi") {
dolLast {

is applied to

println("Hi from the GreetingScriptPlugin")

}

// Apply the plugin
apply<GreetingScriptPlugin>()

other.gradle

class GreetingScriptPlugin implements Plugin<Project> {
void apply(Project project) {
project.task('hi') {
dolLast {
println "Hi from the GreetingScriptPlugin’
}

}

// Apply the plugin
apply plugin: GreetingScriptPlugin

build.gradle.kts

apply(from = "other.gradle.kts")

build.gradle

apply from: 'other.gradle'

$ gradle -q hi
Hi from the GreetingScriptPlugin

Script plugins should be avoided.

Precompiled script plugins

Precompiled script plugins are compiled into class files and packaged into a JAR before they are
executed. These plugins use the Groovy DSL or Kotlin DSL instead of pure Java, Kotlin, or Groovy.
They are best used as convention plugins that share build logic across projects or as a way to
neatly organize build logic.

To create a precompiled script plugin, you can:

1. Use Gradle’s Kotlin DSL - The plugin is a .gradle.kts file, and apply id("kotlin-ds1").
2. Use Gradle’s Groovy DSL - The plugin is a .gradle file, and apply id("groovy-gradle-plugin™).

To apply a precompiled script plugin, you need to know its ID. The ID is derived from the plugin
script’s filename and its (optional) package declaration.

For example, the script src/main/*/some-java-library.gradle(.kts) has a plugin ID of some-java-
library (assuming it has no package declaration). Likewise, src/main/*/my/some-java-
library.gradle(.kts) has a plugin ID of my.some-java-library as long as it has a package declaration
of my.

Precompiled script plugin names have two important limitations:

» They cannot start with org.gradle.

* They cannot have the same name as a core plugin.

When the plugin is applied to a project, Gradle creates an instance of the plugin class and calls the
instance’s Plugin.apply() method.

NOTE A new instance of a Plugin is created within each project applying that plugin.

Let’s rewrite the GreetingPlugin script plugin as a precompiled script plugin. Since we are using the
Groovy or Kotlin DSL, the file essentially becomes the plugin. The original script plugin simply
created a hello task which printed a greeting, this is what we will do in the pre-compiled script
plugin:

buildSrc/src/main/kotlin/GreetingPlugin.gradle.kts

tasks.register("hello") {
dolast {
println("Hello from the convention GreetingPlugin")

}

buildSrc/src/main/groovy/GreetingPlugin.gradle

tasks.register("hello") {
dolast {
println("Hello from the convention GreetingPlugin")

}

The GreetingPlugin can now be applied in other subprojects' builds by using its ID:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html#apply-T-

app/build.gradle.kts

plugins {
application
id("GreetingPlugin")
}
app/build.gradle
plugins {
id "application’
id('GreetingPlugin')
}

$ gradle -q hello
Hello from the convention GreetingPlugin

Convention plugins

A convention plugin is typically a precompiled script plugin that configures existing core and
community plugins with your own conventions (i.e. default values) such as setting the Java version
by using java.toolchain.languageVersion = JavalanguageVersion.of(17). Convention plugins are
also used to enforce project standards and help streamline the build process. They can apply and
configure plugins, create new tasks and extensions, set dependencies, and much more.

Let’s take an example build with three subprojects: one for data-model, one for database-logic and
one for app code. The project has the following structure:

—— buildSrc

| F— src

| | ...

| L—— build.gradle.kts

—— data-model

| src
| | —_
| L—— build.gradle.kts

—— database-logic
src

|
! | L. ..
| L—— build.gradle.kts

—— app

| F— sre

T

| L—— build.gradle.kts
L—— settings.gradle.kts

The build file of the database-1logic subproject is as follows:

database-logic/build.gradle.kts

plugins {
id("java-library")
id("org.jetbrains.kotlin.jvm") version "1.9.24"

}

repositories {
mavenCentral()

}

java {
toolchain.languageVersion.set(JavalanguageVersion.of(11))

+

tasks.test {
useJUnitPlatform()

}

kotlin {
jvmToolchain(11)

}

// More build logic

database-logic/build.gradle

plugins {
id 'java-library'
id 'org.jetbrains.kotlin.jvm' version '1.9.24'

}

repositories {
mavenCentral()

}

java {
toolchain.languageVersion.set(JavalanguageVersion.of(11))

}

tasks.test {

useJUnitPlatform()
¥
kotlin {
jvmToolchain {
languageVersion.set(JavalanguageVersion.of(11))
}
¥

// More build logic

We apply the java-library plugin and add the org.jetbrains.kotlin.jvm plugin for Kotlin support.
We also configure Kotlin, Java, tests and more.

Our build file is beginning to grow...

The more plugins we apply and the more plugins we configure, the larger it gets. There’s also
repetition in the build files of the app and data-model subprojects, especially when configuring
common extensions like setting the Java version and Kotlin support.

To address this, we use convention plugins. This allows us to avoid repeating configuration in each
build file and keeps our build scripts more concise and maintainable. In convention plugins, we can
encapsulate arbitrary build configuration or custom build logic.

To develop a convention plugin, we recommend using buildSrc — which represents a completely
separate Gradle build. buildSrc has its own settings file to define where dependencies of this build
are located.

We add a Kotlin script called my-java-library.gradle.kts inside the buildSrc/src/main/kotlin
directory. Or conversely, a Groovy script called my-java-library.gradle inside the
buildSrc/src/main/groovy directory. We put all the plugin application and configuration from the
database-logic build file into it:

buildSrc/src/main/kotlin/my-java-library.gradle.kts

plugins {
id("java-library")
id("org.jetbrains.kotlin.jvm")

}

repositories {
mavenCentral()

}

java {
toolchain.languageVersion.set(JavalanguageVersion.of(11))

}

tasks.test {

useJUnitPlatform()
}
kotlin {
jvmToolchain(11)
}

buildSrc/src/main/groovy/my-java-library.gradle

plugins {
id 'java-library'
id 'org.jetbrains.kotlin.jvm'

+
repositories {
mavenCentral()
}
java {
toolchain.languageVersion.set(JavalanguageVersion.of(11))
}
tasks.test {
useJUnitPlatform()
+
kotlin {
jvmToolchain {
languageVersion.set(JavalanguageVersion.of(11))
}
}

The name of the file my-java-library is the ID of our brand-new plugin, which we can now use in all
of our subprojects.

TIP Why is the version of id 'org.jetbrains.kotlin.jvm' missing? See Applying External
Plugins to Pre-Compiled Script Plugins.

The database-logic build file becomes much simpler by removing all the redundant build logic and

applying our convention my-java-library plugin instead:

database-logic/build.gradle.kts

plugins {
id("my-java-library")
}

database-logic/build.gradle

plugins {
id('my-java-library')
}

This convention plugin enables us to easily share common configurations across all our build files.
Any modifications can be made in one place, simplifying maintenance.

Binary plugins

Binary plugins in Gradle are plugins that are built as standalone JAR files and applied to a project
using the plugins{} block in the build script.

Let’s move our GreetingPlugin to a standalone project so that we can publish it and share it with
others. The plugin is essentially moved from the buildSrc folder to its own build called greeting-
plugin.

You can publish the plugin from buildSrc, but this is not recommended practice.

NOTE
Plugins that are ready for publication should be in their own build.

greeting-plugin is simply a Java project that produces a JAR containing the plugin classes.

The easiest way to package and publish a plugin to a repository is to use the Gradle Plugin
Development Plugin. This plugin provides the necessary tasks and configurations (including the
plugin metadata) to compile your script into a plugin that can be applied in other builds.

Here is a simple build script for the greeting-plugin project using the Gradle Plugin Development
Plugin:

build.gradle.kts
plugins {

‘java-gradle-plugin’
}

gradlePlugin {

java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

plugins {
create("simplePlugin") {
id = "org.example.greeting"
implementationClass = "org.example.GreetingPlugin'

build.gradle

plugins {
id 'java-gradle-plugin’
}

gradlePlugin {
plugins {
simplePlugin {
id = 'org.example.greeting’
implementationClass = 'org.example.GreetingPlugin'

For more on publishing plugins, see Publishing Plugins.

Project vs Settings vs Init plugins

In the example used through this section, the plugin accepts the Project type as a type parameter.
Alternatively, the plugin can accept a parameter of type Settings to be applied in a settings script, or
a parameter of type Gradle to be applied in an initialization script.

The difference between these types of plugins lies in the scope of their application:

Project Plugin

A project plugin is a plugin that is applied to a specific project in a build. It can customize the
build logic, add tasks, and configure the project-specific settings.

Settings Plugin
A settings plugin is a plugin that is applied in the settings.gradle or settings.gradle.kts file. It
can configure settings that apply to the entire build, such as defining which projects are
included in the build, configuring build script repositories, and applying common configurations
to all projects.

Init Plugin
An init plugin is a plugin that is applied in the init.gradle or init.gradle.kts file. It can

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.invocation.Gradle.html

configure settings that apply globally to all Gradle builds on a machine, such as configuring the
Gradle version, setting up default repositories, or applying common plugins to all builds.

Understanding Implementation Options for Plugins

The choice between script, precompiled script, or binary plugins depends on your specific
requirements and preferences.

Script Plugins are simple and easy to write. They are written in Kotlin DSL or Groovy DSL. They
are suitable for small, one-off tasks or for quick experimentation. However, they can become hard
to maintain as the build script grows in size and complexity.

Precompiled Script Plugins are Kotlin or Groovy DSL scripts compiled into Java class files
packaged in a library. They offer better performance and maintainability compared to script
plugins, and they can be reused across different projects. You can also write them in Groovy DSL
but that is not recommended.

Binary Plugins are full-fledged plugins written in Java, Groovy, or Kotlin, compiled into JAR files,
and published to a repository. They offer the best performance, maintainability, and reusability.
They are suitable for complex build logic that needs to be shared across projects, builds, and teams.
You can also write them in Scala or Groovy but that is not recommended.

Here is a breakdown of all options for implementing Gradle plugins:

Using: Type: The Plugin is: Recommended?

1 Kotlin DSL Script plugin ina.gradle.kts No"
file as an abstract
class that
implements the
apply(Project
project) method
of the
Plugin<Project>
interface.

2 Groovy DSL Script plugin ina .gradle file as No"

an abstract class
that implements
the apply(Project
project) method

of the
Plugin<Project>
interface.
3 Kotlin DSL Pre-compiled a .gradle.kts file. Yes
script plugin
4 Groovy DSL Pre-compiled a .gradle file. ok™

script plugin

Using: Type: The Plugin is: Recommended?

5 Java Binary plugin an abstract class Yes
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in Java.

6 Kotlin / Kotlin DSL. Binary plugin an abstract class Yes
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in Kotlin
and/or Kotlin DSL.

7 Groovy / Groovy Binary plugin an abstract class Ok™
DSL that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in
Groovy and/or
Groovy DSL.

8 Scala Binary plugin an abstract class No"
that implements
the apply(Project
project) method
of the
Plugin<Project>
interface in Scala.

If you suspect issues with your plugin code, try creating a Build Scan to identify bottlenecks. The
Gradle profiler can help automate Build Scan generation and gather more low-level information.

Implementing Pre-compiled Script Plugins

A precompiled script plugin is typically a Kotlin script that has been compiled and distributed as
Java class files packaged in a library. These scripts are intended to be consumed as binary Gradle
plugins and are recommended for use as convention plugins.

A convention plugin is a plugin that normaly configures existing core and community plugins with
your own conventions (i.e. default values) such as setting the Java version by using
java.toolchain.languageVersion = JavalanguageVersion.of(17). Convention plugins are also used to
enforce project standards and help streamline the build process. They can apply and configure

https://scans.gradle.com/
https://github.com/gradle/gradle-profiler

plugins, create new tasks and extensions, set dependencies, and much more.

Setting the plugin ID

The plugin ID for a precompiled script is derived from its file name and optional package
declaration.

For example, a script named code-quality.gradle(.kts) located in src/main/groovy (or
src/main/kot1lin) without a package declaration would be exposed as the code-quality plugin:

buildSrc/build.gradle.kts

plugins {
id("kotlin-ds1")
}

app/build.gradle.kts

plugins {
id("code-quality")
¥

buildSrc/build.gradle

plugins {
id "groovy-gradle-plugin'
}

app/build.gradle

plugins {
id 'code-quality’
}

On the other hand, a script named code-quality.gradle(.kts) located in src/main/groovy/my (or
src/main/kotlin/my) with the package declaration my would be exposed as the my.code-quality
plugin:

buildSrc/build.gradle.kts

plugins {
id("kotlin-ds1")
}

app/build.gradle.kts

plugins {
id("my.code-quality")
}

buildSrc/build.gradle

plugins {
id 'groovy-gradle-plugin’
}

app/build.gradle

plugins {
id 'my.code-quality'
}

Making a plugin configurable using extensions

Extension objects are commonly used in plugins to expose configuration options and additional
functionality to build scripts.

When you apply a plugin that defines an extension, you can access the extension object and
configure its properties or call its methods to customize the behavior of the plugin or tasks
provided by the plugin.

A Project has an associated ExtensionContainer object that contains all the settings and properties
for the plugins that have been applied to the project. You can provide configuration for your plugin
by adding an extension object to this container.

Let’s update our greetings example:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Create extension object
interface GreetingPluginExtension {
val message: Property<String>

}

// Add the 'greeting' extension object to project
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/ExtensionContainer.html

buildSrc/src/main/groovy/greetings.gradle

// Create extension object

interface GreetingPluginExtension {
Property<String> getMessage()

}

// Add the 'greeting' extension object to project
def extension = project.extensions.create("greeting"”,
GreetingPluginExtension)

You can set the value of the message property directly with extension.message.set("Hi from
Gradle,").

However, the GreetingPluginExtension object becomes available as a project property with the same
name as the extension object. You can now access message like so:

buildSrc/src/main/kotlin/greetings.gradle.kts
// Where the<GreetingPluginExtension>() is equivalent to

project.extensions.getByType(GreetingPluginExtension::class.java)
the<GreetingPluginExtension>().message.set("Hi from Gradle")

buildSrc/src/main/groovy/greetings.gradle

extensions.findByType(GreetingPluginExtension).message.set("Hi from Gradle")

If you apply the greetings plugin, you can set the convention in your build script:

app/build.gradle.kts

plugins {
application
id("greetings")
}

greeting {
message = "Hello from Gradle"

}

app/build.gradle

plugins {
id 'application’
id('greetings"')
+

configure(greeting) {
message = "Hello from Gradle"

}

Adding default configuration as conventions
In plugins, you can define default values, also known as conventions, using the project object.

Convention properties are properties that are initialized with default values but can be overridden:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Create extension object
interface GreetingPluginExtension {
val message: Property<String>

}

// Add the 'greeting' extension object to project
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")

// Set a default value for 'message’
extension.message.convention("Hello from Gradle")

buildSrc/src/main/groovy/greetings.gradle

// Create extension object

interface GreetingPluginExtension {
Property<String> getMessage()

}

// Add the 'greeting' extension object to project
def extension = project.extensions.create("greeting"”,

GreetingPluginExtension)

// Set a default value for 'message’

extension.message.convention("Hello from Gradle")

extension.message.convention(:--) sets a convention for the message property of the extension. This
convention specifies that the value of message should default to the content of a file named
defaultGreeting.txt located in the build directory of the project.

If the message property is not explicitly set, its value will be automatically set to the content of
defaultGreeting.txt.

Mapping extension properties to task properties
Using an extension and mapping it to a custom task’s input/output properties is common in plugins.

In this example, the message property of the GreetingPluginExtension is mapped to the message
property of the GreetingTask as an input:

buildSrc/src/main/kotlin/greetings.gradle.kts

// Create extension object
interface GreetingPluginExtension {
val message: Property<String>

}

// Add the 'greeting' extension object to project
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")

// Set a default value for 'message’
extension.message.convention("Hello from Gradle")

// Create a greeting task

abstract class GreetingTask : DefaultTask() {
@Input
val message = project.objects.property<String>()

@TaskAction
fun greet() {
println("Message: ${message.get()}")
Iy
}

// Register the task and set the convention
tasks.register<GreetingTask>("hello") {
message.convention(extension.message)

}

buildSrc/src/main/groovy/greetings.gradle

// Create extension object

interface GreetingPluginExtension {
Property<String> getMessage()

}

// Add the 'greeting' extension object to project
def extension = project.extensions.create("greeting"”,
GreetingPluginExtension)

// Set a default value for 'message’
extension.message.convention("Hello from Gradle")

// Create a greeting task

abstract class GreetingTask extends DefaultTask {
@Input
abstract Property<String> getMessage()

@TaskAction
void greet() {
println("Message: ${message.get()}")
}
}

// Register the task and set the convention
tasks.register("hello", GreetingTask) {
message.convention(extension.message)

}

$ gradle -q hello
Message: Hello from Gradle

This means that changes to the extension’s message property will trigger the task to be considered
out-of-date, ensuring that the task is re-executed with the new message.

You can find out more about types that you can use in task implementations and extensions in Lazy
Configuration.

Applying external plugins

In order to apply an external plugin in a precompiled script plugin, it has to be added to the plugin
project’s implementation classpath in the plugin’s build file:

buildSrc/build.gradle.kts

plugins {
‘kotlin-dsl®
}

repositories {
mavenCentral()

}

dependencies {
implementation("com.bmuschko:gradle-docker-plugin:6.4.0")

}

buildSrc/build.gradle

plugins {
id "groovy-gradle-plugin'
}

repositories {
mavenCentral()

}

dependencies {
implementation 'com.bmuschko:gradle-docker-plugin:6.4.0"

}

It can then be applied in the precompiled script plugin:

buildSrc/src/main/kotlin/my-plugin.gradle.kts
plugins {

id("com.bmuschko.docker-remote-api")

}

buildSrc/src/main/groovy/my-plugin.gradle

plugins {
id 'com.bmuschko.docker-remote-api'

The plugin version in this case is defined in the dependency declaration.

Implementing Binary Plugins

Binary plugins refer to plugins that are compiled and distributed as JAR files. These plugins are
usually written in Java or Kotlin and provide custom functionality or tasks to a Gradle build.

Using the Plugin Development plugin
The Gradle Plugin Development plugin can be used to assist in developing Gradle plugins.

This plugin will automatically apply the Java Plugin, add the gradleApi() dependency to the api
configuration, generate the required plugin descriptors in the resulting JAR file, and configure the
Plugin Marker Artifact to be used when publishing.

To apply and configure the plugin, add the following code to your build file:

build.gradle.kts

plugins {
‘java-gradle-plugin’
}

gradlePlugin {
plugins {
create("simplePlugin") {
id = "org.example.greeting"
implementationClass = "org.example.GreetingPlugin"

build.gradle

plugins {
id 'java-gradle-plugin’
}

gradlePlugin {
plugins {
simplePlugin {
id = 'org.example.greeting’

java_gradle_plugin.pdf#java_gradle_plugin
java_plugin.pdf#java_plugin

implementationClass = 'org.example.GreetingPlugin'

Writing and using custom task types is recommended when developing plugins as it automatically
benefits from incremental builds. As an added benefit of applying the plugin to your project, the
task validatePlugins automatically checks for an existing input/output annotation for every public
property defined in a custom task type implementation.

Creating a plugin ID

Plugin IDs are meant to be globally unique, similar to Java package names (i.e., a reverse domain
name). This format helps prevent naming collisions and allows grouping plugins with similar
ownership.

An explicit plugin identifier simplifies applying the plugin to a project. Your plugin ID should
combine components that reflect the namespace (a reasonable pointer to you or your organization)
and the name of the plugin it provides. For example, if your Github account is named foo and your
plugin is named bar, a suitable plugin ID might be com.github.foo.bar. Similarly, if the plugin was
developed at the baz organization, the plugin ID might be org.baz.bar.

Plugin IDs should adhere to the following guidelines:

* May contain any alphanumeric character, ., and '-'.

* Must contain at least one "' character separating the namespace from the plugin’s name.
* Conventionally use a lowercase reverse domain name convention for the namespace.

* Conventionally use only lowercase characters in the name.

* org.gradle, com.gradle, and com.gradleware namespaces may not be used.

» Cannot start or end with a "' character.

e Cannot contain consecutive '.' characters (i.e., '..").
A namespace that identifies ownership and a name is sufficient for a plugin ID.

When bundling multiple plugins in a single JAR artifact, adhering to the same naming conventions
is recommended. This practice helps logically group related plugins.

There is no limit to the number of plugins that can be defined and registered (by different
identifiers) within a single project.

The identifiers for plugins written as a class should be defined in the project’s build script
containing the plugin classes. For this, the java-gradle-plugin needs to be applied:

buildSrc/build.gradle.kts

plugins {
id("java-gradle-plugin")
}

gradlePlugin {
plugins {
create("androidApplicationPlugin") {
id = "com.android.application”
implementationClass = "com.android.AndroidApplicationPlugin”
}
create("androidLibraryPlugin") {
id = "com.android.library"
implementationClass = "com.android.AndroidLibraryPlugin"

buildSrc/build.gradle

plugins {
id "java-gradle-plugin’
¥

gradlePlugin {
plugins {
androidApplicationPlugin {
id = 'com.android.application’
implementationClass = 'com.android.AndroidApplicationPlugin’

}
androidLibraryPlugin {
id = 'com.android.library'
implementationClass = 'com.android.AndroidLibraryPlugin’

Working with files

When developing plugins, it’s a good idea to be flexible when accepting input configuration for file
locations.

It is recommended to use Gradle’s managed properties and project.layout to select file or directory
locations. This will enable lazy configuration so that the actual location will only be resolved when

properties_providers.pdf#managed_properties

the file is needed and can be reconfigured at any time during build configuration.

This Gradle build file defines a task GreetingToFileTask that writes a greeting to a file. It also
registers two tasks: greet, which creates the file with the greeting, and sayGreeting, which prints the
file’s contents. The greetingFile property is used to specify the file path for the greeting:

build.gradle.kts
abstract class GreetingToFileTask : DefaultTask() {

@get:OutputFile
abstract val destination: RegularFileProperty

@TaskAction
fun greet() {
val file = destination.get().asFile

file.parentFile.mkdirs()
file.writeText("Hello!")

}
val greetingFile = objects.fileProperty()
tasks.register<GreetingToFileTask>("greet") {
destination = greetingFile
}
tasks.register("sayGreeting") {
dependsOn("greet")
val greetingFile = greetingFile
dolast {

val file = greetingFile.get().asFile
println("${file.readText()} (file: ${file.name})")

}

greetingFile = layout.buildDirectory.file("hello.txt")

build.gradle

abstract class GreetingToFileTask extends DefaultTask {

abstract ReqularFileProperty getDestination()

def greet() {

def file = getDestination().get().asFile
file.parentFile.mkdirs()
file.write 'Hello!'

}

def greetingFile = objects.fileProperty()

tasks.register('greet', GreetingToFileTask) {
destination = greetingFile

}

tasks.register('sayGreeting') {
dependsOn greet
dolLast {
def file = greetingFile.get().asFile
println "${file.text} (file: ${file.name})"

}

greetingFile = layout.buildDirectory.file('hello.txt")

$ gradle -q sayGreeting
Hello! (file: hello.txt)

In this example, we configure the greet task destination property as a closure/provider, which is
evaluated with the Project.file(java.lang.Object) method to turn the return value of the
closure/provider into a File object at the last minute. Note that we specify the greetingFile
property value after the task configuration. This lazy evaluation is a key benefit of accepting any
value when setting a file property and then resolving that value when reading the property.

You can learn more about working with files lazily in Working with Files.

Making a plugin configurable using extensions

Most plugins offer configuration options for build scripts and other plugins to customize how the
plugin works. Plugins do this using extension objects.

A Project has an associated ExtensionContainer object that contains all the settings and properties
for the plugins that have been applied to the project. You can provide configuration for your plugin
by adding an extension object to this container.

An extension object is simply an object with Java Bean properties representing the configuration.

Let’s add a greeting extension object to the project, which allows you to configure the greeting:

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/plugins/ExtensionContainer.html

build.gradle.kts

interface GreetingPluginExtension {
val message: Property<String>

}

class GreetingPlugin : Plugin<Project> {
override fun apply(project: Project) {
// Add the 'greeting' extension object
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
// Add a task that uses configuration from the extension object
project.task("hello") {
dolLast {
println(extension.message.get())

}

¥
apply<GreetingPlugin>()

// Configure the extension
the<GreetingPluginExtension>().message = "Hi from Gradle"

build.gradle

interface GreetingPluginExtension {
Property<String> getMessage()
}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
// Add the 'greeting' extension object
def extension = project.extensions.create('greeting’,
GreetingPluginExtension)
// Add a task that uses configuration from the extension object
project.task('hello") {
dolLast {
println extension.message.get()

}

}

apply plugin: GreetingPlugin

// Configure the extension
greeting.message = 'Hi from Gradle'

$ gradle -q hello
Hi from Gradle

In this example, GreetingPluginExtension is an object with a property called message. The extension
object is added to the project with the name greeting. This object becomes available as a project
property with the same name as the extension object. the<GreetingPluginExtension>() is equivalent
to project.extensions.getByType(GreetingPluginExtension::class.java).

Often, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration block for each extension object, so you can group settings:

build.gradle.kts

interface GreetingPluginExtension {
val message: Property<String>
val greeter: Property<String>

}

class GreetingPlugin : Plugin<Project> {
override fun apply(project: Project) {
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
project.task("hello") {
dolLast {
println("${extension.message.get()} from
${extension.greeter.get()}")
}
}

}

apply<GreetingPlugin>()

// Configure the extension using a DSL block
configure<GreetingPluginExtension> {

message = "Hi"
greeter = "Gradle"

build.gradle

interface GreetingPluginExtension {
Property<String> getMessage()
Property<String> getGreeter()

}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {
def extension = project.extensions.create('greeting’,
GreetingPluginExtension)
project.task('hello") {
dolLast {
println "${extension.message.get()} from ${extension.greeter

.get()}"

¥
apply plugin: GreetingPlugin

// Configure the extension using a DSL block

greeting {
message = 'Hi'
greeter = 'Gradle'
}

$ gradle -q hello
Hi from Gradle

In this example, several settings can be grouped within the configure<GreetingPluginExtension>
block. The configure function is used to configure an extension object. It provides a convenient way
to set properties or apply configurations to these objects. The type used in the build script’s
configure function (GreetingPluginExtension) must match the extension type. Then, when the block
is executed, the receiver of the block is the extension.

In this example, several settings can be grouped within the greeting closure. The name of the
closure block in the build script (greeting) must match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the
closure based on the standard Groovy closure delegate feature.

Declaring a DSL configuration container

Using an extension object extends the Gradle DSL to add a project property and DSL block for the
plugin. Because an extension object is a regular object, you can provide your own DSL nested inside

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#configure-java.lang.Object-groovy.lang.Closure-

the plugin block by adding properties and methods to the extension object.

Let’s consider the following build script for illustration purposes.

build.gradle.kts

plugins {
id("org.myorg.server-env")

}

environments {
create("dev") {
url = "http://localhost:8080"
}

create("staging") {
url = "http://staging.enterprise.com”

}

create("production") {
url = "http://prod.enterprise.com"

}
}
build.gradle
plugins {
id 'org.myorg.server-env'
}
environments {
dev {
url = 'http://localhost:8080"
}
staging {
url = "http://staging.enterprise.com’
}

production {
url = "http://prod.enterprise.com’
}

The DSL exposed by the plugin exposes a container for defining a set of environments. Each

environment the user configures has an arbitrary but declarative name and is represented with its
own DSL configuration block. The example above instantiates a development, staging, and
production environment, including its respective URL.

Each environment must have a data representation in code to capture the values. The name of an
environment is immutable and can be passed in as a constructor parameter. Currently, the only
other parameter the data object stores is a URL.

The following ServerEnvironment object fulfills those requirements:

ServerEnvironment.java

abstract public class ServerEnvironment {
private final String name;

.inject.Inject
public ServerEnvironment(String name) {
this.name = name;

}

public String getName() {
return name;

}

abstract public Property<String> getUrl();

Gradle exposes the factory method ObjectFactory.domainObjectContainer(Class,
NamedDomainObjectFactory) to create a container of data objects. The parameter the method takes
is the class representing the data. The created instance of type NamedDomainObjectContainer can
be exposed to the end user by adding it to the extension container with a specific name.

It’s common for a plugin to post-process the captured values within the plugin implementation, e.g.,
to configure tasks:

ServerEnvironmentPlugin.java
public class ServerEnvironmentPlugin implements Plugin<Project> {

public void apply(final Project project) {
ObjectFactory objects = project.getObjects();

NamedDomainObjectContainer<ServerEnvironment> serverEnvironmentContainer =
objects.domainObjectContainer(ServerEnvironment.class, name -> objects
.newInstance(ServerEnvironment.class, name));
project.getExtensions().add("environments", serverEnvironmentContainer);

serverEnvironmentContainer.all(serverEnvironment -> {
String env = serverEnvironment.getName();
String capitalizedServerEnv = env.substring(@, 1).toUpperCase() + env

https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectContainer-java.lang.Class-org.gradle.api.NamedDomainObjectFactory-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/model/ObjectFactory.html#domainObjectContainer-java.lang.Class-org.gradle.api.NamedDomainObjectFactory-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/NamedDomainObjectContainer.html

.substring(1);
String taskName = "deployTo" + capitalizedServerEnv;
project.getTasks().register(taskName, Deploy.class, task -> task.getUrl()
.set(serverEnvironment.getUrl()));
b
}

In the example above, a deployment task is created dynamically for every user-configured
environment.

You can find out more about implementing project extensions in Developing Custom Gradle Types.

Modeling DSL-like APIs
DSLs exposed by plugins should be readable and easy to understand.

For example, let’s consider the following extension provided by a plugin. In its current form, it
offers a "flat" list of properties for configuring the creation of a website:

build-flat.gradle.kts
plugins {
id("org.myorg.site")
}
site {
outputDir = layout.buildDirectory.file("mysite")
websitelrl = "https://gradle.org"
vesUrl = "https://github.com/gradle/gradle-site-plugin”
}
build-flat.gradle
plugins {
id 'org.myorg.site’
¥
site {

outputDir = layout.buildDirectory.file("mysite")
websiteUrl = "https://gradle.org’
vesUrl = 'https://github.com/gradle/gradle-site-plugin’

properties_providers.pdf#properties_and_providers

As the number of exposed properties grows, you should introduce a nested, more expressive
structure.

The following code snippet adds a new configuration block named siteInfo as part of the extension.
This provides a stronger indication of what those properties mean:

build.gradle.kts
plugins {
id("org.myorg.site")
}
site {
outputDir = layout.buildDirectory.file("mysite")
siteInfo {
websiteUrl = "https://gradle.org"
vesUrl = "https://github.com/gradle/gradle-site-plugin”
}
}
build.gradle
plugins {
id 'org.myorg.site'
}
site {
outputDir = layout.buildDirectory.file("mysite")
siteInfo {
websiteUrl = "https://gradle.org’
vesUrl = 'https://github.com/gradle/gradle-site-plugin’
}
¥

Implementing the backing objects for such an extension is simple. First, introduce a new data
object for managing the properties websiteUrl and vesUr1:

SiteInfo.java
abstract public class Sitelnfo {

abstract public Property<String> getWebsiteUrl();

abstract public Property<String> getVesUrl();

In the extension, create an instance of the siteInfo class and a method to delegate the captured
values to the data instance.

To configure underlying data objects, define a parameter of type Action.
The following example demonstrates the use of Action in an extension definition:

SiteExtension.java
abstract public class SiteExtension {

abstract public ReqularFileProperty getOutputDir();

abstract public SiteInfo getSiteInfo();

public void siteInfo(Action<? super SiteInfo> action) {
action.execute(getSiteInfo());

}

Mapping extension properties to task properties

Plugins commonly use an extension to capture user input from the build script and map it to a
custom task’s input/output properties. The build script author interacts with the extension’s DSL,
while the plugin implementation handles the underlying logic:

app/build.gradle.kts

// Extension class to capture user input
class MyExtension {

@Input

var inputParameter: String? = null

}

// Custom task that uses the input from the extension
class MyCustomTask : org.gradle.api.DefaultTask() {
@Input
var inputParameter: String? = null

@TaskAction
fun executeTask() {
println("Input parameter: $inputParameter")

}

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Action.html

// Plugin class that configures the extension and task
class MyPlugin : Plugin<Project> {
override fun apply(project: Project) {
// Create and configure the extension
val extension = project.extensions.create("myExtension",
MyExtension::class.java)
// Create and configure the custom task
project.tasks.register("myTask", MyCustomTask::class.java) {
group = "custom"
inputParameter = extension.inputParameter

app/build.gradle

// Extension class to capture user input
class MyExtension {

@Input

String inputParameter = null

}

// Custom task that uses the input from the extension
class MyCustomTask extends DefaultTask {

@Input

String inputParameter = null

@TaskAction
def executeTask() {
println("Input parameter: $inputParameter")
}
}

// Plugin class that configures the extension and task
class MyPlugin implements Plugin<Project> {
void apply(Project project) {
// Create and configure the extension
def extension = project.extensions.create("myExtension", MyExtension)
// Create and confiqure the custom task
project.tasks.register("myTask", MyCustomTask) {
group = "custom"
inputParameter = extension.inputParameter

In this example, the MyExtension class defines an inputParameter property that can be set in the build
script. The MyPlugin class configures this extension and uses its inputParameter value to configure
the MyCustomTask task. The MyCustomTask task then uses this input parameter in its logic.

You can learn more about types you can use in task implementations and extensions in Lazy
Configuration.

Adding default configuration with conventions

Plugins should provide sensible defaults and standards in a specific context, reducing the number
of decisions users need to make. Using the project object, you can define default values. These are
known as conventions.

Conventions are properties that are initialized with default values and can be overridden by the
user in their build script. For example:

build.gradle.kts

interface GreetingPluginExtension {
val message: Property<String>

}

class GreetingPlugin : Plugin<Project> {
override fun apply(project: Project) {
// Add the 'greeting' extension object
val extension =
project.extensions.create<GreetingPluginExtension>("greeting")
extension.message.convention("Hello from GreetingPlugin")
// Add a task that uses configuration from the extension object
project.task("hello") {
dolLast {
println(extension.message.get())

}

}

apply<GreetingPlugin>()

build.gradle

interface GreetingPluginExtension {
Property<String> getMessage()

}

class GreetingPlugin implements Plugin<Project> {
void apply(Project project) {

// Add the 'greeting' extension object
def extension = project.extensions.create('greeting’,
GreetingPluginExtension)
extension.message.convention('Hello from GreetingPlugin')
// Add a task that uses configuration from the extension object
project.task('hello") {
dolLast {
println extension.message.get()

}

}

apply plugin: GreetingPlugin

$ gradle -q hello
Hello from GreetingPlugin

In this example, GreetingPluginExtension is a class that represents the convention. The message
property is the convention property with a default value of 'Hello from GreetingPlugin'.

Users can override this value in their build script:

build.gradle.kts

GreetingPluginExtension {
message = "Custom message"

}

build.gradle

GreetingPluginExtension {
message = 'Custom message'

}

$ gradle -q hello
Custom message

Separating capabilities from conventions

Separating capabilities from conventions in plugins allows users to choose which tasks and
conventions to apply.

For example, the Java Base plugin provides un-opinionated (i.e., generic) functionality like
SourceSets, while the Java plugin adds tasks and conventions familiar to Java developers like
classes, jar or javadoc.

When designing your own plugins, consider developing two plugins — one for capabilities and
another for conventions — to offer flexibility to users.

In the example below, MyPlugin contains conventions, and MyBasePlugin defines capabilities. Then,
MyPlugin applies MyBasePlugin, this is called plugin composition. To apply a plugin from another one:

MyBasePlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;

public class MyBasePlugin implements Plugin<Project> {
public void apply(Project project) {

// define capabilities
}

MyPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;

public class MyPlugin implements Plugin<Project> {
public void apply(Project project) {
project.getPlugins().apply(MyBasePlugin.class);

// define conventions

Reacting to plugins

A common pattern in Gradle plugin implementations is configuring the runtime behavior of
existing plugins and tasks in a build.

For example, a plugin could assume that it is applied to a Java-based project and automatically
reconfigure the standard source directory:

InhouseStrongOpinionConventionJavaPlugin.java

public class InhouseStrongOpinionConventionJavaPlugin implements Plugin<Project> {

public void apply(Project project) {
// Careful! Eagerly appyling plugins has downsides, and is not always
recommended.
project.getPlugins().apply(JavaPlugin.class);
SourceSetContainer sourceSets = project.getExtensions().getByType
(SourceSetContainer.class);
SourceSet main = sourceSets.getByName(SourceSet.MAIN_SOURCE_SET_NAME);
main.getJava().setSrcDirs(Arrays.aslList("src"));

The drawback to this approach is that it automatically forces the project to apply the Java plugin,
imposing a strong opinion on it (i.e., reducing flexibility and generality). In practice, the project
applying the plugin might not even deal with Java code.

Instead of automatically applying the Java plugin, the plugin could react to the fact that the
consuming project applies the Java plugin. Only if that is the case, then a certain configuration is
applied:

InhouseConventionJavaPlugin.java

public class InhouseConventionJavaPlugin implements Plugin<Project> {
public void apply(Project project) {
project.getPlugins().withType(JavaPlugin.class, javaPlugin -> {
SourceSetContainer sourceSets = project.getExtensions().getByType
(SourceSetContainer.class);
SourceSet main = sourceSets.getByName(SourceSet.MAIN_SOURCE_SET_NAME);
main.getJava().setSrcDirs(Arrays.asList("src"));

b

Reacting to plugins is preferred over applying plugins if there is no good reason to assume that the
consuming project has the expected setup.

The same concept applies to task types:

InhouseConventionWarPlugin.java

public class InhouseConventionWarPlugin implements Plugin<Project> {
public void apply(Project project) {
project.getTasks().withType(War.class).configureEach(war ->
war.setWebXml(project.file("src/someWeb.xml")));

Reacting to build features

Plugins can access the status of build features in the build. The Build Features API allows checking

https://docs.gradle.org/8.10/javadoc/org/gradle/api/configuration/BuildFeatures.html

whether the user requested a particular Gradle feature and if it is active in the current build. An
example of a build feature is the configuration cache.

There are two main use cases:

 Using the status of build features in reports or statistics.

* Incrementally adopting experimental Gradle features by disabling incompatible plugin
functionality.

Below is an example of a plugin that utilizes both of the cases.

Reacting to build features

public abstract class MyPlugin implements Plugin<Project> {

protected abstract BuildFeatures getBuildFeatures(); @

public void apply(Project p) {
BuildFeatures buildFeatures = getBuildFeatures();

Boolean configCacheRequested = buildFeatures.getConfigurationCache()
.getRequested() @
.getOrNull(); // could be null if user did not opt in nor opt out
String configCacheUsage = describeFeatureUsage(configCacheRequested);
MyReport myReport = new MyReport();
myReport.setConfigurationCacheUsage(configCacheUsage);

boolean isolatedProjectsActive = buildFeatures.getIsolatedProjects().
getActive() ®
.get(); // the active state is always defined
if (lisolatedProjectsActive) {
myOptionalPluginLogicIncompatibleWithIsolatedProjects();
}
}

private String describeFeatureUsage(Boolean requested) {
return requested == null ? "no preference" : requested ?

opt-in" : "opt-out";

}

private void myOptionalPluginLogicIncompatibleWithIsolatedProjects() {
}

@ The BuildFeatures service can be injected into plugins, tasks, and other managed types.
@ Accessing the requested status of a feature for reporting.

® Using the active status of a feature to disable incompatible functionality.

Build feature properties

A BuildFeature status properties are represented with Provider<Boolean> types.

The BuildFeature.getRequested() status of a build feature determines if the user requested to enable
or disable the feature.

When the requested provider value is:

* true —the user opted in for using the feature
» false —the user opted out from using the feature

» undefined —the user neither opted in nor opted out from using the feature

The BuildFeature.getActive() status of a build feature is always defined. It represents the effective
state of the feature in the build.

When the active provider value is:

» true —the feature may affect the build behavior in a way specific to the feature

e false —the feature will not affect the build behavior

Note that the active status does not depend on the requested status. Even if the user requests a
feature, it may still not be active due to other build options being used in the build. Gradle can also
activate a feature by default, even if the user did not specify a preference.

Using a custom dependencies block

NOTE Custom dependencies blocks are based on incubating APIs.

A plugin can provide dependency declarations in custom blocks that allow users to declare
dependencies in a type-safe and context-aware way.

For instance, instead of users needing to know and use the underlying Configuration name to add
dependencies, a custom dependencies block lets the plugin pick a meaningful name that can be used
consistently.

Adding a custom dependencies block

To add a custom dependencies block, you need to create a new type that will represent the set of
dependency scopes available to users. That new type needs to be accessible from a part of your
plugin (from a domain object or extension). Finally, the dependency scopes need to be wired back
to underlying Configuration objects that will be used during dependency resolution.

See JvmComponentDependencies and JvmTestSuite for an example of how this is used in a Gradle
core plugin.

1. Create an interface that extends Dependencies

NOTE You can also extend GradleDependencies to get access to Gradle-provided

https://docs.gradle.org/8.10/javadoc/org/gradle/api/configuration/BuildFeature.html#getRequested--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/configuration/BuildFeature.html#getActive--
properties_providers.pdf#properties_and_providers
https://docs.gradle.org/8.10/dsl/org.gradle.api.plugins.jvm.JvmComponentDependencies.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.plugins.jvm.JvmTestSuite.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.dsl.GradleDependencies.html

dependencies like gradleApi().

ExampleDependencies.java

/**

* Custom dependencies block for the example plugin.

*/

public interface ExampleDependencies extends Dependencies {

2. Add accessors for dependency scopes

For each dependency scope your plugin wants to support, add a getter method that returns a
DependencyCollector.

ExampleDependencies.java

/**

* Dependency scope called "implementation”
*/
DependencyCollector getImplementation();

3. Add accessors for custom dependencies block

To make the custom dependencies block configurable, the plugin needs to add a getDependencies

method that returns the new type from above and a configurable block method named
dependencies.

By convention, the accessors for your custom dependencies block should be called
getDependencies()/dependencies(Action). This method could be named something else, but users
would need to know that a different block can behave like a dependencies block.

ExampleExtension.java

/**
* Custom dependencies for this extension.
*/
@Nested
ExampleDependencies getDependencies();

/**
* Configurable block
*/
default void dependencies(Action<? super ExampleDependencies> action) {
action.execute(getDependencies());

}

4. Wire dependency scope to Configuration

Finally, the plugin needs to wire the custom dependencies block to some underlying Configuration
objects. If this is not done, none of the dependencies declared in the custom block will be available
to dependency resolution.

ExamplePlugin.java

project.getConfigurations().dependencyScope("exampleImplementation”, conf
_>{
conf.fromDependencyCollector(example.getDependencies()
.getImplementation());

b

In this example, the name users will use to add dependencies is "implementation”,

NOTE
but the underlying Configuration is named exampleImplementation.

build.gradle.kts

example {
dependencies {
implementation("junit:junit:4.13")
}

build.gradle

example {
dependencies {
implementation("junit:junit:4.13")

}

Differences between the custom dependencies and the top-level dependencies blocks

Each dependency scope returns a DependencyCollector that provides strongly-typed methods to add
and configure dependencies.

There is also a DependencyFactory with factory methods to create new dependencies from different
notations. Dependencies can be created lazily using these factory methods, as shown below.

A custom dependencies block differs from the top-level dependencies block in the following ways:

* Dependencies must be declared using a String, an instance of Dependency, a FileCollection, a
Provider of Dependency, or a ProviderConvertible of MinimalExternalModuleDependency.

https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.dsl.DependencyCollector.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/artifacts/dsl/DependencyFactory.html

* Outside of Gradle build scripts, you must explicitly call a getter for the DependencyCollector and
add.

o dependencies.add("implementation", x) becomes getImplementation().add(x)

* You cannot declare dependencies with the Map notation from Kotlin and Java. Use multi-
argument methods instead in Kotlin and Java.

o Kotlin: compileOnly(mapOf("group” to "foo", "name" to "bar")) becomes
compileOnly(module(group = "foo", name = "bar"))

- Java: compileOnly(Map.of("group", "foo", "name", "bar")) becomes
getCompileOnly().add(module("foo", "bar", null))

* You cannot add a dependency with an instance of Project. You must turn it into a
ProjectDependency first.

* You cannot add version catalog bundles directly. Instead, use the bundle method on each
configuration.

o Kotlin and Groovy: implementation(libs.bundles.testing) becomes
implementation.bundle(1libs.bundles.testing)

* You cannot use providers for non-Dependency types directly. Instead, map them to a Dependency
using the DependencyFactory.

o Kotlin and Groovy: implementation(myStringProvider) becomes
implementation(myStringProvider.map { dependencyFactory.create(it) })

- Java: implementation(myStringProvider) becomes
getImplementation().add(myStringProvider.map(getDependencyFactory()::create)

* Unlike the top-level dependencies block, constraints are not in a separate block.
o Instead, constraints are added by decorating a dependency with constraint(-:-) like

implementation(constraint("org:foo:1.0")).

Keep in mind that the dependencies block may not provide access to the same methods as the top-
level dependencies block.

NOTE Plugins should prefer adding dependencies via their own dependencies block.

Providing default dependencies
The implementation of a plugin sometimes requires the use of an external dependency.

You might want to automatically download an artifact using Gradle’s dependency management
mechanism and later use it in the action of a task type declared in the plugin. Ideally, the plugin
implementation does not need to ask the user for the coordinates of that dependency - it can simply
predefine a sensible default version.

Let’s look at an example of a plugin that downloads files containing data for further processing. The
plugin implementation declares a custom configuration that allows for assigning those external
dependencies with dependency coordinates:

https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

DataProcessingPlugin.java

public class DataProcessingPlugin implements Plugin<Project> {
public void apply(Project project) {
Configuration dataFiles = project.getConfigurations().create("dataFiles", ¢ ->

c.setVisible(false);

c.setCanBeConsumed(false);

c.setCanBeResolved(true);

c.setDescription("The data artifacts to be processed for this plugin.");

c.defaultDependencies(d -> d.add(project.getDependencies().create(
"org.myorg:data:1.4.6")));

b

project.getTasks().withType(DataProcessing.class).configureEach(
dataProcessing -> dataProcessing.getDataFiles().from(dataFiles));

DataProcessing.java

abstract public class DataProcessing extends DefaultTask {
abstract public ConfigurableFileCollection getDataFiles();

public void process() {
System.out.println(getDataFiles().getFiles());
}

This approach is convenient for the end user as there is no need to actively declare a dependency.
The plugin already provides all the details about this implementation.

But what if the user wants to redefine the default dependency?

No problem. The plugin also exposes the custom configuration that can be used to assign a different
dependency. Effectively, the default dependency is overwritten:

build.gradle.kts

plugins {
id("org.myorg.data-processing")

}

dependencies {
dataFiles("org.myorg:more-data:2.6")

build.gradle

plugins {
id 'org.myorg.data-processing'

}

dependencies {
dataFiles 'org.myorg:more-data:2.6'

}

You will find that this pattern works well for tasks that require an external dependency when the
task’s action is executed. You can go further and abstract the version to be used for the external
dependency by exposing an extension property (e.g. toolVersion in the JaCoCo plugin).

Minimizing the use of external libraries

Using external libraries in your Gradle projects can bring great convenience, but be aware that they
can introduce complex dependency graphs. Gradle’s buildEnvironment task can help you visualize
these dependencies, including those of your plugins. Keep in mind that plugins share the same
classloader, so conflicts may arise with different versions of the same library.

To demonstrate let’s assume the following build script:

build.gradle.kts
plugins {

id("org.asciidoctor.jvm.convert") version "4.0.2"

}

build.gradle
plugins {
id 'org.asciidoctor.jvm.convert' version '4.0.2'
}

The output of the task clearly indicates the classpath of the classpath configuration:

$ gradle buildEnvironment

https://docs.gradle.org/8.10/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

> Task :buildEnvironment

Root project 'external-libraries’

classpath
\--- org.asciidoctor.jvm.convert:org.asciidoctor.jvm.convert.gradle.plugin:4.0.2
\--- org.asciidoctor:asciidoctor-gradle-jvm:4.0.2
+--- org.ysb33r.gradle:grolifant-rawhide:3.0.0
| \--- org.tukaani:xz:1.6
+--- org.ysb33r.gradle:grolifant-herd:3.0.0
| +--- org.tukaani:xz:1.6
+--- org.ysb33r.gradle:grolifant40:3.0.0
| +--- org.tukaani:xz:1.6
| +--- org.apache.commons:commons-collections4:4.4
| +--- org.ysb33r.gradle:grolifant-core:3.0.0
| | +--- org.tukaani:xz:1.6
| | +--- org.apache.commons:commons-collections4:4.4
| | \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
| \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
+--- org.ysb33r.gradle:grolifant50:3.0.0
| +--- org.tukaani:xz:1.6
| +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
| +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
| \--- org.ysb33r.gradle:grolifant40-legacy-api:3.0.0
| +--- org.tukaani:xz:1.6
| +--- org.apache.commons:commons-collections4:4.4
| +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
| \--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
+--- org.ysb33r.gradle:grolifant60:3.0.0
| +--- org.tukaani:xz:1.6
| +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
| +--- org.ysb33r.gradle:grolifant50:3.0.0 (*)
| +--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
| \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
+--- org.ysb33r.gradle:grolifant70:3.0.0
| +--- org.tukaani:xz:1.6
| +--- org.ysb33r.gradle:grolifant40:3.0.0 (*)
| +--- org.ysb33r.gradle:grolifant50:3.0.0 (*)
I 0.0 (*)
I
+-
I
I
I
I
|
|
+

*

*

+--- org.ysb33r.gradle:grolifant60:3.
\--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)
- org.ysb33r.gradle:grolifant80:3.0.0
+--- org.tukaani:xz:1.6

+--- org.ysb33r.gradle:grolifant40:3.0.0 (*
+--- org.ysb33r.gradle:grolifant50:3.0.0
+--- org.ysb33r.gradle:grolifant60:3.0.0
+--- org.ysb33r.gradle:grolifant70:3.0.0
\--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)

--- org.ysb33r.gradle:grolifant-core:3.0.0 (*)

(*)
(*)
(*)
(*)

*

| \--- org.ysb33r.gradle:grolifant-rawhide:3.0.0 (*)
+--- org.asciidoctor:asciidoctor-gradle-base:4.0.2
| \--- org.ysb33r.gradle:grolifant-herd:3.0.0 (
\--- org.asciidoctor:asciidoctorj-api:2.5.7

0.
0 (*)

(*) - Indicates repeated occurrences of a transitive dependency subtree. Gradle
expands transitive dependency subtrees only once per project; repeat occurrences only
display the root of the subtree, followed by this annotation.

A web-based, searchable dependency report is available by adding the --scan option.

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

A Gradle plugin does not run in its own, isolated classloader, so you must consider whether you
truly need a library or if a simpler solution suffices.

For logic that is executed as part of task execution, use the Worker API that allows you to isolate
libraries.

Providing multiple variants of a plugin

Variants of a plugin refer to different flavors or configurations of the plugin that are tailored to
specific needs or use cases. These variants can include different implementations, extensions, or
configurations of the base plugin.

The most convenient way to configure additional plugin variants is to use feature variants, a
concept available in all Gradle projects that apply one of the Java plugins:

dependencies {

implementation 'com.google.quava:quava:30.1-jre’ // Regular dependency
featureVariant 'com.google.quava:quava-gqwt:30.1-jre’ // Feature variant
dependency

}

In the following example, each plugin variant is developed in isolation. A separate source set is
compiled and packaged in a separate jar for each variant.

The following sample demonstrates how to add a variant that is compatible with Gradle 7.0+ while
the "main" variant is compatible with older versions:

build.gradle.kts
val gradle7 = sourceSets.create("gradle7")

java {
registerFeature(gradle7.name) {

usingSourceSet(gradle7)
capability(project.group.toString(), project.name,
project.version.toString()) @
}
}

configurations.configurekach {
if (isCanBeConsumed && name.startsWith(gradle7.name)) {
attributes {

attribute(GradlePluginApiVersion.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE, @
objects.named("7.0"))

}
}

tasks.named<Copy>(gradle7.processResourcesTaskName) { @
val copyPluginDescriptors = rootSpec.addChild()
copyPluginDescriptors.into("META-INF/gradle-plugins")
copyPluginDescriptors.from(tasks.pluginDescriptors)

}

dependencies {
"gradle7CompileOnly" (gradleApi()) @
}

build.gradle
def gradle7 = sourceSets.create('gradle7")

java {
registerFeature(gradle7.name) {
usingSourceSet(gradle7)
capability(project.group.toString(), project.name, project.version
.toString()) @
}
}

configurations.configureEach {
if (canBeConsumed && name.startsWith(gradle7.name)) {
attributes {
attribute(GradlePluginApiVersion
.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE, @
objects.named(GradlePluginApiVersion, '7.0"))

}
}

tasks.named(gradle7.processResourcesTaskName) { ®

def copyPluginDescriptors = rootSpec.addChild()
copyPluginDescriptors.into('META-INF/gradle-plugins')
copyPluginDescriptors.from(tasks.pluginDescriptors)

}

dependencies {
gradle7CompileOnly(gradleApi()) @
}

Only Gradle versions 7 or higher can be explicitly targeted by a variant, as support

NOTE
for this was only added in Gradle 7.

First, we declare a separate source set and a feature variant for our Gradle 7 plugin variant. Then,
we do some specific wiring to turn the feature into a proper Gradle plugin variant:
@ Assign the implicit capability that corresponds to the components GAV to the variant.

@ Assign the Gradle API version attribute to all consumable configurations of our Gradle7 variant.
Gradle uses this information to determine which variant to select during plugin resolution.

® Configure the processGradle7Resources task to ensure the plugin descriptor file is added to the
Gradle7 variant Jar.

@ Add a dependency to the gradleApi() for our new variant so that the API is visible during

compilation time.

Note that there is currently no convenient way to access the API of other Gradle versions as the one
you are building the plugin with. Ideally, every variant should be able to declare a dependency on
the API of the minimal Gradle version it supports. This will be improved in the future.

The above snippet assumes that all variants of your plugin have the plugin class at the same
location. That is, if your plugin class is org.example.GreetingPlugin, you need to create a second
variant of that class in src/gradle7/java/org/example.

Using version-specific variants of multi-variant plugins

Given a dependency on a multi-variant plugin, Gradle will automatically choose its variant that best
matches the current Gradle version when it resolves any of:

* plugins specified in the plugins {} block;

* buildscript classpath dependencies;

» dependencies in the root project of the build source (buildSrc) that appear on the compile or
runtime classpath;

* dependencies in a project that applies the Java Gradle Plugin Development plugin or the Kotlin

DSL plugin, appearing on the compile or runtime classpath.

The best matching variant is the variant that targets the highest Gradle API version and does not
exceed the current build’s Gradle version.

declaring_dependencies_adv.pdf#sec:resolvable-consumable-configs
java_gradle_plugin.pdf#java_gradle_plugin

In all other cases, a plugin variant that does not specify the supported Gradle API version is
preferred if such a variant is present.

In projects that use plugins as dependencies, requesting the variants of plugin dependencies that
support a different Gradle version is possible. This allows a multi-variant plugin that depends on
other plugins to access their APIs, which are exclusively provided in their version-specific variants.

This snippet makes the plugin variant gradle7 defined above consume the matching variants of its
dependencies on other multi-variant plugins:

build.gradle.kts

configurations.configureEach {
if (isCanBeResolved && name.startsWith(gradle7.name)) {
attributes {

attribute(GradlePluginApiVersion.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE,
objects.named("7.0"))
}

build.gradle

configurations.configureEach {
if (canBeResolved && name.startsWith(gradle7.name)) {
attributes {
attribute(GradlePluginApiVersion
.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE,
objects.named(GradlePluginApiVersion, '7.0'))
}

Reporting problems

Plugins can report problems through Gradle’s problem-reporting APIs. The APIs report rich,
structured information about problems happening during the build. This information can be used
by different user interfaces such as Gradle’s console output, Build Scans, or IDEs to communicate
problems to the user in the most appropriate way.

The following example shows an issue reported from a plugin:

ProblemReportingPlugin.java
public class ProblemReportingPlugin implements Plugin<Project> {

private final ProblemReporter problemReporter;

public ProblemReportingPlugin(Problems problems) { @
this.problemReporter = problems.forNamespace("org.myorg"); @

}

public void apply(Project project) {
this.problemReporter.reporting(builder -> builder @

.id("adhoc-deprecation”, "Plugin 'x' is deprecated")
.details("The plugin 'x' is deprecated since version 2.5")
.solution("Please use plugin 'y'")
.severity(Severity.WARNING)

@ The Problem service is injected into the plugin.

@ A problem reporter, is created for the plugin. While the namespace is up to the plugin author, it
is recommended that the plugin ID be used.

® A problem is reported. This problem is recoverable so that the build will continue.

For a full example, see our end-to-end sample.

Problem building

When reporting a problem, a wide variety of information can be provided. The ProblemSpec
describes all the information that can be provided.

Reporting problems

When it comes to reporting problems, we support three different modes:
» Reporting a problem is used for reporting problems that are recoverable, and the build should
continue.

* Throwing a problem is used for reporting problems that are not recoverable, and the build
should fail.

* Rethrowing a problem is used to wrap an already thrown exception. Otherwise, the behavior is
the same as Throwing.

For more details, see the ProblemReporter documentation.

../samples/sample_problems_api_usage.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/problems/ProblemSpec.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/problems/ProblemReporter.html#reporting-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/problems/ProblemReporter.html#throwing-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/problems/ProblemReporter.html#rethrowing-java.lang.RuntimeException-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/problems/ProblemReporter.html

Problem aggregation

When reporting problems, Gradle will aggregate similar problems by sending them through the
Tooling API based on the problem’s category label.

* When a problem is reported, the first occurrence is going to be reported as a
ProblemDescriptor, containing the complete information about the problem.

* Any subsequent occurrences of the same problem will be reported as a
ProblemAggregationDescriptor. This descriptor will arrive at the end of the build and contain
the number of occurrences of the problem.

« If for any bucket (i.e., category and label pairing), the number of collected occurrences is greater
than 10.000, then it will be sent immediately instead of at the end of the build.

Testing Gradle plugins

Testing plays a crucial role in the development process by ensuring reliable and high-quality
software. This principle applies to build code, including Gradle plugins.

The sample project

This section revolves around a sample project called the "URL verifier plugin”. This plugin creates a
task named verifyUrl that checks whether a given URL can be resolved via HTTP GET. The end user
can provide the URL via an extension named verification.

The following build script assumes that the plugin JAR file has been published to a binary
repository. The script demonstrates how to apply the plugin to the project and configure its exposed
extension:

build.gradle.kts

plugins {
id("org.myorg.url-verifier") ©)
}

verification {
url = "https://www.google.com/" @
}

build.gradle
plugins {
id 'org.myorg.url-verifier' ©)

}

verification {

https://docs.gradle.org/8.10/javadoc/org/gradle/tooling/events/problems/ProblemDescriptor.html
https://docs.gradle.org/8.10/javadocorg/gradle/tooling/events/problems/ProblemAggregationDescriptor.html

url = "https://www.google.com/' @

@ Applies the plugin to the project

@ Configures the URL to be verified through the exposed extension

Executing the verifyUrl task renders a success message if the HTTP GET call to the configured URL
returns with a 200 response code:

$ gradle verifyUrl

> Task :verifyUrl
Successfully resolved URL "https://www.google.com/'

BUILD SUCCESSFUL in @s
5 actionable tasks: 5 executed

Before diving into the code, let’s first revisit the different types of tests and the tooling that supports
implementing them.

The importance of testing

Testing is a crucial part of the software development life cycle, ensuring that software functions
correctly and meets quality standards before release. Automated testing allows developers to
refactor and improve code with confidence.

The testing pyramid

Manual Testing

While manual testing is straightforward, it is error-prone and requires human effort. For Gradle
plugins, manual testing involves using the plugin in a build script.

Automated Testing

Automated testing includes unit, integration, and functional testing.

The testing pyramid
introduced by Mike Cohen in
his book Succeeding with
Agile: Software Development
Using Scrum describes three
types of automated tests:

Manual
Testing

Functional
Testing

Integration

Testing

1. Unit Testing: Verifies the smallest units of code, typically methods, in isolation. It uses Stubs or
Mocks to isolate code from external dependencies.

2. Integration Testing: Validates that multiple units or components work together.

3. Functional Testing: Tests the system from the end user’s perspective, ensuring correct
functionality. End-to-end tests for Gradle plugins simulate a build, apply the plugin, and execute
specific tasks to verify functionality.

Tooling support

Testing Gradle plugins, both manually and automatically, is simplified with the appropriate tools.
The table below provides a summary of each testing approach. You can choose any test framework
you’re comfortable with.

For detailed explanations and code examples, refer to the specific sections below:

Test type Tooling support
Manual tests Gradle composite builds
Unit tests Any JVM-based test framework

Integration tests Any JVM-based test framework

Functional tests ~ Any JVM-based test framework and Gradle TestKit

Setting up manual tests

The composite builds feature of Gradle makes it easy to test a plugin manually. The standalone
plugin project and the consuming project can be combined into a single unit, making it
straightforward to try out or debug changes without re-publishing the binary file:

https://www.mountaingoatsoftware.com/books/succeeding-with-agile-software-development-using-scrum
https://www.mountaingoatsoftware.com/books/succeeding-with-agile-software-development-using-scrum
https://www.mountaingoatsoftware.com/books/succeeding-with-agile-software-development-using-scrum

—— include-plugin-build @

| —— build.gradle

| L—— settings.gradle

L—— url-verifier-plugin @
—— build.gradle

—— settings.gradle
—— g

@ Consuming project that includes the plugin project

@ The plugin project
There are two ways to include a plugin project in a consuming project:

1. By using the command line option --include-build.

2. By using the method includeBuild in settings.gradle.

The following code snippet demonstrates the use of the settings file:

settings.gradle.kts

pluginManagement {
includeBuild("../url-verifier-plugin")
}

settings.gradle

pluginManagement {
includeBuild '../url-verifier-plugin’

}

The command line output of the verifyUrl task from the project include-plugin-build looks exactly
the same as shown in the introduction, except that it now executes as part of a composite build.

Manual testing has its place in the development process, but it is not a replacement for automated

testing.

Setting up automated tests

Setting up a suite of tests early on is crucial to the success of your plugin. Automated tests become
an invaluable safety net when upgrading the plugin to a new Gradle version or

enhancing/refactoring the code.

Organizing test source code

We recommend implementing a good distribution of unit, integration, and functional tests to cover
the most important use cases. Separating the source code for each test type automatically results in
a project that is more maintainable and manageable.

By default, the Java project creates a convention for organizing unit tests in the directory
src/test/java. Additionally, if you apply the Groovy plugin, source code under the directory
src/test/groovy is considered for compilation (with the same standard for Kotlin under the
directory src/test/kotlin). Consequently, source code directories for other test types should follow
a similar pattern:

L—— sre

F——— functionalTest

| L—— groovy @®

—— integrationTest

| L—— groovy @

F—— main

| java ®
@

L—— groovy

@ Source directory containing functional tests
@ Source directory containing integration tests
® Source directory containing production source code

@ Source directory containing unit tests

The directories src/integrationTest/groovy and src/functionalTest/groovy are not
NOTE based on an existing standard convention for Gradle projects. You are free to choose
any project layout that works best for you.

You can configure the source directories for compilation and test execution.

The Test Suite plugin provides a DSL and API to model multiple groups of automated tests into test
suites in JVM-based projects. You can also rely on third-party plugins for convenience, such as the
Nebula Facet plugin or the TestSets plugin.

Modeling test types

NOTE A new configuration DSL for modeling the below integrationTest suite is available
via the incubating JVM Test Suite plugin.

In Gradle, source code directories are represented using the concept of source sets. A source set is

configured to point to one or more directories containing source code. When you define a source

set, Gradle automatically sets up compilation tasks for the specified directories.

A pre-configured source set can be created with one line of build script code. The source set

{userManualPath}/jvm_test_suite_plugin.html
https://github.com/nebula-plugins/nebula-project-plugin#nebula-facet-plugin
https://github.com/unbroken-dome/gradle-testsets-plugin
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
java_plugin.pdf#source_sets

automatically registers configurations to define dependencies for the sources of the source set:

// Define a source set named 'test' for test sources
sourceSets {
test {
java {
srcDirs = ['src/test/java']

}

}
// Specify a test implementation dependency on JUnit

dependencies {
testImplementation 'junit:junit:4.12'

}

We use that to define an integrationTestImplementation dependency to the project itself, which
represents the "main" variant of our project (i.e., the compiled plugin code):

build.gradle.kts
val integrationTest by sourceSets.creating

dependencies {
"integrationTestImplementation"(project)

}

build.gradle
def integrationTest = sourceSets.create("integrationTest")

dependencies {
integrationTestImplementation(project)

}

Source sets are responsible for compiling source code, but they do not deal with executing the
bytecode. For test execution, a corresponding task of type Test needs to be established. The
following setup shows the execution of integration tests, referencing the classes and runtime
classpath of the integration test source set:

build.gradle.kts

val integrationTestTask = tasks.register<Test>("integrationTest") {

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/Test.html

description = "Runs the integration tests."
group = "verification"
testClassesDirs = integrationTest.output.classesDirs
classpath = integrationTest.runtimeClasspath
mustRunAfter(tasks.test)

}

tasks.check {
dependsOn(integrationTestTask)

}

build.gradle

def integrationTestTask = tasks.register("integrationTest", Test) {
description = 'Runs the integration tests.'
group = "verification"
testClassesDirs = integrationTest.output.classesDirs
classpath = integrationTest.runtimeClasspath
mustRunAfter(tasks.named('test"))

}
tasks.named('check') {

dependsOn(integrationTestTask)
¥

Configuring a test framework

Gradle does not dictate the use of a specific test framework. Popular choices include JUnit, TestNG
and Spock. Once you choose an option, you have to add its dependency to the compile classpath for
your tests.

The following code snippet shows how to use Spock for implementing tests:

build.gradle.kts

repositories {
mavenCentral()

}

dependencies {
testImplementation(platform("org.spockframework:spock-bom:2.2-groovy-
3.0"))
testImplementation("org.spockframework:spock-core")
testRuntimeOnly("org.junit.platform:junit-platform-Tlauncher")

"integrationTestImplementation"(platform("org.spockframework:spock-
bom:2.2-groovy-3.0"))

https://junit.org/
https://testng.org/
http://spockframework.org/

"integrationTestImplementation"("org.spockframework:spock-core")
"integrationTestRuntimeOnly"("org.junit.platform:junit-platform-
launcher™)

“functionalTestImplementation"(platform("org.spockframework:spock-
bom:2.2-groovy-3.0"))

"functionalTestImplementation"("org.spockframework:spock-core")

“functionalTestRuntimeOnly"("org.junit.platform:junit-platform-launcher")

}

tasks.withType<Test>().configureEach {
// Using JUnitPlatform for running tests
useJUnitPlatform()

build.gradle

repositories {
mavenCentral()

}

dependencies {

testImplementation platform("org.spockframework:spock-bom:2.2-groovy-3.0
Il)

testImplementation 'org.spockframework:spock-core'

testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

integrationTestImplementation platform("org.spockframework:spock-bom:2.2-
groovy-3.0")

integrationTestImplementation 'org.spockframework:spock-core'

integrationTestRuntimeOnly 'org.junit.platform:junit-platform-launcher’

functionalTestImplementation platform("org.spockframework:spock-bom:2.2-
groovy-3.0")

functionalTestImplementation 'org.spockframework:spock-core'

functionalTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'

}

tasks.withType(Test).configureEach {
// Using JUnitPlatform for running tests
useJUnitPlatform()

Spock is a Groovy-based BDD test framework that even includes APIs for creating
NOTE Stubs and Mocks. The Gradle team prefers Spock over other options for its
expressiveness and conciseness.

Implementing automated tests

This section discusses representative implementation examples for unit, integration, and functional
tests. All test classes are based on the use of Spock, though it should be relatively easy to adapt the
code to a different test framework.

Implementing unit tests

The URL verifier plugin emits HTTP GET calls to check if a URL can be resolved successfully. The
method DefaultHttpCaller.get(String) is responsible for calling a given URL and returns an
instance of type HttpResponse. HttpResponse is a POJO containing information about the HTTP
response code and message:

HttpResponse.java
package org.myorg.http;

public class HttpResponse {
private int code;
private String message;

public HttpResponse(int code, String message) {
this.code = code;
this.message = message;

public int getCode() {
return code;

}

public String getMessage() {
return message;

}

public String toString() {
return "HTTP " + code +

, Reason: " + message;

}

The class HttpResponse represents a good candidate for a unit test. It does not reach out to any other
classes nor does it use the Gradle API.

HttpResponseTest.groovy
package org.myorg.http
import spock.lang.Specification

class HttpResponseTest extends Specification {

private static final int OK_HTTP_CODE = 200
private static final String OK_HTTP_MESSAGE = 'OK'

def "can access information"() {
when:
def httpResponse = new HttpResponse(OK_HTTP_CODE, OK_HTTP_MESSAGE)

then:
httpResponse.code == OK_HTTP_CODE
httpResponse.message == OK_HTTP_MESSAGE

def "can get String representation"() {
when:
def httpResponse = new HttpResponse(OK_HTTP_CODE, OK_HTTP_MESSAGE)

then:
httpResponse.toString() == "HTTP $OK_HTTP_CODE, Reason: $OK_HTTP_MESSAGE"
}
}
When writing unit tests, it’s important to test boundary conditions and
various forms of invalid input. Try to extract as much logic as possible from
IMPORTANT

classes that use the Gradle API to make it testable as unit tests. It will result
in maintainable code and faster test execution.

You can use the ProjectBuilder class to create Project instances to use when you test your plugin
implementation.

src/test/java/org/example/GreetingPluginTest.java
public class GreetingPluginTest {

public void greeterPluginAddsGreetingTaskToProject() {
Project project = ProjectBuilder.builder().build();
project.getPluginManager().apply("org.example.greeting");

assertTrue(project.getTasks().getByName("hello") instanceof GreetingTask);

Implementing integration tests

Let’s look at a class that reaches out to another system, the piece of code that emits the HTTP calls.
At the time of executing a test for the class DefaultHttpCaller, the runtime environment needs to be
able to reach out to the internet:

https://docs.gradle.org/8.10/javadoc/org/gradle/testfixtures/ProjectBuilder.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html

DefaultHttpCaller.java
package org.myorg.http;

import java.io.IOException;

import java.net.HttpURLConnection;
import java.net.URI;

import java.net.URISyntaxException;

public class DefaultHttpCaller implements HttpCaller {

public HttpResponse get(String url) {
try {
HttpURLConnection connection = (HttpURLConnection) new URI(url).toURL()
.openConnection();
connection.setConnectTimeout(5000);
connection.setRequestMethod("GET");
connection.connect();

int code = connection.getResponseCode();
String message = connection.getResponseMessage();
return new HttpResponse(code, message);
} catch (IOException e) {
throw new HttpCallException(String.format("Failed to call URL '
HTTP GET", url), e);
} catch (URISyntaxException e) {
throw new RuntimeException(e);

via

o
wn

}

Implementing an integration test for DefaultHttpCaller doesn’t look much different from the unit
test shown in the previous section:

DefaultHttpCallerIntegrationTest.groovy
package org.myorg.http

import spock.lang.Specification
import spock.lang.Subject

class DefaultHttpCallerIntegrationTest extends Specification {
HttpCaller httpCaller = new DefaultHttpCaller()

def "can make successful HTTP GET call"() {
when:
def httpResponse = httpCaller.get('https://www.google.com/")

then:
httpResponse.code == 200

httpResponse.message == '0OK'

def "throws exception when calling unknown host via HTTP GET"() {
when:
httpCaller.get('https://www.wedonotknowyou123.com/")

then:
def t = thrown(HttpCallException)

t.message == "Failed to call URL 'https://www.wedonotknowyou123.com/"' via HTTP
GET"

t.cause instanceof UnknownHostException

Implementing functional tests

Functional tests verify the correctness of the plugin end-to-end. In practice, this means applying,
configuring, and executing the functionality of the plugin implementation. The UrlVerifierPlugin
class exposes an extension and a task instance that uses the URL value configured by the end user:

UrlVerifierPlugin.java
package org.myorg;

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.myorg.tasks.UrlVerify;

public class UrlVerifierPlugin implements Plugin<Project> {

public void apply(Project project) {
UrlVerifierExtension extension = project.getExtensions().create("verification
", UrlVerifierExtension.class);
UrlVerify verifyUrlTask = project.getTasks().create("verifyUrl", UrlVerify
.class);
verifyUriTask.getUr1().set(extension.getUrl());
}

Every Gradle plugin project should apply the plugin development plugin to reduce boilerplate code.
By applying the plugin development plugin, the test source set is preconfigured for the use with
TestKit. If we want to use a custom source set for functional tests and leave the default test source
set for only unit tests, we can configure the plugin development plugin to look for TestKit tests
elsewhere.

java_gradle_plugin.pdf#java_gradle_plugin

build.gradle.kts

gradlePlugin {
testSourceSets(functionalTest)

}

build.gradle

gradlePlugin {
testSourceSets(sourceSets.functionalTest)

}

Functional tests for Gradle plugins use an instance of GradleRunner to execute the build under test.
GradleRunner is an API provided by TestKit, which internally uses the Tooling API to execute the
build.

The following example applies the plugin to the build script under test, configures the extension
and executes the build with the task verifyUrl. Please see the TestKit documentation to get more
familiar with the functionality of TestKit.

UrlVerifierPluginFunctionalTest.groovy
package org.myorg

import org.gradle.testkit.runner.GradleRunner
import spock.lang.Specification
import spock.lang.TempDir

import static org.gradle.testkit.runner.TaskOutcome.SUCCESS

class UrlVerifierPluginFunctionalTest extends Specification {
File testProjectDir
File buildFile

def setup() {
buildFile = new File(testProjectDir, 'build.gradle')
buildFile << """
plugins {
id 'org.myorg.url-verifier'
+

}

def "can successfully configure URL through extension and verify it"() {
buildFile << """

verification {
url = "https://www.google.com/’
}

nmmn

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArguments('verifyUrl")
.withPluginClasspath()
.build()

then:
result.output.contains("Successfully resolved URL 'https://www.google.com/'")
result.task(":verifyUr1l").outcome == SUCCESS

IDE integration

TestKit determines the plugin classpath by running a specific Gradle task. You will need to execute
the assemble task to initially generate the plugin classpath or to reflect changes to it even when
running TestKit-based functional tests from the IDE.

Some IDEs provide a convenience option to delegate the "test classpath generation and execution”
to the build. In Intelli], you can find this option under Preferences... > Build, Execution, Deployment
> Build Tools > Gradle > Runner > Delegate IDE build/run actions to Gradle.

i @ Preferences

Q Build, Execution, Deployment > Build Tools » Gradle > Runner

Vi Delegate IDE buildjfrun actions to gradle

¥ Build, Execution, Deployment
¥ Build Tools Run tests using:
> Maven
¥ Gradle
Runner
Experimental

Gant

Cancel Apply

Publishing Plugins to the Gradle Plugin Portal

Publishing a plugin is the primary way to make it available for others to use. While you can publish
to a private repository to restrict access, publishing to the Gradle Plugin Portal makes your plugin
available to anyone in the world.

https://plugins.gradle.org

[] @® & Gradle - Plugins x 4+ v

€ > C (.: plugins.gradle.org ﬁ')] K2 | ’

ﬁ Plugins ~ Documentation ~ Forums »)

ﬁGradle

Search Gradle plugins

&
Want to include your Gradle plugin here?
Plugin Latest Version
com.zegreatrob.jsmints.plugins.wdiotest 5455
(13 March 2024)
This plugin adds support for using wdio.js with Kotlin JS, with some configuration conveniences.
#javascript #js #wdio.js #jsmints #kotlin #wdio #webdriver
com.zegreatrob.jsmints.plugins.ncu 5455
(13 March 2024)
This plugin provides tasks for using the npm-check-updates npm program, for updating package.json dependencies when
using Kotlin JS.
#javascript #js #package.json #jsmints #kotlin #ncu #npm-check-updates
com.zegreatrob.jsmints.plugins.minreact 5455
(13 March 2024)

This plugin will generate boilerplace related to working with React in Kotlin for function components and their props.

#javascript #js #react #minreact #jsmints #kotlin

This guide shows you how to use the com.gradle.plugin-publish plugin to publish plugins to the
Gradle Plugin Portal using a convenient DSL. This approach streamlines configuration steps and
provides validation checks to ensure your plugin meets the Gradle Plugin Portal’s criteria.

Prerequisites

You’ll need an existing Gradle plugin project for this tutorial. If you don’t have one, use the Greeting
plugin sample.

Attempting to publish this plugin will safely fail with a permission error, so don’t worry about
cluttering up the Gradle Plugin Portal with a trivial example plugin.

Account setup

Before publishing your plugin, you must create an account on the Gradle Plugin Portal. Follow the
instructions on the registration page to create an account and obtain an API key from your profile
page’s "API Keys" tab.

https://plugins.gradle.org/plugin/com.gradle.plugin-publish
https://plugins.gradle.org
../samples/sample_gradle_plugin.html
../samples/sample_gradle_plugin.html
https://plugins.gradle.org/user/register

ﬁ Login Use existing

Username OGitHUb

Password

Signup Forgot password

Terms of Use and Privacy Policy apply

Store your API key in your Gradle configuration (gradle.publish.key and gradle.publish.secret) or
use a plugin like Seauc Credentials plugin or Gradle Credentials plugin for secure management.

Plugins Reclaim API Keys

Copy the following to your HOME_DIR/.gradle/gradle.properties (~/.gradle/gradle.properties) file:

gradle.publish.key=m000000000000000000000000000000000
gradle.publish.secret=000000000000000000000000000000000

It is common practice to copy and paste the text into your $HOME/.gradle/gradle.properties file, but
you can also place it in any other valid location. All the plugin requires is that the
gradle.publish.key and gradle.publish.secret are available as project properties when the
appropriate Plugin Portal tasks are executed.

If you are concerned about placing your credentials in gradle.properties, check out the Seauc
Credentials plugin or the Gradle Credentials plugin.

Alternatively, you can provide the API key via GRADLE_PUBLISH_KEY and GRADLE_PUBLISH_SECRET
environment variables. This approach might be useful for CI/CD pipelines.

Adding the Plugin Publishing Plugin

To publish your plugin, add the com.gradle.plugin-publish plugin to your project’s build.gradle or
build.gradle.kts file:

https://plugins.gradle.org/plugin/de.qaware.seu.as.code.credentials
https://plugins.gradle.org/plugin/de.qaware.seu.as.code.credentials
https://plugins.gradle.org/plugin/nu.studer.credentials

build.gradle.kts

plugins {
id("com.gradle.plugin-publish") version "1.2.1"
}
build.gradle
plugins {
id 'com.gradle.plugin-publish' version '1.2.1'
}

The latest version of the Plugin Publishing Plugin can be found on the Gradle Plugin Portal.

Since version 1.0.0 the Plugin Publish Plugin automatically applies the Java Gradle
Plugin Development Plugin (assists with developing Gradle plugins) and the Maven
Publish Plugin (generates plugin publication metadata). If using older versions of
the Plugin Publish Plugin, these helper plugins must be applied explicitly.

NOTE

Configuring the Plugin Publishing Plugin

Configure the com.gradle.plugin-publish plugin in your build.gradle or build.gradle.kts file.

build.gradle.kts

group = "io.github.johndoe" @
version = "1.0" @

gradlePlugin { ®

website = "<substitute your project website>" @
vesUrl = "<uri to project source repository>" ®

/... ®

build.gradle

group = 'io.github.johndoe' @
version = '1.0' @

https://plugins.gradle.org/plugin/com.gradle.plugin-publish
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

gradlePlugin { ®
website = '<substitute your project website>' @
vesUrl = '<uri to project source repository>' ®

/] ... ®

@ Make sure your project has a group set which is used to identify the artifacts (jar and metadata)
you publish for your plugins in the repository of the Gradle Plugin Portal and which is
descriptive of the plugin author or the organization the plugins belong too.

@ Set the version of your project, which will also be used as the version of your plugins.

® Use the gradlePlugin block provided by the Java Gradle Plugin Development Plugin to configure
further options for your plugin publication.

@ Set the website for your plugin’s project.
® Provide the source repository URI so that others can find it, if they want to contribute.
® Set specific properties for each plugin you want to publish; see next section.

Define common properties for all plugins, such as group, version, website, and source repository,
using the gradlePlugin{} block:

build.gradle.kts

gradlePlugin { @
/.. @

plugins { ®
create("greetingsPlugin") { @
id = "<your plugin identifier>" ®
displayName = "<short displayable name for plugin>" ®

description = "<human-readable description of what your plugin is
about>" @
tags = 1listOf("tags", "for", "your", "plugins") ®
implementationClass = "<your plugin class>"
}
}
}
build.gradle

gradlePlugin { @
/... @

java_gradle_plugin.pdf#java_gradle_plugin

plugins { ®
greetingsPlugin { @
id = '<your plugin identifier>' ®
displayName = '<short displayable name for plugin>' ®
description = '<human-readable description of what your plugin is
about>' @
tags.set(['tags', 'for', 'your', 'plugins']) ®
implementationClass = '<your plugin class>'

@ Plugin specific configuration also goes into the gradlePlugin block.
@ This is where we previously added global properties.
® Each plugin you publish will have its own block inside plugins.

@ The name of a plugin block must be unique for each plugin you publish; this is a property used
only locally by your build and will not be part of the publication.

® Set the unique id of the plugin, as it will be identified in the publication.
® Set the plugin name in human-readable form.

@ Set a description to be displayed on the portal. It provides useful information to people who
want to use your plugin.

Specifies the categories your plugin covers. It makes the plugin more likely to be discovered by
people needing its functionality.

For example, consider the configuration for the GradleTest plugin, already published to the Gradle
Plugin Portal.

build.gradle.kts

gradlePlugin {
website = "https://github.com/ysb33r/gradleTest"
vesUrl = "https://github.com/ysb33r/gradleTest.qit"
plugins {
create("gradletestPlugin") {
id = "org.ysb33r.gradletest”
displayName = "Plugin for compatibility testing of Gradle
plugins”
description = "A plugin that helps you test your plugin against a
variety of Gradle versions"
tags = listOf("testing", "integrationTesting", "compatibility")
implementationClass =
"org.ysb33r.gradle.gradletest.GradleTestPlugin"
}
}

https://plugins.gradle.org/plugin/org.ysb33r.gradletest

build.gradle

gradlePlugin {
website = "https://github.com/ysb33r/gradleTest’
vesUrl = 'https://github.com/ysb33r/gradleTest.git’
plugins {
gradletestPlugin {
id = 'org.ysb33r.gradletest’
displayName = 'Plugin for compatibility testing of Gradle
plugins'
description = 'A plugin that helps you test your plugin against a
variety of Gradle versions'
tags.addA11('testing', 'integrationTesting', 'compatibility')
implementationClass =
'org.ysb33r.gradle.gradletest.GradleTestPlugin’
¥
}

If you browse the associated page on the Gradle Plugin Portal for the GradleTest plugin, you will see
how the specified metadata is displayed.

O rg.ys b33 r.g rad | etest gradlePlugin.plugins.gradletestPlugin.id

Owner: Schalk Cronjé

A plugin that helps you test your plugin against a variety of Gradle versions gradlePlugin.plugins.gradletestPlugin.description

https://gitlab.com/ysb33rOrg/gradleTest gradlePlugin.website

Sources: https://github.com/ysb33r/gradleTest.git

#testing #integrationtesting #compatibility gradlePlugin.plugins.gradletestPlugin.tags

Version 3.0.0-alpha.4 (latest) Other versions ~
Created 19 September 2023.

A plugin that helps you test your plugin against a variety of Gradle versions

Sources & Javadoc

The Plugin Publish Plugin automatically generates and publishes the Javadoc, and sources JARs for
your plugin publication.

Sign artifacts

Starting from version 1.0.0 of Plugin Publish Plugin, the signing of published plugin artifacts has
been made automatic. To enable it, all that’s needed is to apply the signing plugin in your build.

https://plugins.gradle.org/plugin/org.ysb33r.gradletest
signing_plugin.pdf#signing_plugin

Shadow dependencies

Starting from version 1.0.0 of Plugin Publish Plugin, shadowing your plugin’s dependencies (ie,
publishing it as a fat jar) has been made automatic. To enable it, all that’s needed is to apply the
com.github.johnrengelman.shadow plugin in your build.

Publishing the plugin

If you publish your plugin internally for use within your organization, you can publish it like any
other code artifact. See the Ivy and Maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can
publish it to Gradle Plugin Portal. This site provides the ability to search for and gather information
about plugins contributed by the Gradle community. Please refer to the corresponding section on
making your plugin available on this site.

Publish locally

To check how the artifacts of your published plugin look or to use it only locally or internally in
your company, you can publish it to any Maven repository, including a local folder. You only need
to configure repositories for publishing. Then, you can run the publish task to publish your plugin
to all repositories you have defined (but not the Gradle Plugin Portal).

build.gradle.kts

publishing {
repositories {
maven {
name = "localPluginRepository"
url = uri("../local-plugin-repository")

build.gradle

publishing {
repositories {

maven {

name = 'localPluginRepository’

url = "../local-plugin-repository’
}

https://github.com/johnrengelman/shadow
http://plugins.gradle.org

To use the repository in another build, add it to the repositories of the pluginManagement {} block in
your settings.gradle(.kts) file.

Publish to the Plugin Portal

Publish the plugin by using the publishPlugin task:

$./gradlew publishPlugins

You can validate your plugins before publishing using the --validate-only flag:

$./gradlew publishPlugins --validate-only

If you have not configured your gradle.properties for the Gradle Plugin Portal, you can specify
them on the command-line:

$./gradlew publishPlugins -Pgradle.publish.key=<key> -Pgradle.publish.secret=<secret>

You will encounter a permission failure if you attempt to publish the example
Greeting Plugin with the ID used in this section. That’s expected and ensures the
portal won’t be overrun with multiple experimental and duplicate greeting-type
plugins.

NOTE

After approval, your plugin will be available on the Gradle Plugin Portal for others to discover and
use.

Consume the published plugin

Once you successfully publish a plugin, it won’t immediately appear on the Portal. It also needs to
pass an approval process, which is manual and relatively slow for the initial version of your plugin,
but is fully automatic for subsequent versions. For further details, see here.

Once your plugin is approved, you can find instructions for its use at a URL of the form
https://plugins.gradle.org/plugin/<your-plugin-id>. For example, the Greeting Plugin example is
already on the portal at https://plugins.gradle.org/plugin/org.example.greeting.

Plugins published without Gradle Plugin Portal

If your plugin was published without using the Java Gradle Plugin Development Plugin, the
publication will be lacking Plugin Marker Artifact, which is needed for plugins DSL to locate the
plugin. In this case, the recommended way to resolve the plugin in another project is to add a
resolutionStrategy section to the pluginManagement {} block of the project’s settings file, as shown
below.

https://plugins.gradle.org/docs/publish-plugin-new#approval
https://plugins.gradle.org/plugin/org.example.greeting
java_gradle_plugin.pdf#java_gradle_plugin

settings.gradle.kts

resolutionStrategy {
eachPlugin {
if (requested.id.namespace == "org.example") {
useModule("org.example:custom-plugin:${requested.version}")

settings.gradle

resolutionStrategy {
eachPlugin {
if (requested.id.namespace == 'org.example') {
useModule("org.example:custom-plugin:${requested.version}")

[1] Script plugins are hard to maintain. Do not use script plugins apply from:, they are not recommended.

[2] It is recommended to use a statically-typed language like Java or Kotlin for implementing plugins to reduce the likelihood of
binary incompatibilities. If using Groovy, consider using statically compiled Groovy.

OTHER TOPICS

Gradle-managed Directories

Gradle uses two main directories to perform and manage its work: the Gradle User Home directory
and the Project Root directory.

Project <Project_Root_Directory> Gradle $GRADLE _USER_HOME

l % gradie.properties [initgradiekts

jdks wrapper/dists

gradle-8.1.1-all
gradle-8.1.1-bin

() jak-14.0.2+412

jck-11.013

0] jak-19.01 gradle-8.3-bin

daemon

Gradle User Home directory

By default, the Gradle User Home (~/.gradle or C:\Users\<USERNAME>\.gradle) stores global
configuration properties, initialization scripts, caches, and log files.

It can be set with the environment variable GRADLE_USER_HOME.
TIP Not to be confused with the GRADLE_HOME, the optional installation directory for Gradle.

It is roughly structured as follows:

LDOO@
S)

T

4.
4.
1
jars-3 @

L—— modules-2 ®
on @

___T__
|18

-
jus]
=)
=
L @ °

1
4.
4.
.d
m

|

y-setup.gradle

—— jdks ®

I

| —— jdk-14.0.2+12

—— wrapper

| L—— dists @
——10

|
| —— gradle-4.8-bin
| —— gradle-4.9-all
| L—— gradle-4.9-bin
L—— gradle.properties
@ Global cache directory (for everything that is not project-specific).
@ Version-specific caches (e.g., to support incremental builds).
® Shared caches (e.g., for artifacts of dependencies).
@ Registry and logs of the Gradle Daemon.
® Global initialization scripts.
® JDKs downloaded by the toolchain support.
@ Distributions downloaded by the Gradle Wrapper.

Global Gradle configuration properties.

Cleanup of caches and distributions

Gradle automatically cleans its user home directory.

By default, the cleanup runs in the background when the Gradle daemon is stopped or shut down.
If using --no-daemon, it runs in the foreground after the build session.

The following cleanup strategies are applied periodically (by default, once every 24 hours):

* Version-specific caches in all caches/<GRADLE_VERSION>/ directories are checked for whether they
are still in use.

If not, directories for release versions are deleted after 30 days of inactivity, and snapshot
versions after 7 days.

» Shared caches in caches/ (e.g., jars-*) are checked for whether they are still in use.
If no Gradle version still uses them, they are deleted.

* Files in shared caches used by the current Gradle version in caches/ (e.g., jars-3 or modules-2)
are checked for when they were last accessed.

Depending on whether the file can be recreated locally or downloaded from a remote
repository, it will be deleted after 7 or 30 days, respectively.

* Gradle distributions in wrapper/dists/ are checked for whether they are still in use, i.e., whether

there’s a corresponding version-specific cache directory.

Unused distributions are deleted.

Configuring cleanup of caches and distributions

The retention periods of the various caches can be configured.

Caches are classified into five categories:

1.

Released wrapper distributions: Distributions and related version-specific caches
corresponding to released versions (e.g., 4.6.2 or 8.0).

Default retention for unused versions is 30 days.

Snapshot wrapper distributions: Distributions and related version-specific caches
corresponding to snapshot versions (e.g. 7.6-20221130141522+0000).

Default retention for unused versions is 7 days.

Downloaded resources: Shared caches downloaded from a remote repository (e.g., cached
dependencies).

Default retention for unused resources is 30 days.

Created resources: Shared caches that Gradle creates during a build (e.g., artifact transforms).
Default retention for unused resources is 7 days.

Build cache: The local build cache (e.g., build-cache-1).

Default retention for unused build-cache entries is 7 days.

The retention period for each category can be configured independently via an init script in the
Gradle User Home:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
caches {
releasedWrappers.setRemoveUnusedEntriesAfterDays(45)
snapshotWrappers.setRemoveUnusedEntriesAfterDays(10)
downloadedResources.setRemoveUnusedEntriesAfterDays(45)
createdResources.setRemoveUnusedEntriesAfterDays(10)
buildCache.setRemoveUnusedEntriesAfterDays(5)

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->

settings.caches {
releasedWrappers.removeUnusedEntriesAfterDays = 45
snapshotWrappers.removeUnusedEntriesAfterDays = 10
downloadedResources.removeUnusedEntriesAfterDays = 45
createdResources.removeUnusedEntriesAfterDays = 10
buildCache.removeUnusedEntriesAfterDays = 5

The frequency at which cache cleanup is invoked is also configurable.
There are three possible settings:

1. DEFAULT: Cleanup is performed periodically in the background (currently once every 24
hours).

2. DISABLED: Never cleanup Gradle User Home.

This is useful in cases where Gradle User Home is ephemeral or delaying cleanup is desirable
until an explicit point.

3. ALWAYS: Cleanup is performed at the end of each build session.

This is useful in cases where it’s desirable to ensure that cleanup has occurred before
proceeding.

However, this performs cache cleanup during the build (rather than in the background), which
can be expensive, so this option should only be used when necessary.

To disable cache cleanup:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
caches {
cleanup = Cleanup.DISABLED

}

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
cleanup = Cleanup.DISABLED

}

Cache cleanup settings can only be configured via init scripts and should be placed
under the init.d directory in Gradle User Home. This effectively couples the

NOTE configuration of cache cleanup to the Gradle User Home those settings apply to and
limits the possibility of different conflicting settings from different projects being
applied to the same directory.

Multiple versions of Gradle sharing a Gradle User Home

It is common to share a single Gradle User Home between multiple versions of Gradle.

As stated above, caches in Gradle User Home are version-specific. Different versions of Gradle will
perform maintenance on only the version-specific caches associated with each version.

On the other hand, some caches are shared between versions (e.g., the dependency artifact cache or
the artifact transform cache).

Beginning with Gradle version 8.0, the cache cleanup settings can be configured to custom
retention periods. However, older versions have fixed retention periods (7 or 30 days, depending
on the cache). These shared caches could be accessed by versions of Gradle with different settings
to retain cache artifacts.

This means that:

* If the retention period is not customized, all versions that perform cleanup will have the same
retention periods. There will be no effect due to sharing a Gradle User Home with multiple
versions.

* If the retention period is customized for Gradle versions greater than or equal to version 8.0 to
use retention periods shorter than the previously fixed periods, there will also be no effect.

The versions of Gradle aware of these settings will cleanup artifacts earlier than the previously
fixed retention periods, and older versions will effectively not participate in the cleanup of
shared caches.

* If the retention period is customized for Gradle versions greater than or equal to version 8.0 to
use retention periods longer than the previously fixed periods, the older versions of Gradle may
clean the shared caches earlier than what is configured.

In this case, if it is desirable to maintain these shared cache entries for newer versions for
longer retention periods, they will not be able to share a Gradle User Home with older versions.
They will need to use a separate directory.

Another consideration when sharing the Gradle User Home with versions of Gradle before version
8.0 is that the DSL elements to configure the cache retention settings are unavailable in earlier
versions, so this must be accounted for in any init script shared between versions. This can easily
be handled by conditionally applying a version-compliant script.

The version-compliant script should reside somewhere other than the init.d

NOTE
directory (such as a sub-directory), so it is not automatically applied.

To configure cache cleanup in a version-safe manner:

gradleUserHome/init.d/cache-settings.gradle.kts

if (GradleVersion.current() >= GradleVersion.version("8.0")) {
apply(from = "gradle8/cache-settings.gradle.kts")

}

gradleUserHome/init.d/cache-settings.gradle

if (GradleVersion.current() >= GradleVersion.version('8.0")) {
apply from: "gradle8/cache-settings.gradle”

}

Version-compliant cache configuration script:

gradleUserHome/init.d/gradle8/cache-settings.gradle.kts

beforeSettings {
caches {
releasedWrappers { setRemoveUnusedEntriesAfterDays(45) }
snapshotWrappers { setRemoveUnusedEntriesAfterDays(10) }
downloadedResources { setRemoveUnusedEntriesAfterDays(45) }
createdResources { setRemoveUnusedEntriesAfterDays(10) }
buildCache { setRemoveUnusedEntriesAfterDays(5) }

gradleUserHome/init.d/gradle8/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
releasedWrappers.removeUnusedEntriesAfterDays = 45
snapshotWrappers.removeUnusedEntriesAfterDays = 10
downloadedResources.removeUnusedEntriesAfterDays = 45
createdResources.removeUnusedEntriesAfterDays = 10
buildCache.removeUnusedEntriesAfterDays = 5

Cache marking

Beginning with Gradle version 8.1, Gradle supports marking caches with a CACHEDIR. TAG file.

It follows the format described in the Cache Directory Tagging Specification. The purpose of this file
is to allow tools to identify the directories that do not need to be searched or backed up.

By default, the directories caches, wrapper/dists, daemon, and jdks in the Gradle User Home are
marked with this file.

Configuring cache marking

The cache marking feature can be configured via an init script in the Gradle User Home:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
caches {
// Disable cache marking for all caches
markingStrategy = MarkingStrategy.NONE

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
// Disable cache marking for all caches
markingStrategy = MarkingStrategy.NONE

Cache marking settings can only be configured via init scripts and should be placed
under the init.d directory in Gradle User Home. This effectively couples the

NOTE configuration of cache marking to the Gradle User Home to which those settings
apply and limits the possibility of different conflicting settings from different
projects being applied to the same directory.

https://bford.info/cachedir/

Project Root directory
The project root directory contains all source files from your project.
It also contains files and directories Gradle generates, such as .gradle and build.

While the former are usually checked into source control, the latter are transient files Gradle uses
to support features like incremental builds.

The anatomy of a typical project root directory looks as follows:

—— .gradle @®
| H— 4.8 @
| H— 4.9 @
| L—1
—— build ®
—— gradle

! L—— wrapper @

—— gradle.properties ®
—— gradlew ®

—— gradlew.bat ®

—— settings.gradle.kts @
—— subproject-one

| —— build.gradle.kts ©
—— subproject-two

| —— build.gradle.kts ©

—1
@ Project-specific cache directory generated by Gradle.
@ Version-specific caches (e.g., to support incremental builds).
® The build directory of this project into which Gradle generates all build artifacts.
@ Contains the JAR file and configuration of the Gradle Wrapper.
® Project-specific Gradle configuration properties.
® Scripts for executing builds using the Gradle Wrapper.
@ The project’s settings file where the list of subprojects is defined.
Usually, a project is organized into one or multiple subprojects.

© Each subproject has its own Gradle build script.

Project cache cleanup

From version 4.10 onwards, Gradle automatically cleans the project-specific cache directory.

After building the project, version-specific cache directories in .gradle/8.10/ are checked
periodically (at most, every 24 hours) to determine whether they are still in use. They are deleted if
they haven’t been used for 7 days.

Next Step: Learn about the Gradle Build Lifecycle >>

Working With Files

File operations are fundamental to nearly every Gradle build. They involve handling source files,
managing file dependencies, and generating reports. Gradle provides a robust API that simplifies
these operations, enabling developers to perform necessary file tasks easily.

Hardcoded paths and laziness
It is best practice to avoid hardcoded paths in build scripts.

In addition to avoiding hardcoded paths, Gradle encourages laziness in its build scripts. This means
that tasks and operations should be deferred until they are actually needed rather than executed
eagerly.

Many examples in this chapter use hard-coded paths as string literals. This makes them easy to
understand, but it is not good practice. The problem is that paths often change, and the more places
you need to change them, the more likely you will miss one and break the build.

Where possible, you should use tasks, task properties, and project properties — in that order of
preference — to configure file paths.

For example, if you create a task that packages the compiled classes of a Java application, you
should use an implementation similar to this:

build.gradle.kts
val archivesDirPath = layout.buildDirectory.dir("archives")
tasks.register<Zip>("packageClasses") {

archiveAppendix = "classes"
destinationDirectory = archivesDirPath

from(tasks.compilelava)

build.gradle
def archivesDirPath = layout.buildDirectory.dir('archives")
tasks.register('packageClasses', Zip) {
archiveAppendix = "classes"

destinationDirectory = archivesDirPath

from compilelava

properties_providers.pdf#understanding_properties

The compilelava task is the source of the files to package, and the project property archivesDirPath
stores the location of the archives, as we are likely to use it elsewhere in the build.

Using a task directly as an argument like this relies on it having defined outputs, so it won’t always
be possible. This example could be further improved by relying on the Java plugin’s convention for
destinationDirectory rather than overriding it, but it does demonstrate the use of project
properties.

Locating files

To perform some action on a file, you need to know where it is, and that’s the information provided
by file paths. Gradle builds on the standard Java File class, which represents the location of a single
file and provides APIs for dealing with collections of paths.

Using ProjectLayout

The ProjectlLayout class is used to access various directories and files within a project. It provides
methods to retrieve paths to the project directory, build directory, settings file, and other important
locations within the project’s file structure. This class is particularly useful when you need to work
with files in a build script or plugin in different project paths:

build.gradle.kts

val archivesDirPath = layout.buildDirectory.dir("archives")

build.gradle

def archivesDirPath

layout.buildDirectory.dir('archives")

You can learn more about the ProjectLayout class in Services.

Using Project.file()

Gradle provides the Project.file(java.lang.Object) method for specifying the location of a single file
or directory.

Relative paths are resolved relative to the project directory, while absolute paths remain
unchanged.

Never use new File(relative path) unless passed to file() or files() or from()
or other methods defined in terms of file() or files(). Otherwise, this creates a

CAUTION path relative to the current working directory (CWD). Gradle can make no
guarantees about the location of the CWD, which means builds that rely on it
may break at any time.

https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.file.ProjectLayout.html
service_injection.pdf#sec:projectlayout
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Here are some examples of using the file() method with different types of arguments:

build.gradle.kts

// Using a relative path
var configFile = file("src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(File("src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get("src", "config.xml"))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty("user.home")).resolve("global-
config.xml"))

build.gradle

// Using a relative path
File configFile = file('src/config.xml")

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(new File('src/config.xml"))

// Using a java.nio.file.Path object with a relative path
configFile = file(Paths.get('src', 'config.xml'))

// Using an absolute java.nio.file.Path object
configFile = file(Paths.get(System.getProperty('user.home')).resolve('global-
config.xml'))

As you can see, you can pass strings, File instances and Path instances to the file() method, all of
which result in an absolute File object.

In the case of multi-project builds, the file() method will always turn relative paths into paths
relative to the current project directory, which may be a child project.

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

Using Project.getRootDir()

Suppose you want to use a path relative to the root project directory. In that case, you need to use
the special Project.getRootDir() property to construct an absolute path, like so:

build.gradle.kts

val configFile = file("$rootDir/shared/config.xml")

build.gradle

File configFile = file("$rootDir/shared/config.xml")

Let’s say you’re working on a multi-project build in the directory: dev/projects/AcmeHealth.
The build script above is at: AcmeHealth/subprojects/AcmePatientRecordLib/build.gradle.
The file path will resolve to the absolute of: dev/projects/AcmeHealth/shared/config.xml.

dev

—— projects

| F—— AcmeHealth

| | —— subprojects

| | | F—— AcmePatientRecordLib
| | | | L—— build.gradle

| | | — ...

| | —— shared

|
|

| L—— config.xml
l— LI]

[

L—— settings.gradle

Note that Project also provides Project.getRootProject() for multi-project builds which, in the
example, would resolve to: dev/projects/AcmeHealth/subprojects/AcmePatientRecordLib.

Using FileCollection

A file collection is simply a set of file paths represented by the FileCollection interface.

The set of paths can be any file path. The file paths don’t have to be related in any way, so they don’t
have to be in the same directory or have a shared parent directory.

The recommended way to specify a collection of files is to wuse the
ProjectLayout.files(java.lang.Object...) method, which returns a FileCollection instance. This
flexible method allows you to pass multiple strings, File instances, collections of strings, collections
of Files, and more. You can also pass in tasks as arguments if they have defined outputs.

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootDir
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:rootProject
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-

CAUTION files() properly handles relative paths and File(relative path) instances,
resolving them relative to the project directory.

As with the Project.file(java.lang.Object) method covered in the previous section, all relative paths

are evaluated relative to the current project directory. The following example demonstrates some

of the variety of argument types you can use — strings, File instances, lists, or Paths:

build.gradle.kts

val collection: FileCollection = layout.files(
"src/filel.txt",
File("src/file2.txt"),
1istOf("src/file3.csv", "src/filed.csv"),
Paths.get("src", "file5.txt")

build.gradle

FileCollection collection = layout.files('src/filel.txt",
new File('src/file2.txt"),
['src/file3.csv', 'src/filed.csv'],
Paths.get('src', 'file5.txt"))

File collections have important attributes in Gradle. They can be:

* created lazily

iterated over

filtered

e combined

Lazy creation of a file collection is useful when evaluating the files that make up a collection when a
build runs. In the following example, we query the file system to find out what files exist in a
particular directory and then make those into a file collection:

build.gradle.kts

tasks.register("list") {
val projectDirectory = layout.projectDirectory
dolLast {
var srcDir: File? = null

val collection = projectDirectory.files({

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

srcDir?.listFiles()

)

srcDir = projectDirectory.file("src").asFile

println("Contents of ${srcDir.name}")

collection.map { it.relativeTo(projectDirectory.asFile)
}.sorted().forEach { println(it) }

srcDir = projectDirectory.file("src2").asFile
println("Contents of ${srcDir.name}")
collection.map { it.relativeTo(projectDirectory.asFile)
}.sorted().forEach { println(it) }
}
}

build.gradle

tasks.register('list") {
Directory projectDirectory = layout.projectDirectory
dolast {
File srcDir

// Create a file collection using a closure
collection = projectDirectory.files { srcDir.listFiles() }

srcDir = projectDirectory.file('src').asFile

println "Contents of $srcDir.name"

collection.collect { projectDirectory.asFile.relativePath(it) }.sort
().each { println it }

srcDir = projectDirectory.file('src2').asFile
println "Contents of $srcDir.name"
collection.collect { projectDirectory.asFile.relativePath(it) }.sort
().each { println it }
}
}

$ gradle -q list
Contents of src
src/dir1
src/filel.txt
Contents of src2
src2/dir1
src2/dir?2

The key to lazy creation is passing a closure (in Groovy) or a Provider (in Kotlin) to the files()
method. Your closure or provider must return a value of a type accepted by files(), such as
List<File>, String, or FileCollection.

Iterating over a file collection can be done through the each() method (in Groovy) or forEach method
(in Kotlin) on the collection or using the collection in a for loop. In both approaches, the file
collection is treated as a set of File instances, i.e., your iteration variable will be of type File.

The following example demonstrates such iteration. It also demonstrates how you can convert file
collections to other types using the as operator (or supported properties):

build.gradle.kts

// Iterate over the files in the collection
collection.forEach { file: File ->
println(file.name)

}

// Convert the collection to various types
val set: Set<File> = collection.files

val list: List<File> = collection.tolist()
val path: String = collection.asPath

val file: File = collection.singleFile

// Add and subtract collections
val union = collection + projectlayout.files("src/file2.txt")
val difference = collection - projectlayout.files("src/file2.txt")

build.gradle

// Iterate over the files in the collection
collection.each { File file ->
println file.name

}

// Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = collection.asPath

File file = collection.singleFile

// Add and subtract collections
def union = collection + projectlLayout.files('src/file2.txt")
def difference = collection - projectlLayout.files('src/file2.txt")

You can also see at the end of the example how to combine file collections using the + and -
operators to merge and subtract them. An important feature of the resulting file collections is that
they are live. In other words, when you combine file collections this way, the result always reflects
what’s currently in the source file collections, even if they change during the build.

For example, imagine collection in the above example gains an extra file or two after union is
created. As long as you use union after those files are added to collection, union will also contain
those additional files. The same goes for the different file collection.

Live collections are also important when it comes to filtering. Suppose you want to use a subset of a
file collection. In that case, you can take advantage of the
FileCollection.filter(org.gradle.api.specs.Spec) method to determine which files to "keep". In the
following example, we create a new collection that consists of only the files that end with .txt in
the source collection:

build.gradle.kts

val textFiles: FileCollection = collection.filter { f: File ->
f.name.endsWith(".txt")

build.gradle

FileCollection textFiles = collection.filter { File f ->
f.name.endsWith(".txt")

$ gradle -q filterTextFiles
src/filel.txt
src/file2.txt
src/file5. txt

If collection changes at any time, either by adding or removing files from itself, then textFiles will
immediately reflect the change because it is also a live collection. Note that the closure you pass to
filter() takes a File as an argument and should return a boolean.

Understanding implicit conversion to file collections

Many objects in Gradle have properties which accept a set of input files. For example, the
JavaCompile task has a source property that defines the source files to compile. You can set the
value of this property using any of the types supported by the files() method, as mentioned in the
API docs. This means you can, for example, set the property to a File, String, collection,
FileCollection or even a closure or Provider.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileCollection.html#filter-org.gradle.api.specs.Spec-
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.compile.JavaCompile.html

This is a feature of specific tasks! That means implicit conversion will not happen for just any
task that has a FileCollection or FileTree property. If you want to know whether implicit
conversion happens in a particular situation, you will need to read the relevant documentation,
such as the corresponding task’s API docs. Alternatively, you can remove all doubt by explicitly
using ProjectLayout.files(java.lang.Object...) in your build.

Here are some examples of the different types of arguments that the source property can take:

build.gradle.kts

tasks.register<JavaCompile>("compile") {
// Use a File object to specify the source directory
source = fileTree(file("src/main/java"))

// Use a String path to specify the source directory
source = fileTree("src/main/java")

// Use a collection to specify multiple source directories
source = fileTree(1listOf("src/main/java", "../shared/java"))

// Use a FileCollection (or FileTree in this case) to specify the source
files

source = fileTree("src/main/java").matching {
include("org/gradle/api/**") }

// Using a closure to specify the source files.
setSource({
// Use the contents of each zip file in the src dir
file("src").listFiles().filter { it.name.endsWith(".zip") }.map {
zipTree(it) }
}
}

build.gradle
tasks.register('compile', JavaCompile) {

// Use a File object to specify the source directory
source = file('src/main/java')

// Use a String path to specify the source directory
source = 'src/main/java’

// Use a collection to specify multiple source directories
source = ['src/main/java’, '../shared/java']

// Use a FileCollection (or FileTree in this case) to specify the source

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object...-

files
source = fileTree(dir: 'src/main/java').matching { include
'org/gradle/api/**' }

// Using a closure to specify the source files.
source = {
// Use the contents of each zip file in the src dir
file('src").listFiles().findAll {it.name.endsWith('.zip"')}.collect {
zipTree(it) }
}
}

One other thing to note is that properties like source have corresponding methods in core Gradle
tasks. Those methods follow the convention of appending to collections of values rather than
replacing them. Again, this method accepts any of the types supported by the files() method, as
shown here:

build.gradle.kts

tasks.named<JavaCompile>("compile") {
// Add some source directories use String paths
source("src/main/java", "src/main/groovy")

// Add a source directory using a File object
source(file("../shared/java"))

// Add some source directories using a closure
setSource({ file("src/test/").listFiles() })

build.gradle

compile {
// Add some source directories use String paths
source 'src/main/java‘', 'src/main/groovy’

// Add a source directory using a File object
source file('../shared/java')

// Add some source directories using a closure
source { file('src/test/").listFiles() }

As this is a common convention, we recommend that you follow it in your own custom tasks.
Specifically, if you plan to add a method to configure a collection-based property, make sure the
method appends rather than replaces values.

Using FileTree

A file tree is a file collection that retains the directory structure of the files it contains and has the
type FileTree. This means all the paths in a file tree must have a shared parent directory. The
following diagram highlights the distinction between file trees and file collections in the typical
case of copying files:

Copy src/resources/**
src/resources Py / /) build/resources
to build/resources/
\—img logo.png
tlogo.png banner.jpg
banner.jpg data.txt
kdata.t)rct
Copy src/resources/**
src/resources Py / /) build/resources
to build/resources/
b\—img N—img
tlogo.png tlogo.png
banner.jpg banner.jpg
Kc:iata.txt \data.txt

Although FileTree extends FileCollection (an is-a relationship), their behaviors
differ. In other words, you can use a file tree wherever a file collection is required,

NOTE but remember that a file collection is a flat list/set of files, while a file tree is a file
and directory hierarchy. To convert a file tree to a flat collection, use the
FileTree.getFiles() property.

The simplest way to create a file tree is to pass a file or directory path to the
Project.fileTree(java.lang.Object) method. This will create a tree of all the files and directories in
that base directory (but not the base directory itself). The following example demonstrates how to
use this method and how to filter the files and directories using Ant-style patterns:

build.gradle.kts

// Create a file tree with a base directory

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html#getFiles--
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)

var tree: ConfigurableFileTree = fileTree("src/main")

// Add include and exclude patterns to the tree
tree.include("**/*.java")
tree.exclude("**/Abstract*")

// Create a tree using closure
tree = fileTree("src") {
include("**/*.java")

}

// Create a tree using a map

tree = fileTree("dir" to "src", "include" to "**/*.java")

tree = fileTree("dir" to "src", "includes" to 1istOf("**/*.java",
"EE/x xml"))

tree = fileTree("dir" to "src", "include" to "**/*.java", "exclude" to
"HE/xtagtr /RN

build.gradle

// Create a file tree with a base directory
ConfigurableFileTree tree = fileTree(dir: 'src/main')

// Add include and exclude patterns to the tree
tree.include '**/*.java’
tree.exclude '**/Abstract*'

// Create a tree using closure
tree = fileTree('src') {
include '**/*. java’

}

// Create a tree using a map

tree = fileTree(dir: 'src', include: '**/*.java')

tree = fileTree(dir: 'src', includes: ['**/*.java', "**/*.xml'])

tree = fileTree(dir: 'src', include: '**/*.java', exclude: '**/*test*/**")

You can see more examples of supported patterns in the API docs for PatternFilterable.

By default, fileTree() returns a FileTree instance that applies some default exclude patterns for
convenience — the same defaults as Ant. For the complete default exclude list, see the Ant manual.

If those default excludes prove problematic, you can work around the issue by changing the default
excludes in the settings script:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
http://ant.apache.org/manual/dirtasks.html#defaultexcludes

settings.gradle.kts
import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude("**/.qit")
DirectoryScanner.removeDefaultExclude("**/.git/**")

settings.gradle
import org.apache.tools.ant.DirectoryScanner

DirectoryScanner.removeDefaultExclude('**/.qit")
DirectoryScanner.removeDefaultExclude('**/.qit/**")

Gradle does not support changing default excludes during the execution

IMPORTANT
phase.

You can do many of the same things with file trees that you can with file collections:

* iterate over them (depth first)
« filter them (using FileTree.matching(org.gradle.api.Action) and Ant-style patterns)
* merge them

You can also traverse file trees using the FileTree.visit(org.gradle.api.Action) method. All of these
techniques are demonstrated in the following example:

build.gradle.kts

// Iterate over the contents of a tree

tree.forEach{ file: File ->
println(file)

}

// Filter a tree

val filtered: FileTree = tree.matching {
include("org/gradle/api/**")

by

// Add trees together
val sum: FileTree = tree + fileTree("src/test")

// Visit the elements of the tree

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html#matching-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html#visit-org.gradle.api.Action-

tree.visit {
println("${this.relativePath} => ${this.file}")
}

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->

println file
}

// Filter a tree

FileTree filtered = tree.matching {
include 'org/gradle/api/**'

}

// Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

// Visit the elements of the tree
tree.visit {element ->
println "Selement.relativePath => Selement.file"

}

Copying files

Copying files in Gradle primarily uses CopySpec, a mechanism that makes it easy to manage
resources such as source code, configuration files, and other assets in your project build process.

Understanding CopySpec

CopySpec is a copy specification that allows you to define what files to copy, where to copy them
from, and where to copy them. It provides a flexible and expressive way to specify complex file
copying operations, including filtering files based on patterns, renaming files, and
including/excluding files based on various criteria.

CopySpec instances are used in the Copy task to specify the files and directories to be copied.
CopySpec has two important attributes:

1. It is independent of tasks, allowing you to share copy specs within a build.

2. Itis hierarchical, providing fine-grained control within the overall copy specification.

1. Sharing copy specs

Consider a build with several tasks that copy a project’s static website resources or add them to an

archive. One task might copy the resources to a folder for a local HTTP server, and another might
package them into a distribution. You could manually specify the file locations and appropriate
inclusions each time they are needed, but human error is more likely to creep in, resulting in
inconsistencies between tasks.

One solution is the Project.copySpec(org.gradle.api.Action) method. This allows you to create a copy
spec outside a task, which can then be attached to an appropriate task using the
CopySpec.with(org.gradle.api.file.CopySpec...) method. The following example demonstrates how
this is done:

build.gradle.kts

val webAssetsSpec: CopySpec = copySpec {
from("src/main/webapp")
include("**/*.html", "**/*.png", "**/*.jpg")
rename("(.+)-staging(.+)", "$1$2")

}

tasks.register<Copy>("copyAssets") {
into(layout.buildDirectory.dir("inPlaceApp"))
with(webAssetsSpec)

+

tasks.register<Zip>("distApp") {
archiveFileName = "my-app-dist.zip"
destinationDirectory = layout.buildDirectory.dir("dists")

from(appClasses)
with(webAssetsSpec)
}
build.gradle

CopySpec webAssetsSpec = copySpec {
from 'src/main/webapp’
include "**/*. html', "**/*.png', "**/*.jpg’
rename '(.+)-staging(.+)', '$1$2'

}

tasks.register('copyAssets', Copy) {
into layout.buildDirectory.dir("inPlaceApp")
with webAssetsSpec

}

tasks.register('distApp', Zip) {
archiveFileName = 'my-app-dist.zip'
destinationDirectory = layout.buildDirectory.dir('dists")

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#with-org.gradle.api.file.CopySpec...-

from appClasses
with webAssetsSpec

Both the copyAssets and distApp tasks will process the static resources under src/main/webapp, as
specified by webAssetsSpec.

The configuration defined by webAssetsSpec will not apply to the app classes
included by the distApp task. That’s because from appClasses is its own child

specification independent of with webAssetsSpec.
NOTE
This can be confusing, so it’s probably best to treat with() as an extra from()

specification in the task. Hence, it doesn’t make sense to define a standalone copy
spec without at least one from() defined.

Suppose you encounter a scenario in which you want to apply the same copy configuration to
different sets of files. In that case, you can share the configuration block directly without using
copySpec(). Here’s an example that has two independent tasks that happen to want to process
image files only:

build.gradle.kts

val webAssetPatterns = Action<CopySpec> {
include("**/*.html", "**/*.png", "**/*.jpg")
}

tasks.register<Copy>("copyAppAssets") {
into(layout.buildDirectory.dir("inPlaceApp"))
from("src/main/webapp", webAssetPatterns)

}
tasks.register<Zip>("archiveDistAssets") {
archiveFileName = "distribution-assets.zip"

destinationDirectory = layout.buildDirectory.dir("dists")

from("distResources", webAssetPatterns)

build.gradle

def webAssetPatterns = {
include "**/*.html', "**/*.png', '**/*.jpg’

tasks.register('copyAppAssets', Copy) {
into layout.buildDirectory.dir("inPlaceApp")
from 'src/main/webapp', webAssetPatterns

}

tasks.register('archiveDistAssets', Zip) {
archiveFileName = 'distribution-assets.zip'
destinationDirectory = layout.buildDirectory.dir('dists")

from 'distResources', webAssetPatterns

In this case, we assign the copy configuration to its own variable and apply it to whatever from()
specification we want. This doesn’t just work for inclusions but also exclusions, file renaming, and
file content filtering.

2. Using child specifications

If you only use a single copy spec, the file filtering and renaming will apply to all files copied.
Sometimes, this is what you want, but not always. Consider the following example that copies files
into a directory structure that a Java Servlet container can use to deliver a website:

Copy HTML and image files here
build/explodedWar k//
Copy runtime dependencies (JARs) here
WEB-INF é##’##gfﬂ,,f-“”#‘ﬂﬂfffﬂﬂ
tnbf

mpil | her:
classes/€— Copy compiled app classes here

e—

Copy JavaScript files here

This is not a straightforward copy as the WEB-INF directory and its subdirectories don’t exist within
the project, so they must be created during the copy. In addition, we only want HTML and image
files going directly into the root folder — build/explodedWar — and only JavaScript files going into
the js directory. We need separate filter patterns for those two sets of files.

The solution is to use child specifications, which can be applied to both from() and into()
declarations. The following task definition does the necessary work:

build.gradle.kts

tasks.register<Copy>("nestedSpecs") {
into(layout.buildDirectory.dir("explodedWar"))
exclude("**/*staging*")
from("src/dist") {

_inc'l-ude(ll**/*.htm'l-", Il**/*.png", Il**/*.jpgll)
}

from(sourceSets.main.get().output) {
into("WEB-INF/classes")

}
into("WEB-INF/1ib") {
from(confiqgurations.runtimeClasspath)

}

build.gradle

tasks.register('nestedSpecs', Copy) {
into layout.buildDirectory.dir("explodedWar")
exclude '**/*staging*’
from('src/dist') {
include "**/*.html', '**/*.png', '**/*.jpg’
}

from(sourceSets.main.output) {
into "WEB-INF/classes'

}
into('WEB-INF/1ib") {
from confiqurations.runtimeClasspath

}

Notice how the src/dist configuration has a nested inclusion specification; it is the child copy spec.
You can, of course, add content filtering and renaming here as required. A child copy spec is still a

copy spec.

The above example also demonstrates how you can copy files into a subdirectory of the destination
either by using a child into() on a from() or a child from() on an into(). Both approaches are
acceptable, but you should create and follow a convention to ensure consistency across your build
files.

Don’t get your into() specifications mixed up. For a normal copy, one to the
filesystem rather than an archive, there should always be one "root" into() that
specifies the overall destination directory of the copy. Any other into() should have
a child spec attached, and its path will be relative to the root into().

NOTE

One final thing to be aware of is that a child copy spec inherits its destination path, include
patterns, exclude patterns, copy actions, name mappings, and filters from its parent. So, be careful
where you place your configuration.

Using the Sync task

The Sync task, which extends the Copy task, copies the source files into the destination directory and
then removes any files from the destination directory which it did not copy. It synchronizes the
contents of a directory with its source.

This can be useful for doing things such as installing your application, creating an exploded copy of
your archives, or maintaining a copy of the project’s dependencies.

Here is an example that maintains a copy of the project’s runtime dependencies in the build/1libs
directory:

build.gradle.kts

tasks.register<Sync>("1ibs") {
from(configurations["runtime"])
into(layout.buildDirectory.dir("1libs"))

build.gradle

tasks.register('libs", Sync) {
from configurations.runtime
into layout.buildDirectory.dir('libs")

You can also perform the same function in your own tasks with the
Project.sync(org.gradle.api.Action) method.

Using the Copy task

You can copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the
location of the file and where you want to put it.

This example mimics copying a generated report into a directory that will be packed into an
archive, such as a ZIP or TAR:

build.gradle.kts

tasks.register<Copy>("copyReport") {
from(layout.buildDirectory.file("reports/my-report.pdf"))
into(layout.buildDirectory.dir("toArchive"))

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:sync(org.gradle.api.Action)
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Copy.html

build.gradle

tasks.register('copyReport', Copy) {
from layout.buildDirectory.file("reports/my-report.pdf")
into layout.buildDirectory.dir("toArchive")

The file and directory paths are then wused to specify what file to copy using
Copy.from(java.lang.Object...) and which directory to copy it to using Copy.into(java.lang.Object).

Although hard-coded paths make for simple examples, they make the build brittle. Using a reliable,
single source of truth, such as a task or shared project property, is better. In the following modified
example, we use a report task defined elsewhere that has the report’s location stored in its
outputFile property:

build.gradle.kts
tasks.register<Copy>("copyReport2") {

from(myReportTask.flatMap { it.outputFile })
into(archiveReportsTask.flatMap { it.dirToArchive })

build.gradle
tasks.register('copyReport2', Copy) {

from myReportTask.outputFile
into archiveReportsTask.dirToArchive

We have also assumed that the reports will be archived by archiveReportsTask, which provides us
with the directory that will be archived and hence where we want to put the copies of the reports.

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments
to from():

build.gradle.kts

tasks.register<Copy>("copyReportsForArchiving") {

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

from(layout.buildDirectory.file("reports/my-report.pdf"),
layout.projectDirectory.file("src/docs/manual.pdf"))
into(layout.buildDirectory.dir("toArchive"))
}

build.gradle

tasks.register('copyReportsForArchiving', Copy) {

from layout.buildDirectory.file("reports/my-report.pdf"), layout
.projectDirectory.file("src/docs/manual.pdf")

into layout.buildDirectory.dir("toArchive")

}

Two files are now copied into the archive directory.

You can also use multiple from() statements to do the same thing, as shown in the first example of
the section File copying in depth.

But what if you want to copy all the PDFs in a directory without specifying each one? To do this,
attach inclusion and/or exclusion patterns to the copy specification. Here, we use a string pattern to
include PDFs only:

build.gradle.kts

tasks.register<Copy>("copyPdfReportsForArchiving") {
from(layout.buildDirectory.dir("reports"))
include("*.pdf")
into(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('copyPdfReportsForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
include "*.pdf"
into layout.buildDirectory.dir("toArchive")

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside
directly in the reports directory are copied:

With a * pdf filter
build/report # build/toArchive
\—metrics L—ﬂwreport.pdf

Ls;catterPIot.pdf

\—number.csv

\-—myreport.pdf

You can include files in subdirectories by using an Ant-style glob pattern (**/*), as done in this
updated example:

build.gradle.kts

tasks.register<Copy>("copyAl1PdfReportsForArchiving") {
from(layout.buildDirectory.dir("reports"))
include("**/*.pdf")
into(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('copyAl1PdfReportsForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
include "**/*. pdf"
into layout.buildDirectory.dir("toArchive")

This task has the following effect:

build/report build/toArchive

With a **/* pdf filter>

N—metrics metrics

— scatterPlot.pdf — scatterPlot.pdf
\—number.csv myreport.pdf
\-—myreport.pdf

Remember that a deep filter like this has the side effect of copying the directory structure below
reports and the files. If you want to copy the files without the directory structure, you must use an
explicit fileTree(dir) { includes }.files expression.

Copying directory hierarchies

You may need to copy files as well as the directory structure in which they reside. This is the default
behavior when you specify a directory as the from() argument, as demonstrated by the following
example that copies everything in the reports directory, including all its subdirectories, to the
destination:

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving") {
from(layout.buildDirectory.dir("reports"))
into(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('copyReportsDirForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
into layout.buildDirectory.dir("toArchive")

The key aspect that users need help with is controlling how much of the directory structure goes to
the destination. In the above example, do you get a toArchive/reports directory, or does everything
in reports go straight into toArchive? The answer is the latter. If a directory is part of the from()
path, then it won’t appear in the destination.

So how do you ensure that reports itself is copied across, but not any other directory in
${layout.buildDirectory}? The answer is to add it as an include pattern:

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving2") {
from(layout.buildDirectory) {
include("reports/**")

}
into(layout.buildDirectory.dir("toArchive"))
+
build.gradle

tasks.register('copyReportsDirForArchiving2', Copy) {

from(layout.buildDirectory) {
include "reports/**"

}
into layout.buildDirectory.dir("toArchive")

You’ll get the same behavior as before except with one extra directory level in the destination, i.e.,
toArchive/reports.

One thing to note is how the include() directive applies only to the from(), whereas the directive in
the previous section applied to the whole task. These different levels of granularity in the copy
specification allow you to handle most requirements that you will come across easily.

Understanding file copying

The basic process of copying files in Gradle is a simple one:

* Define a task of type Copy
 Specify which files (and potentially directories) to copy
 Specify a destination for the copied files
But this apparent simplicity hides a rich API that allows fine-grained control of which files are

copied, where they go, and what happens to them as they are copied — renaming of the files and
token substitution of file content are both possibilities, for example.

Let’s start with the last two items on the list, which involve CopySpec. The CopySpec interface, which
the Copy task implements, offers:

* A CopySpec.from(java.lang.Object...) method to define what to copy

* An CopySpec.into(java.lang.Object) method to define the destination
CopySpec has several additional methods that allow you to control the copying process, but these
two are the only required ones. into() is straightforward, requiring a directory path as its

argument in any form supported by the Project.file(java.lang.Object) method. The from()
configuration is far more flexible.

Not only does from() accept multiple arguments, it also allows several different types of argument.
For example, some of the most common types are:

* A String — treated as a file path or, if it starts with "file://", a file URI

* AFile —used as a file path

A FileCollection or FileTree — all files in the collection are included in the copy

A task — the files or directories that form a task’s defined outputs are included

In fact, from() accepts all the same arguments as Project.files(java.lang.Object...) so see that method
for a more detailed list of acceptable types.

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object...-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#into-java.lang.Object-
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Something else to consider is what type of thing a file path refers to:

* A file — the file is copied as is

* A directory — this is effectively treated as a file tree: everything in it, including subdirectories,
is copied. However, the directory itself is not included in the copy.

* A non-existent file — the path is ignored

Here is an example that uses multiple from() specifications, each with a different argument type.
You will probably also notice that into() is configured lazily using a closure (in Groovy) or a
Provider (in Kotlin) — a technique that also works with from():

build.gradle.kts

tasks.register<Copy>("anotherCopyTask") {
// Copy everything under src/main/webapp
from("src/main/webapp")
// Copy a single file
from("src/staging/index.html")
// Copy the output of a task
from(copyTask)
// Copy the output of a task using Task outputs explicitly.
from(tasks["copyTaskWithPatterns"].outputs)
// Copy the contents of a Zip file
from(zipTree("src/main/assets.zip"))
// Determine the destination directory later
into({ getDestDir() })

build.gradle

tasks.register('anotherCopyTask', Copy) {
// Copy everything under src/main/webapp
from 'src/main/webapp’
// Copy a single file
from 'src/staging/index.html’
// Copy the output of a task
from copyTask
// Copy the output of a task using Task outputs explicitly.
from copyTaskWithPatterns.outputs
// Copy the contents of a Zip file
from zipTree('src/main/assets.zip")
// Determine the destination directory later
into { getDestDir() }

Note that the lazy configuration of into() is different from a child specification, even though the
syntax is similar. Keep an eye on the number of arguments to distinguish between them.

Copying files in your own tasks

Using the Project.copy method at execution time, as described here, is not
compatible with the configuration cache. A possible solution is to implement
the task as a proper class and use FileSystemOperations.copy method instead,
as described in the configuration cache chapter.

WARNING

Occasionally, you want to copy files or directories as part of a task. For example, a custom archiving
task based on an unsupported archive format might want to copy files to a temporary directory
before they are archived. You still want to take advantage of Gradle’s copy API without introducing
an extra Copy task.

The solution is to use the Project.copy(org.gradle.api.Action) method. Configuring it with a copy
spec works like the Copy task. Here’s a trivial example:

build.gradle.kts

tasks.register("copyMethod") {
dolast {
copy {
from("src/main/webapp”)
into(layout.buildDirectory.dir("explodedWar"))
include("**/*.html")
include("**/*.jsp")

build.gradle

tasks.register('copyMethod') {
dolast {
copy {
from 'src/main/webapp’
into layout.buildDirectory.dir('explodedWar")
include '**/*. html’
include "**/*.jsp'

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileSystemOperations.html#copy-org.gradle.api.Action-
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

The above example demonstrates the basic syntax and also highlights two major limitations of
using the copy() method:

1. The copy() method is not incremental. The example’s copyMethod task will always execute
because it has no information about what files make up the task’s inputs. You have to define the
task inputs and outputs manually.

2. Using a task as a copy source, i.e., as an argument to from(), won’t create an automatic task
dependency between your task and that copy source. As such, if you use the copy() method as
part of a task action, you must explicitly declare all inputs and outputs to get the correct
behavior.

The following example shows how to work around these limitations using the dynamic API for task
inputs and outputs:

build.gradle.kts

tasks.register("copyMethodWithExplicitDependencies") {
// up-to-date check for inputs, plus add copyTask as dependency
inputs.files(copyTask)
.withPropertyName("inputs")
.withPathSensitivity(PathSensitivity.RELATIVE)
outputs.dir("some-dir") // up-to-date check for outputs
.withPropertyName("outputDir")

dolast {
copy {
// Copy the output of copyTask
from(copyTask)
into("some-dir")
}
}
}
build.gradle

tasks.register('copyMethodWithExplicitDependencies') {
// up-to-date check for inputs, plus add copyTask as dependency
inputs.files(copyTask)

.withPropertyName("inputs")
.withPathSensitivity(PathSensitivity.RELATIVE)
outputs.dir('some-dir') // up-to-date check for outputs
.withPropertyName("outputDir")

dolast {
copy {
// Copy the output of copyTask
from copyTask
into 'some-dir'

These limitations make it preferable to use the Copy task wherever possible because of its built-in
support for incremental building and task dependency inference. That is why the copy() method is
intended for use by custom tasks that need to copy files as part of their function. Custom tasks that
use the copy() method should declare the necessary inputs and outputs relevant to the copy action.

Renaming files

Renaming files in Gradle can be done using the CopySpec API, which provides methods for renaming
files as they are copied.

Using Copy.rename()

If the files used and generated by your builds sometimes don’t have names that suit, you can
rename those files as you copy them. Gradle allows you to do this as part of a copy specification
using the rename() configuration.

The following example removes the "-staging" marker from the names of any files that have it:

build.gradle.kts
tasks.register<Copy>("copyFromStaging") {
from("src/main/webapp")

into(layout.buildDirectory.dir("explodedWar"))

rename("(.+)-staging(.+)", "$1$2")

build.gradle
tasks.register('copyFromStaging', Copy) {
from "src/main/webapp"

into layout.buildDirectory.dir("'explodedWar")

rename '(.+)-staging(.+)', '$1$2'

As in the above example, you can use regular expressions for this or closures that use more
complex logic to determine the target filename. For example, the following task truncates

filenames:

build.gradle.kts

tasks.register<Copy>("copyWithTruncate") {
from(layout.buildDirectory.dir("reports"))
rename { filename: String ->
if (filename.length > 10) {
filename.slice(0..7) +

mn
~

+ filename.length

}
else filename
}
into(layout.buildDirectory.dir("toArchive"))
}
build.gradle

tasks.register('copyWithTruncate', Copy) {
from layout.buildDirectory.dir("reports")
rename { String filename ->
if (filename.size() > 10) {
return filename[0..7] +

mn
~

+ filename.size()

}

else return filename

}
into layout.buildDirectory.dir("toArchive")

As with filtering, you can also rename a subset of files by configuring it as part of a child
specification on a from().

Using Copyspec.rename{}

The example of how to rename files on copy gives you most of the information you need to perform
this operation. It demonstrates the two options for renaming:

1. Using a regular expression

2. Using a closure
Regular expressions are a flexible approach to renaming, particularly as Gradle supports regex
groups that allow you to remove and replace parts of the source filename. The following example

shows how you can remove the string "-staging" from any filename that contains it using a simple
regular expression:

build.gradle.kts

tasks.register<Copy>("rename") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
// Use a regular expression to map the file name
rename("(.+)-staging(.+)", "$1$2")
rename("(.+)-staging(.+)".toRegex().pattern, "$1$2")
// Use a closure to convert all file names to upper case
rename { fileName: String ->

fileName.toUpperCase()

}

build.gradle

tasks.register('rename', Copy) {
from 'src/main/webapp’
into layout.buildDirectory.dir('explodedWar")
// Use a regular expression to map the file name
rename '(.+)-staging(.+)', '$1$2'
rename(/(.+)-staging(.+)/, '$1$2")
// Use a closure to convert all file names to upper case
rename { String fileName ->
fileName.toUpperCase()

}

You can use any regular expression supported by the Java Pattern class and the substitution string.
The second argument of rename() works on the same principles as the Matcher.appendReplacement()
method.

Regular expressions in Groovy build scripts

There are two common issues people come across when using regular expressions in this context:

1. If you use a slashy string (those delimited by '/) for the first argument, you must include the
parentheses for rename() as shown in the above example.

2. It’s safest to use single quotes for the second argument, otherwise you need to escape the '$' in
group substitutions, i.e. "\$1\$2".

The first is a minor inconvenience, but slashy strings have the advantage that you don’t have to
escape backslash ('\'") characters in the regular expression. The second issue stems from Groovy’s
support for embedded expressions using ${ } syntax in double-quoted and slashy strings.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#appendReplacement(java.lang.StringBuffer,%20java.lang.String)

The closure syntax for rename() is straightforward and can be used for any requirements that
simple regular expressions can’t handle. You’re given a file’s name, and you return a new name for
that file or null if you don’t want to change the name. Be aware that the closure will be executed for
every file copied, so try to avoid expensive operations where possible.

Filtering files

Filtering files in Gradle involves selectively including or excluding files based on certain criteria.

Using CopySpec.include() and CopySpec.exclude()

You can apply filtering in any copy specification through the CopySpec.include(java.lang.String...)
and CopySpec.exclude(java.lang.String...) methods.

These methods are typically used with Ant-style include or exclude patterns, as described in
PatternFilterable.

You can also perform more complex logic by using a closure that takes a FileTreeElement and
returns true if the file should be included or false otherwise. The following example demonstrates
both forms, ensuring that only .html and .jsp files are copied, except for those .html files with the
word "DRAFT" in their content:

build.gradle.kts

tasks.register<Copy>("copyTaskWithPatterns") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
include("**/* . html")
include("**/*.jsp")
exclude { details: FileTreeElement ->

details.file.name.endsWith(".html") &&
details.file.readText().contains("DRAFT")

build.gradle

tasks.register('copyTaskWithPatterns', Copy) {
from 'src/main/webapp’
into layout.buildDirectory.dir("'explodedWar")
include '**/*.html'
include "**/*.jsp'
exclude { FileTreeElement details ->
details.file.name.endsWith('.html") &&
details.file.text.contains('DRAFT")

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#include-java.lang.String...-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#exclude-java.lang.String...-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTreeElement.html

A question you may ask yourself at this point is what happens when inclusion and exclusion
patterns overlap? Which pattern wins? Here are the basic rules:

* If there are no explicit inclusions or exclusions, everything is included

« If at least one inclusion is specified, only files and directories matching the patterns are
included

* Any exclusion pattern overrides any inclusions, so if a file or directory matches at least one
exclusion pattern, it won’t be included, regardless of the inclusion patterns

Bear these rules in mind when creating combined inclusion and exclusion specifications so that
you end up with the exact behavior you want.

Note that the inclusions and exclusions in the above example will apply to all from() configurations.
If you want to apply filtering to a subset of the copied files, youw’ll need to use child specifications.

Filtering file content

Filtering file content in Gradle involves replacing placeholders or tokens in files with dynamic
values.

Using CopySpec.filter()

Transforming the content of files while they are being copied involves basic templating that uses
token substitution, removal of lines of text, or even more complex filtering using a full-blown
template engine.

The following example demonstrates several forms of filtering, including token substitution using
the CopySpec.expand(java.util.Map) method and another using CopySpec.filter(java.lang.Class) with
an Ant filter:

build.gradle.kts

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens
tasks.register<Copy>("filter") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
// Substitute property tokens in files
expand("copyright" to "2009", "version" to "2.3.1")
// Use some of the filters provided by Ant
filter(FixCrLfFilter::class)
filter(ReplaceTokens::class, "tokens" to mapOf("copyright" to "2009",
"version" to "2.3.1"))
// Use a closure to filter each line

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#expand-java.util.Map-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#filter-java.lang.Class-
https://ant.apache.org/manual/Types/filterchain.html

filter { line: String ->
"[$1line]"
}
// Use a closure to remove lines
filter { line: String ->
if (line.startsWith('-")) null else line

}
filteringCharset = "UTF-8"
}
build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
import org.apache.tools.ant.filters.ReplaceTokens

tasks.register('filter', Copy) {

from 'src/main/webapp’
into layout.buildDirectory.dir("explodedWar")
// Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
// Use some of the filters provided by Ant
filter(FixCrLfFilter)
filter (ReplaceTokens, tokens: [copyright: '2009', version: '2.3.1'])
// Use a closure to filter each line
filter { String line ->

"[$1line]"
}
// Use a closure to remove lines
filter { String line ->

line.startsWith('-') ? null : line

}
filteringCharset = "UTF-8'

The filter() method has two variants, which behave differently:

» one takes a FilterReader and is designed to work with Ant filters, such as ReplaceTokens

* one takes a closure or Transformer that defines the transformation for each line of the source
file

Note that both variants assume the source files are text-based. When you use the ReplaceTokens
class with filter(), you create a template engine that replaces tokens of the form @tokenName@ (the
Ant-style token) with values you define.

https://docs.oracle.com/javase/8/docs/api/java/io/FilterReader.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Transformer.html

Using CopySpec.expand()

The expand() method treats the source files as Groovy templates, which evaluates and expands
expressions of the form ${expression}.

You can pass in property names and values that are then expanded in the source files. expand()
allows for more than basic token substitution as the embedded expressions are full-blown Groovy
expressions.

Specifying the character set when reading and writing the file is good practice.
Otherwise, the transformations won’t work properly for non-ASCII text. You

NOTE configure the character set with the CopySpec.setFilteringCharset(String) property.
If it’s not specified, the JVM default character set is used, which will likely differ
from the one you want.

Setting file permissions

Setting file permissions in Gradle involves specifying the permissions for files or directories created
or modified during the build process.

Using CopySpec.filePermissions{}

For any CopySpec involved in copying files, may it be the Copy task itself, or any child specifications,
you can explicitly set the permissions the destination files will have via the
CopySpec.filePermissions {} configurations block.

Using CopySpec.dirPermissions{}

You can do the same for directories too, independently of files, via the CopySpec.dirPermissions {}
configurations block.

Not setting permissions explicitly will preserve the permissions of the original files

NOTE . .
or directories.

build.gradle.kts

tasks.register<Copy>("permissions") {
from("src/main/webapp")
into(layout.buildDirectory.dir("explodedWar"))
filePermissions {
user {
read = true
execute = true

}

other.execute = false

}
dirPermissions {
unix("r-xr-x---")

https://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html#setFilteringCharset-java.lang.String-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopyProcessingSpec.html#filePermissions-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopyProcessingSpec.html#dirPermissions-org.gradle.api.Action-

build.gradle

tasks.register('permissions', Copy) {
from 'src/main/webapp’
into layout.buildDirectory.dir("'explodedWar")
filePermissions {
user {
read = true
execute = true

}

other.execute = false

}
dirPermissions {
unix('r-xr-x---")

For a detailed description of file permissions, see FilePermissions and UserClassFilePermissions.
For details on the convenience method used in the samples, see
ConfigurableFilePermissions.unix(String).

Using empty configuration blocks for file or directory permissions still sets them explicitly, just to
fixed default values. Everything inside one of these configuration blocks is relative to the default
values. Default permissions differ for files and directories:

» file: read & write for owner, read for group, read for other (0644, rw-r—r--)

* directory: read, write & execute for owner, read & execute for group, read & execute for other
(0755, rwxr-xr-x)

Moving files and directories

Moving files and directories in Gradle is a straightforward process that can be accomplished using
several APIs. When implementing file-moving logic in your build scripts, it’s important to consider
file paths, conflicts, and task dependencies.

Using File.renameTo()

File.renameTo() is a method in Java (and by extension, in Gradle’s Groovy DSL) used to rename or
move a file or directory. When you call renameTo() on a File object, you provide another File object
representing the new name or location. If the operation is successful, renameTo() returns true;
otherwise, it returns false.

It’s important to note that renameTo() has some limitations and platform-specific behavior.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FilePermissions.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/UserClassFilePermissions.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/ConfigurableFilePermissions.html#unix-java.lang.String-

In this example, the moveFile task uses the Copy task type to specify the source and destination
directories. Inside the dolast closure, it uses File.renameTo() to move the file from the source
directory to the destination directory:

task moveFile {
dolast {
def sourceFile = file('source.txt")
def destFile = file('destination/new_name.txt")

if (sourceFile.renameTo(destFile)) {
println "File moved successfully."

}

Using the Copy task

In this example, the moveFile task copies the file source.txt to the destination directory and
renames it to new_name. txt in the process. This achieves a similar effect to moving a file.

task moveFile(type: Copy) {
from 'source.txt'
into 'destination'
rename { fileName ->
"new_name.txt'

}

Deleting files and directories

Deleting files and directories in Gradle involves removing them from the file system.

Using the Delete task

You can easily delete files and directories using the Delete task. You must specify which files and
directories to delete in a way supported by the Project.files(java.lang.Object...) method.

For example, the following task deletes the entire contents of a build’s output directory:

build.gradle.kts

tasks.register<Delete>("myClean") {
delete(buildDir)
}

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

build.gradle

tasks.register('myClean', Delete) {
delete buildDir

}

If you want more control over which files are deleted, you can’t use inclusions and exclusions the
same way you use them for copying files. Instead, you use the built-in filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from
a source directory:

build.gradle.kts

tasks.register<Delete>("cleanTempFiles") {
delete(fileTree("src").matching {
include("**/*.tmp")
3]

build.gradle

tasks.register('cleanTempFiles', Delete) {
delete fileTree("src").matching {
include "**/*_ tmp"

}

Using Project.delete()

The Project.delete(org.gradle.api.Action) method can delete files and directories.
This method takes one or more arguments representing the files or directories to be deleted.

For example, the following task deletes the entire contents of a build’s output directory:

build.gradle.kts

tasks.register<Delete>("myClean") {
delete(buildDir)
}

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:delete(org.gradle.api.Action)

build.gradle

tasks.register('myClean', Delete) {
delete buildDir
+

If you want more control over which files are deleted, you can’t use inclusions and exclusions the
same way you use them for copying files. Instead, you use the built-in filtering mechanisms of
FileCollection and FileTree. The following example does just that to clear out temporary files from
a source directory:

build.gradle.kts

tasks.register<Delete>("cleanTempFiles") {
delete(fileTree("src").matching {
include("**/*.tmp")
3]

build.gradle

tasks.register('cleanTempFiles', Delete) {
delete fileTree("src").matching {
include "**/*_ tmp"

}

Creating archives

From the perspective of Gradle, packing files into an archive is effectively a copy in which the
destination is the archive file rather than a directory on the file system. Creating archives looks a
lot like copying, with all the same features.

Using the Zip, Tar, or Jar task

The simplest case involves archiving the entire contents of a directory, which this example
demonstrates by creating a ZIP of the toArchive directory:

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir("dist")

from(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('packageDistribution', Zip) {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir('dist")

from layout.buildDirectory.dir("toArchive")

Notice how we specify the destination and name of the archive instead of an into(): both are
required. You often won’t see them explicitly set because most projects apply the Base Plugin. It
provides some conventional values for those properties.

The following example demonstrates this; you can learn more about the conventions in the archive
naming section.

Each type of archive has its own task type, the most common ones being Zip, Tar and Jar. They all
share most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified archive subdirectories. For
example, let’s say you want to package all PDFs into a docs directory in the archive’s root. This docs
directory doesn’t exist in the source location, so you must create it as part of the archive. You do
this by adding an into() declaration for just the PDFs:

build.gradle.kts

plugins {
base

}

version = "1.0.0"

tasks.register<Zip>("packageDistribution") {
from(layout.buildDirectory.dir("toArchive")) {

base_plugin.pdf#base_plugin
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Jar.html

exclude("**/*.pdf")
}

from(layout.buildDirectory.dir("toArchive")) {
include("**/*.pdf")
into("docs")

build.gradle

plugins {
id 'base'

}

version = "1.0.0"

tasks.register('packageDistribution', Zip) {
from(layout.buildDirectory.dir("toArchive")) {
exclude "**/* .pdf"
}

from(layout.buildDirectory.dir("toArchive")) {
include "**/*. pdf"
into "docs"

As you can see, you can have multiple from() declarations in a copy specification, each with its own
configuration. See Using child copy specifications for more information on this feature.

Understanding archive creation

Archives are essentially self-contained file systems, and Gradle treats them as such. This is why
working with archives is similar to working with files and directories.

Out of the box, Gradle supports the creation of ZIP and TAR archives and, by extension, Java’s JAR,
WAR, and EAR formats—Java’s archive formats are all ZIPs. Each of these formats has a
corresponding task type to create them: Zip, Tar, Jar, War, and Ear. These all work the same way
and are based on copy specifications, just like the Copy task.

Creating an archive file is essentially a file copy in which the destination is implicit, i.e., the archive
file itself. Here is a basic example that specifies the path and name of the target archive file:

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/8.10/dsl/org.gradle.plugins.ear.Ear.html

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir("dist")

from(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('packageDistribution', Zip) {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir('dist")

from layout.buildDirectory.dir("toArchive")

The full power of copy specifications is available to you when creating archives, which means you
can do content filtering, file renaming, or anything else covered in the previous section. A common
requirement is copying files into subdirectories of the archive that don’t exist in the source folders,
something that can be achieved with into() child specifications.

Gradle allows you to create as many archive tasks as you want, but it’s worth considering that
many convention-based plugins provide their own. For example, the Java plugin adds a jar task for
packaging a project’s compiled classes and resources in a JAR. Many of these plugins provide
sensible conventions for the names of archives and the copy specifications used. We recommend
you use these tasks wherever you can rather than overriding them with your own.

Naming archives

Gradle has several conventions around the naming of archives and where they are created based
on the plugins your project uses. The main convention is provided by the Base Plugin, which
defaults to creating archives in the layout.buildDirectory.dir("distributions") directory and
typically uses archive names of the form [projectName]-[version].[type].

The following example comes from a project named archive-naming, hence the myZip task creates an
archive named archive-naming-1.0.zip:

build.gradle.kts

plugins {
base

base_plugin.pdf#base_plugin

}
version = "1.0"

tasks.register<Zip>("myZip") {
from("somedir")
val projectDir = layout.projectDirectory.asFile
dolLast {
println(archiveFileName.get())
println(destinationDirectory.get().asFile.relativeTo(projectDir))
println(archiveFile.qget().asFile.relativeTo(projectDir))

build.gradle

plugins {
id 'base'

}
version = 1.0

tasks.register('myZip', Zip) {
from 'somedir'
File projectDir = layout.projectDirectory.asFile
dolLast {
println archiveFileName.get()
println projectDir.relativePath(destinationDirectory.get().asFile)
println projectDir.relativePath(archiveFile.get().asFile)

$ gradle -q myZip

archive-naming-1.0.zip

build/distributions
build/distributions/archive-naming-1.0.zip

Note that the archive name does not derive from the task’s name that creates it.

If you want to change the name and location of a generated archive file, you can provide values for
the corresponding task’s archiveFileName and destinationDirectory properties. These override any
conventions that would otherwise apply.

Alternatively, you can make use of the default archive name pattern provided by
AbstractArchiveTask.getArchiveFileName(): [archiveBaseName]-[archiveAppendix]-[archiveVersion]-

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:archiveFileName

[archiveClassifier].[archiveExtension]. You can set each of these properties on the task separately.
Note that the Base Plugin uses the convention of the project name for archiveBaseName, project

version for archiveVersion, and the archive type for archiveExtension. It does not provide values for
the other properties.

This example — from the same project as the one above — configures just the archiveBaseName
property, overriding the default value of the project name:

build.gradle.kts

tasks.register<Zip>("myCustomZip") {
archiveBaseName = "customName"
from("somedir")

dolast {
println(archiveFileName.get())
}
}
build.gradle

tasks.register('myCustomZip', Zip) {
archiveBaseName = 'customName'
from 'somedir'

dolast {
println archiveFileName.get()

}

$ gradle -q myCustomZip
customName-1.0.zip

You can also override the default archiveBaseName value for all the archive tasks in your build by
using the project property archivesBaseName, as demonstrated by the following example:

build.gradle.kts

plugins {
base

}

version = "1.0"

base {
archivesName = "gradle"
distsDirectory = layout.buildDirectory.dir("custom-dist")
libsDirectory = layout.buildDirectory.dir("custom-1ibs")
by

val myZip by tasks.registering(Zip::class) {
from("somedir")

}

val myOtherZip by tasks.registering(Zip::class) {
archiveAppendix = "wrapper"
archiveClassifier = "src"
from("somedir")

}

tasks.register("echoNames") {

val projectNameString = project.name

val archiveFileName = myZip.flatMap { it.archiveFileName }

val myOtherArchiveFileName = myOtherZip.flatMap { it.archiveFileName }

dolast {
println("Project name: $projectNameString")
println(archiveFileName.get())
println(myOtherArchiveFileName.get())

build.gradle

plugins {
id 'base'

}

version = 1.0
base {
archivesName = "gradle"
distsDirectory = layout.buildDirectory.dir('custom-dist")
libsDirectory = layout.buildDirectory.dir('custom-1ibs")
}

def myZip = tasks.register('myZip', Zip) {
from 'somedir'

}

def myOtherZip = tasks.register('myOtherZip', Zip) {
archiveAppendix = 'wrapper'
archiveClassifier = 'src'

from 'somedir'

tasks.register('echoNames') {
def projectNameString = project.name
def archiveFileName = myZip.flatMap { it.archiveFileName }
def myOtherArchiveFileName = myOtherZip.flatMap { it.archiveFileName }
dolast {
println "Project name: $projectNameString"
println archiveFileName.get()
println myOtherArchiveFileName.get()

$ gradle -q echoNames

Project name: archives-changed-base-name
gradle-1.0.zip
gradle-wrapper-1.0-src.zip

You can find all the possible archive task properties in the API documentation for
AbstractArchiveTask. Still, we have also summarized the main ones here:

archiveFileName — Property<String>, default: archiveBaseName-archiveAppendix-archiveVersion-
archiveClassifier.archiveExtension

The complete file name of the generated archive. If any of the properties in the default value are
empty, their '-' separator is dropped.

archiveFile — Provider<RegularFile>, read-only, default: destinationDirectory/archiveFileName

The absolute file path of the generated archive.

destinationDirectory — DirectoryProperty, default: depends on archive type

The target directory in which to put the generated archive. By default, JARs and WARs go into
layout.buildDirectory.dir("1ibs"). ZIPs and TARs go into
layout.buildDirectory.dir("distributions").

archiveBaseName — Property<String>, default: project.name

The base name portion of the archive file name, typically a project name or some other
descriptive name for what it contains.

archiveAppendix — Property<String>, default: null

The appendix portion of the archive file name that comes immediately after the base name. It is
typically used to distinguish between different forms of content, such as code and docs, or a
minimal distribution versus a full or complete one.

archiveVersion — Property<String>, default: project.version

The version portion of the archive file name, typically in the form of a normal project or product

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html

version.

archiveClassifier — Property<String>, default: null

The classifier portion of the archive file name. Often used to distinguish between archives that
target different platforms.

archiveExtension — Property<String>, default: depends on archive type and compression type

The filename extension for the archive. By default, this is set based on the archive task type and
the compression type (if you're creating a TAR). Will be one of: zip, jar, war, tar, tgz or tbz2. You
can of course set this to a custom extension if you wish.

Sharing content between multiple archives

As described in the CopySpec section above, you can use the Project.copySpec(org.gradle.api.Action)
method to share content between archives.

Using archives as file trees

An archive is a directory and file hierarchy packed into a single file. In other words, it’s a special
case of a file tree, and that’s exactly how Gradle treats archives.

Instead of using the fileTree() method, which only works on normal file systems, you use the
Project.zipTree(java.lang.Object) and Project.tarTree(java.lang.Object) methods to wrap archive
files of the corresponding type (note that JAR, WAR and EAR files are ZIPs). Both methods return
FileTree instances that you can then use in the same way as normal file trees. For example, you can
extract some or all of the files of an archive by copying its contents to some directory on the file
system. Or you can merge one archive into another.

Here are some simple examples of creating archive-based file trees:

build.gradle.kts

// Create a ZIP file tree using path
val zip: FileTree = zipTree("someFile.zip")

// Create a TAR file tree using path
val tar: FileTree = tarTree("someFile.tar")

// tar tree attempts to guess the compression based on the file extension

// however if you must specify the compression explicitly you can:
val someTar: FileTree = tarTree(resources.gzip("someTar.ext"))

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree('someFile.zip')

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

// Create a TAR file tree using path
FileTree tar = tarTree('someFile.tar')

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip('someTar.ext"))

You can see a practical example of extracting an archive file in the unpacking archives section
below.

Using AbstractArchiveTask for reproducible builds

Sometimes it’s desirable to recreate archives exactly the same, byte for byte, on different machines.
You want to be sure that building an artifact from source code produces the same result no matter
when and where it is built. This is necessary for projects like reproducible-builds.org.

Reproducing the same byte-for-byte archive poses some challenges since the order of the files in an
archive is influenced by the underlying file system. Each time a ZIP, TAR, JAR, WAR or EAR is built
from source, the order of the files inside the archive may change. Files that only have a different
timestamp also causes differences in archives from build to build.

All AbstractArchiveTask (e.g. Jar, Zip) tasks shipped with Gradle include support for producing
reproducible archives.

For example, to make a Zip task reproducible you need to set Zip.isReproducibleFileOrder() to true
and Zip.isPreserveFileTimestamps() to false. In order to make all archive tasks in your build
reproducible, consider adding the following configuration to your build file:

build.gradle.kts
tasks.withType<AbstractArchiveTask>().configureEach {

isPreserveFileTimestamps = false
isReproducibleFileOrder = true

build.gradle

tasks.withType(AbstractArchiveTask).configureEach {
preserveFileTimestamps = false
reproducibleFileOrder = true

Often you will want to publish an archive, so that it is usable from another project. This process is

https://reproducible-builds.org/
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:reproducibleFileOrder
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:preserveFileTimestamps

described in Cross-Project publications.

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files
from that file system onto the local file system — or even into another archive. Gradle enables this
by providing some wrapper functions that make archives available as hierarchical collections of
files (file trees).

Using Project.zipTree and Project.tarTree

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object), which produce a FileTree from a corresponding archive file.

That file tree can then be used in a from() specification, like so:

build.gradle.kts

tasks.register<Copy>("unpackFiles") {
from(zipTree("src/resources/thirdPartyResources.zip"))
into(layout.buildDirectory.dir("resources"))

build.gradle

tasks.register('unpackFiles', Copy) {
from zipTree("src/resources/thirdPartyResources.zip")
into layout.buildDirectory.dir("resources")

As with a normal copy, you can control which files are unpacked via filters and even rename files
as they are unpacked.

More advanced processing can be handled by the eachFile() method. For example, you might need
to extract different subtrees of the archive into different paths within the destination directory. The
following sample uses the method to extract the files within the archive’s 1ibs directory into the
root destination directory, rather than into a 1ibs subdirectory:

build.gradle.kts

tasks.register<Copy>("unpackLibsDirectory") {
from(zipTree("src/resources/thirdPartyResources.zip")) {
include("1ibs/**") @

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.AbstractCopyTask.html#eachFile(org.gradle.api.Action)

eachFile {
relativePath = RelativePath(true,
*relativePath.segments.drop(1).toTypedArray()) @

}
includeEmptyDirs = false ®

}
into(layout.buildDirectory.dir("resources"))
+
build.gradle

tasks.register('unpackLibsDirectory', Copy) {
from(zipTree("src/resources/thirdPartyResources.zip")) {
include "libs/**" @
eachFile { fcd ->
fed.relativePath = new RelativePath(true, fcd.relativePath
.segments.drop(1)) @

}
includeEmptyDirs = false ®

}

into layout.buildDirectory.dir("resources")

@ Extracts only the subset of files that reside in the 1ibs directory

@ Remaps the path of the extracting files into the destination directory by dropping the 1ibs
segment from the file path

® Ignores the empty directories resulting from the remapping, see Caution note below

CAUTION You can not change the destination path of empty directories with this
technique. You can learn more in this issue.

If you’re a Java developer wondering why there is no jarTree() method, that’s because zipTree()

works perfectly well for JARs, WARs, and EARs.

Creating "uber" or "fat" JARs

In Java, applications and their dependencies were typically packaged as separate JARs within a
single distribution archive. That still happens, but another approach that is now common is placing
the classes and resources of the dependencies directly into the application JAR, creating what is
known as an Uber or fat JAR.

Creating "uber" or "fat" JARs in Gradle involves packaging all dependencies into a single JAR file,
making it easier to distribute and run the application.

https://github.com/gradle/gradle/issues/2940

Using the Shadow Plugin

Gradle does not have full built-in support for creating uber JARs, but you can use third-party
plugins like the Shadow plugin (com.github.johnrengelman.shadow) to achieve this. This plugin
packages your project classes and dependencies into a single JAR file.

Using Project.zipTree() and the Jar task

To copy the contents of other JAR files into the application JAR, wuse the
Project.zipTree(java.lang.Object) method and the Jar task. This is demonstrated by the uberJar task
in the following example:

build.gradle.kts

plugins {
java

}

version = "1.0.0"

repositories {
mavenCentral()

}

dependencies {
implementation("commons-io:commons-io:2.6")

}

tasks.register<Jar>("uberJar") {
archiveClassifier = "uber"

from(sourceSets.main.get().output)

dependsOn(configurations.runtimeClasspath)
from({
configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }

1))
}

build.gradle
plugins {

id 'java'

}

version = '1.0.0'

https://github.com/johnrengelman/shadow
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Jar.html

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-io:2.6'

}

tasks.register('uberJar', Jar) {
archiveClassifier = 'uber'

from sourceSets.main.output

dependsOn configurations.runtimeClasspath
from {
configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
}
}

In this case, we’re taking the runtime dependencies of the project —
configurations.runtimeClasspath.files — and wrapping each of the JAR files with the zipTree()
method. The result is a collection of ZIP file trees, the contents of which are copied into the uber JAR
alongside the application classes.

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle
automatically manages this aspect of tasks when they explicitly define file and directory outputs.
All core Gradle tasks ensure that any output directories they need are created, if necessary, using
this mechanism.

Using File.mkdirs and Files.createDirectories

In cases where you need to create a directory manually, you can use the standard
Files.createDirectories or File.mkdirs methods from within your build scripts or custom task
implementations.

Here is a simple example that creates a single images directory in the project folder:

build.gradle.kts

tasks.register("ensureDirectory") {

// Store target directory into a variable to avoid project reference in
the confiquration cache

val directory = file("images")

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#createDirectories-java.nio.file.Path-java.nio.file.attribute.FileAttribute...-
https://docs.oracle.com/javase/8/docs/api/java/io/File.html#mkdirs--

dolLast {
Files.createDirectories(directory.toPath())

}

build.gradle

tasks.register('ensureDirectory') {

// Store target directory into a variable to avoid project reference in
the confiquration cache

def directory = file("images")

dolast {
Files.createDirectories(directory.toPath())

}

As described in the Apache Ant manual, the mkdir task will automatically create all necessary
directories in the given path. It will do nothing if the directory already exists.

Using Project.mkdir

You can create directories in Gradle using the mkdir method, which is available in the Project
object. This method takes a File object or a String representing the path of the directory to be
created:

tasks.register('createDirs"') {
dolast {
mkdir 'src/main/resources’
mkdir file('build/generated")

// Create multiple dirs
mkdir files(['src/main/resources', 'src/test/resources'])

// Check dir existence
def dir = file('src/main/resources')
if (Mdir.exists()) {
mkdir dir
}

https://ant.apache.org/manual/Tasks/mkdir.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#mkdir-java.lang.Object-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#mkdir-java.lang.Object-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Project.html#mkdir-java.lang.Object-

Installing executables

When you are building a standalone executable, you may want to install this file on your system, so
it ends up in your path.

Using the Copy task

You can use a Copy task to install the executable into shared directories like /usr/local/bin. The
installation directory probably contains many other executables, some of which may even be
unreadable by Gradle. To support the unreadable files in the Copy task’s destination directory and to
avoid time consuming up-to-date checks, you can use Task.doNotTrackState():

build.gradle.kts

tasks.register<Copy>("installExecutable") {
from("build/my-binary")
into("/usr/local/bin")
doNotTrackState("Installation directory contains unrelated files")

build.gradle

tasks.register("installExecutable", Copy) {
from "build/my-binary"
into "/usr/local/bin"
doNotTrackState("Installation directory contains unrelated files")

Deploying single files into application servers

Deploying a single file to an application server typically refers to the process of transferring a
packaged application artifact, such as a WAR file, to the application server’s deployment directory.

Using the Copy task

When working with application servers, you can use a Copy task to deploy the application archive
(e.g. a WAR file). Since you are deploying a single file, the destination directory of the Copy is the
whole deployment directory. The deployment directory sometimes does contain unreadable files
like named pipes, so Gradle may have problems doing up-to-date checks. In order to support this
use-case, you can use Task.doNotTrackState():

https://docs.gradle.org/8.10/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)

build.gradle.kts

plugins {
war

}

tasks.register<Copy>("deployToTomecat") {
from(tasks.war)
into(layout.projectDirectory.dir("tomcat/webapps"))
doNotTrackState("Deployment directory contains unreadable files")

build.gradle

plugins {
id 'war'

}

tasks.register("deployToTomcat", Copy) {
from war
into layout.projectDirectory.dir('tomcat/webapps')
doNotTrackState("Deployment directory contains unreadable files")

Logging

The log serves as the primary 'UI' of a build tool. If it becomes overly verbose, important warnings
and issues can be obscured. However, it is essential to have relevant information to determine if
something has gone wrong.

Gradle defines six log levels, detailed in Log levels. In addition to the standard log levels, Gradle
introduces two specific levels: QUIET and LIFECYCLE. LIFECYCLE is the default level used to report
build progress.

Understanding Log levels
There are 6 log levels in Gradle:
ERROR Error messages
QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages
INFO Information messages

DEBUG Debug messages

The console’s rich components (build status and work-in-progress area) are

NOTE
displayed regardless of the log level used.

Choosing a log level

You can choose different log levels from the command line switches shown in Log level command-
line options.

You can also configure the log level using gradle.properties.

In Stacktrace command-line options you can find the command line switches which affect
stacktrace logging.

Log level command-line options:

Option Outputs Log Levels
-qor --quiet QUIET and higher
-W Or --warn WARN and higher

no logging options LIFECYCLE and higher
-ior --info INFO and higher

-d or --debug DEBUG and higher (that is, all log messages)

CAUTION The DEBUG log level can expose sensitive security information to the console.

Stacktrace command-line options

-s or --stacktrace

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full
stacktraces are extremely verbose due to the underlying dynamic invocation mechanisms. Yet
they usually do not contain relevant information about what has gone wrong in your code. This
option renders stacktraces for deprecation warnings.

-Sor --full-stacktrace

The full stacktraces are printed out. This option renders stacktraces for deprecation warnings.

<No stacktrace options>

No stacktraces are printed to the console in case of a build error (e.g., a compile error). Only in
case of internal exceptions will stacktraces be printed. If the DEBUG log level is chosen, truncated
stacktraces are always printed.

Logging Sensitive Information

Running Gradle with the DEBUG log level can potentially expose sensitive information to the console
and build log.

This information might include:

* Environment variables

* Private repository credentials

 Build cache and Develocity credentials

* Plugin Portal publishing credentials
It’s important to avoid using the DEBUG log level when running on public Continuous Integration (CI)
services. Build logs on these services are accessible to the public and can expose sensitive
information. Even on private CI services, logging sensitive credentials may pose a risk depending

on your organization’s threat model. It’s advisable to discuss this with your organization’s security
team.

Some CI providers attempt to redact sensitive credentials from logs, but this process is not foolproof
and typically only redacts exact matches of pre-configured secrets.

If you suspect that a Gradle Plugin may inadvertently expose sensitive information, please contact
security@gradle.com for assistance with disclosure.

Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle
redirects anything written to standard output to its logging system at the QUIET log level:

build.gradle.kts

println("A message which is logged at QUIET level")

build.gradle

println "A message which is logged at QUIET level'

Gradle also provides a logger property to a build script, which is an instance of Logger. This
interface extends the SLF4] Logger interface and adds a few Gradle-specific methods. Below is an
example of how this is used in the build script:

mailto:security@gradle.com
https://docs.gradle.org/8.10/javadoc/org/gradle/api/logging/Logger.html

build.gradle.kts

logger.quiet("An info log message which is always logged.")
logger.error("An error log message.")

logger.warn("A warning log message.")

logger.lifecycle("A lifecycle info log message.")

logger.info("An info log message.")

logger.debug("A debug log message.")

logger.trace("A trace log message.") // Gradle never logs TRACE level logs

build.gradle
logger.quiet('An info log message which is always logged.')
logger.error('An error log message.')
logger.warn('A warning log message.')
logger.lifecycle('A lifecycle info log message.')
logger.info('An info log message.')

logger.debug('A debug log message.')
logger.trace('A trace log message.') // Gradle never logs TRACE level logs

Use the link typical SLF4] pattern to replace a placeholder with an actual value in the log message.

build.gradle.kts

logger.info("A {} log message", "info")

build.gradle

logger.info('A {} log message', 'info')

You can also hook into Gradle’s logging system from within other classes used in the build (classes
from the buildSrc directory, for example) with an SLF4] logger. You can use this logger the same
way as you use the provided logger in the build script.

build.gradle.kts

import org.slf4j.LoggerFactory

https://www.slf4j.org/manual.html#typical_usage

val slf4jlLogger = LoggerFactory.getlLogger("some-logger")
s1f4jLogger.info("An info log message logged using SLF4j")

build.gradle
import org.s1f4j.LoggerFactory

def s1f4jlLogger = LoggerFactory.getlLogger('some-logger")
slf4jlLogger.info('An info log message logged using SLF4j')

Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their
logging output into the Gradle logging system.

There is a 1:1 mapping from the Ant/Ivy log levels to the Gradle log levels, except the Ant/Ivy TRACE
log level, which is mapped to the Gradle DEBUG log level. This means the default Gradle log level will
not show any Ant/Ivy output unless it is an error or a warning.

Many tools out there still use the standard output for logging. By default, Gradle redirects standard
output to the QUIET log level and standard error to the ERROR level. This behavior is configurable.

The project object provides a LoggingManager, which allows you to change the log levels that
standard out or error are redirected to when your build script is evaluated.

build.gradle.kts

logging.captureStandardOutput(LogLevel.INFO)
println("A message which is logged at INFO level")

build.gradle

logging.captureStandardOutput LoglLevel.INFO
println "A message which is logged at INFO level'

To change the log level for standard out or error during task execution, use a LoggingManager.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/logging/LoggingManager.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/logging/LoggingManager.html

build.gradle.kts

tasks.register("logInfo") {
logging.captureStandardOutput(LoglLevel.INFO)
doFirst {
println("A task message which is logged at INFO level")
}

build.gradle

tasks.register('logInfo') {
logging.captureStandardOutput Loglevel.INFO
doFirst {
println 'A task message which is logged at INFO level'
}

Gradle also integrates with the [Java Util Logging](https://docs.oracle.com/javase/8/docs/api/java/
util/logging/package-summary.html), Jakarta Commons Logging and
[Log4jl(https://logging.apache.org/log4j/2.x/) logging toolkits. Any log messages your build classes
write using these logging toolkits will be redirected to Gradle’s logging system.

Changing what Gradle logs

The configuration cache limits the ability to customize Gradle’s logging Ul The
custom logger can only implement supported listener interfaces. These
interfaces do not receive events when the configuration cache entry is reused
because the configuration phase is skipped.

WARNING

You can replace much of Gradle’s logging UI with your own. You could do this if you want to
customize the Ul somehow - to log more or less information or to change the formatting. Simply
replace the logging using the Gradle.useLogger(java.lang.Object) method. This is accessible from a
build script, an init script, or via the embedding API. Note that this completely disables Gradle’s
default output. Below is an example init script that changes how task execution and build
completion are logged:

customLogger.init.gradle.kts
uselLogger (CustomEventLogger())

@Suppress("deprecation")

https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://logging.apache.org/log4j/2.x/
https://docs.gradle.org/8.10/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)

class CustomEventLogger() : BuildAdapter(), TaskExecutionListener {

override fun beforeExecute(task: Task) {
println("[${task.name}]")
}

override fun afterExecute(task: Task, state: TaskState) {
println()

}

override fun buildFinished(result: BuildResult) {
println("build completed")
if (result.failure !'= null) {
(result.failure as Throwable).printStackTrace()

}

customLogger.init.gradle
useLogger (new CustomEventLogger())

("deprecation")
class CustomEventLogger extends BuildAdapter implements TaskExecutionListener

{

void beforeExecute(Task task) {
println "[$task.name]"

}

void afterExecute(Task task, TaskState state) {
println()

}

void buildFinished(BuildResult result) {
println 'build completed’
if (result.failure != null) {
result.failure.printStackTrace()

}

$ gradle -I customlLogger.init.gradle.kts build

> Task :compile
[compile]

compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

$ gradle -I customlLogger.init.gradle build

> Task :compile
[compile]
compiling source

> Task :testCompile
[testCompile]
compiling test source

> Task :test
[test]
running unit tests

> Task :build
[build]

build completed
3 actionable tasks: 3 executed

Your logger can implement any of the listener interfaces listed below. When you register a logger,
only the logging for the interfaces it implements is replaced. Logging for the other interfaces is left
untouched. You can find out more about the listener interfaces in Build lifecycle events.

« BuildListener"

» ProjectEvaluationListener

» TaskExecutionGraphListener

« TaskExecutionListener™

o TaskActionListener™

https://docs.gradle.org/8.10/javadoc/org/gradle/BuildListener.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/ProjectEvaluationListener.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/execution/TaskActionListener.html

Configuring the Build Environment

Configuring the build environment is a powerful way to customize the build process. There are
many mechanisms available. By leveraging these mechanisms, you can make your Gradle builds
more flexible and adaptable to different environments and requirements.

Available mechanisms

Gradle provides multiple mechanisms for configuring the behavior of Gradle itself and specific
projects:

Mechanism Information Example

Command line interface Flags that configure build --rerun
behavior and Gradle features

Project properties Properties specific to your TestFilter::isFailOnNoMatching
Gradle project Tests=false
System properties Properties that are passed to http.proxyHost=somehost.org

the Gradle runtime (JVM)

Gradle properties Properties that configure org.gradle.logging.level=quiet
Gradle settings and the Java

process that executes your
build

Environment variables Properties that configure build JAVA_HOME
behavior based on the
environment

Priority for configurations

When configuring Gradle behavior, you can use these methods, but you must consider their
priority.

The following table lists these methods in order of highest to lowest precedence (the first one wins):

Priority Method Location Notes

1 Command-line > Command line Flags have precedence
over properties and
environment variables

2 System properties > Project Root Dir Stored in a
gradle.properties file

3 Gradle properties > GRADLE_USER_HOME Stored in a
> Project Root Dir gradle.properties file
> GRADLE_HOME

Priority Method Location Notes

4 Environment variables > Environment Sourced by the
environment that
executes Gradle

Here are all possible configurations of specifying the JDK installation directory in order of priority:

1. Command Line

$./gradlew exampleTask -Dorg.gradle.java.home=/path/to/your/java/home --scan

2. Gradle Properties File

gradle.properties

org.gradle.java.home=/path/to/your/java/home
3. Environment Variable

$ export JAVA_HOME=/path/to/your/java/home

The gradle.properties file

Gradle properties, system properties, and project properties can be found in the gradle.properties
file:

gradle.properties

Gradle properties

org.gradle.parallel=true

org.gradle.caching=true

org.gradle.jvmargs=-Duser.language=en -Duser.country=US -Dfile.encoding=UTF-8

System properties
systemProp.pts.enabled=true
systemProp.log4j2.disableJmx=true
systemProp.file.encoding = UTF-8

Project properties
kotlin.code.style=official
android.nonTransitiveRClass=false
spring-boot.version = 2.2.1.RELEASE

You can place the gradle.properties file in the root directory of your project, the Gradle user home
directory (GRADLE_USER_HOME), or the directory where Gradle is optionally installed (GRADLE_HOME).

When resolving properties, Gradle first looks in the project-level gradle.properties file, then in the
user-level gradle.properties file located in GRADLE_USER_HOME, and finally in the gradle.properties
file located in GRADLE_HOME, with project-level properties taking precedence over user-level and
installation-level properties.

Project properties

Project properties are specific to your Gradle project, they can be used to customize your build.
Project properties can be accessed in your build files and get passed in from an external source
when your build is executed. Project properties can be retrieved lazily wusing
providers.gradleProperty().

Setting a project property
You have four options to add project properties, listed in order of priority:

1. Command Line: You can add project properties directly to your Project object via the -P
command line option.

$./gradlew build -PmyProperty="Hi, world'

2. System Property: Gradle creates specially-named system properties for project properties
which you can set using the -D command line flag or gradle.properties file. For the project
property myProperty, the system property created is called org.gradle.project.myProperty.

$./gradlew build -Dorg.gradle.project.myProperty="Hi, world'

gradle.properties

org.gradle.project.myProperty="Hi, world'

3. Gradle Properties File: You can also set project properties in gradle.properties files.

gradle.properties

myProperty="Hi, world'

4. Environment Variables: You can set project properties with environment variables. If the
environment variable name looks like ORG_GRADLE_PROJECT myProperty="Hi, world', then Gradle
will set a myProperty property on your project object, with the value of Hi, world.

$ export ORG_GRADLE_PROJECT_myProperty="Hi, world'

This is typically the preferred method for supplying project properties, especially secrets, to
unattended builds like those running on CI servers.

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html

It is possible to change the behavior of a task based on project properties specified at invocation
time. Suppose you’d like to ensure release builds are only triggered by CI. A simple way to handle
this is through an isCI project property:

build.gradle.kts

tasks.register("performRelease") {
val isCI = providers.gradleProperty("isCI")
dolast {
if (isCI.isPresent) {
println("Performing release actions")
} else {
throw InvalidUserDataException("Cannot perform release outside of
cI")

build.gradle

tasks.register('performRelease’) {
def isCI = providers.gradleProperty("isCI")
dolast {
if (isCI.present) {
println("Performing release actions")
} else {
throw new InvalidUserDataException("Cannot perform release
outside of CI")
}
}

$./gradlew performRelease -PisCI=true --quiet
Performing release actions

Note that running ./gradlew performRelease yields the same results as long as your
gradle.properties file includes isCI=true:

gradle.properties

isCI=true

$./gradlew performRelease --quiet
Performing release actions

Command-line flags

The command line interface and the available flags are described in its own section.

System properties

System properties are variables set at the JVM level and accessible to the Gradle build process.
System properties can be retrieved lazily using providers.systemProperty().

Setting a system property
You have two options to add system properties listed in order of priority:

1. Command Line: Using the -D command-line option, you can pass a system property to the JVM,
which runs Gradle. The -D option of the gradle command has the same effect as the -D option of
the java command.

$./gradlew build -Dgradle.wrapperUser=myuser

2. Gradle Properties File: You can also set system properties in gradle.properties files with the
prefix systemProp.

gradle.properties

systemProp.gradle.wrapperUser=myuser

System properties reference

For a quick reference, the following are common system properties:

gradle.wrapperUser=(myuser)

Specify username to download Gradle distributions from servers using HTTP Basic
Authentication.

gradle.wrapperPassword=(mypassword)

Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)
Specify the GRADLE_USER_HOME directory.

https.protocols
Specify the supported TLS versions in a comma-separated format. e.g., TLSv1.2,TLSv1.3.

Additional Java system properties are listed here.

https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

In a multi-project build, systemProp properties set in any project except the root will be ignored.
Only the root project’s gradle.properties file will be checked for properties that begin with
systemProp.

Gradle properties

Gradle properties configure Gradle itself and usually have the name org.gradle.*. Gradle
properties should not be used in build logic, their values should not be read/retrieved.

Setting a Gradle property

You have two options to add Gradle properties listed in order of priority:

1. Command Line: Using the -D command-line option, you can pass a Gradle property:
$./gradlew build -Dorg.gradle.caching.debug=false

2. Gradle Properties File: Place these settings into a gradle.properties file and commit it to your
version control system.

gradle.properties

org.gradle.caching.debug=false

The final configuration considered by Gradle is a combination of all Gradle properties set on the
command line and your gradle.properties files. If an option is configured in multiple locations, the
first one found in any of these locations wins:

Priority Method Location Details

1 Command line . In the command line
interface using -D.

2 gradle.properties file ~ GRADLE_USER_HOME Stored in a

gradle.properties file
in the GRADLE_USER_HOME.

3 gradle.properties file Project Root Dir Stored in a
gradle.properties file
in a project directory,
then its parent project’s
directory up to the
project’s root directory.

4 gradle.properties file ~ GRADLE_HOME Stored in a
gradle.properties file
in the GRADLE HOME, the
optional Gradle
installation directory.

The location of the GRADLE_USER_HOME may have been changed beforehand via the

NOTE
-Dgradle.user.home system property passed on the command line.

Gradle properties reference

For reference, the following properties are common Gradle properties:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build when possible,
resulting in much faster builds.

Default is false; the build cache is not enabled.

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are
logged on the console.

Default is false.

org.gradle.configuration-cache=(true,false)

Enables configuration caching. Gradle will try to reuse the build configuration from previous
builds.

Default is false.

org.gradle.configureondemand=(true,false)

Enables incubating configuration-on-demand, where Gradle will attempt to configure only
necessary projects.

Default is false.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity.
Default depends on how Gradle is invoked.

org.gradle.continue=(true,false)

If enabled, continue task execution after a task failure, else stop task execution after a task
failure.

Default is false.

org.gradle.daemon=(true,false)

When set to true the Gradle Daemon is used to run the build.
Default is true.

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after a specified number of idle milliseconds.

Default is 10800000 (3 hours).

org.gradle.debug=(true,false)

When set to true, Gradle will run the build with remote debugging enabled, listening on port
5005. Note that this is equivalent to adding
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 to the JVM command line
and will suspend the virtual machine until a debugger is attached.

Default is false.

org.gradle.java.home=(path to JDK home)

Specifies the Java home for the Gradle build process. The value can be set to either a jdk or jre
location; however, using a JDK is safer depending on what your build does. This does not affect
the version of Java used to launch the Gradle client VM.

You can also control the JVM used to run Gradle itself using the Daemon JVM criteria.

Default is derived from your environment (JAVA_HOME or the path to java) if the setting is
unspecified.

org.gradle.jvmargs=(JVM arguments)

Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance. This does not affect the JVM settings
for the Gradle client VM.

Default is -Xmx512m "-XX:MaxMetaspaceSize=384m".

org.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

When set to quiet, warn, info, or debug, Gradle will use this log level. The values are not case-
sensitive.

Default is 1ifecycle level.

org.gradle.parallel=(true,false)

When configured, Gradle will fork up to org.gradle.workers.max JVMs to execute projects in
parallel.

Default is false.

org.gradle.priority=(1low,normal)

Specifies the scheduling priority for the Gradle daemon and all processes launched by it.
Default is normal.

org.gradle.projectcachedir=(directory)

Specify the project-specific cache directory. Defaults to .gradle in the root project directory."

Default is .gradle.

org.gradle.unsafe.isolated-projects=(true,false)

Enables project isolation, which enables configuration caching.
Default is false.

org.gradle.vfs.verbose=(true,false)

Configures verbose logging when watching the file system.
Default is false.

org.gradle.vfs.watch=(true, false)

Toggles watching the file system. When enabled, Gradle reuses information it collects about the
file system between builds.

Default is true on operating systems where Gradle supports this feature.

org.gradle.warning.mode=(all,fail,summary,none)

When set to all, summary, or none, Gradle will use different warning type display.
Default is summary.

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers.

Default is the number of CPU processors.

Environment variables

Gradle provides a number of environment variables, which are listed below. Environment
variables can be retrieved lazily using providers.environmentVariable().

Setting environment variables

Let’s take an example that sets the $JAVA_HOME environment variable:

$ set JAVA_HOME=C:\Path\To\Your\Java\Home // Windows
$ export JAVA_HOME=/path/to/your/java/home // Mac/Linux

You can access environment variables as properties in the build script using the System.getenv()
method:

task printEnvVariables {
dolast {
println "JAVA_HOME: ${System.getenv('JAVA_HOME")}"
}

Environment variables reference

The following environment variables are available for the gradle command:

GRADLE_HOME

Installation directory for Gradle.
Can be used to specify a local Gradle version instead of using the wrapper.

You can add GRADLE_HOME/bin to your PATH for specific applications and use cases (such as testing
an early release for Gradle).

JAVA_OPTS
Used to pass JVM options and custom settings to the JVM.

export JAVA_OPTS="-Xmx18928m -XX:+HeapDumpOnQutOfMemoryError -Dfile.encoding=UTF-8
-Djava.awt.headless=true -Dkotlin.daemon.jvm.options=-Xmx6309m"

GRADLE_OPTS

Specifies JVM arguments to use when starting the Gradle client VM.

The client VM only handles command line input/output, so one would rarely need to change its
VM options.

The actual build is run by the Gradle daemon, which is not affected by this environment
variable.

GRADLE_USER_HOME

Specifies the GRADLE_USER_HOME directory for Gradle to store its global configuration properties,
initialization scripts, caches, log files and more.

Defaults to USER_HOME/ .gradle if not set.

JAVA_HOME
Specifies the JDK installation directory to use for the client VM.

This VM is also used for the daemon unless a different one is specified in a Gradle properties file
with org.gradle. java.home or using the Daemon JVM criteria.

GRADLE_LIBS_REPO_OVERRIDE
Overrides for the default Gradle library repository.

Can be used to specify a default Gradle repository URL in
org.gradle.plugins.ide.internal.resolver.

Useful override to specify an internally hosted repository if your company uses a firewall/proxy.

Initialization Scripts

Initialization scripts are scripts that run before the build script is executed. They allow you to
customize the build environment or configure settings early in the build.

Initialization scripts can be useful for setting up common configurations, such as repositories,
plugins, or custom tasks, across multiple projects.
Using an init script

Initialization scripts, also called init scripts, are similar to other scripts in Gradle. Initialization
scripts run before the build starts.

They are useful for various purposes:

 Setting up enterprise-wide configurations (e.g., custom plugin locations)

* Configuring properties based on the environment (e.g., developer’s machine vs. CI server)
* Providing user-specific information (e.g., authentication credentials)

* Defining machine-specific details (e.g., JDK locations)

* Registering build listeners (e.g., external tools that wish to listen to Gradle events might find this
helpful)

» Registering loggers (e.g., customize how Gradle logs the events that it generates)

One main limitation of init scripts is that they cannot access classes in the buildSrc project.

Invoking an init script
There are several ways to invoke an init script (in order of priority):

1. Specify a file on the command line with the option -I or --init-script followed by the path to
the script.

The command line option can appear more than once, each time adding another init script. The
build will fail if any files specified on the command line do not exist.

2. Put a file called init.gradle(.kts) in the $6RADLE_USER_HOME/ directory.
3. Put a file called init.gradle(.kts) in the $6RADLE_USER_HOME/init.d/ directory.
4. Put a file called init.gradle(.kts) in the $GRADLE_HOME/init.d/ directory.

This lets you package a custom Gradle distribution containing custom build logic and plugins.
You can combine this with the Gradle wrapper to make custom logic available to all builds in
your enterprise.

If more than one init script is found, they will all be executed in the order specified above.

Scripts in a given directory are executed in alphabetical order. For example, a tool can specify an
init script on the command line and another in the home directory to define the environment. Both
scripts will run when Gradle is executed.

Writing an init script

Like a Gradle build script, an init script is a Groovy or Kotlin script. Each init script has a Gradle

https://docs.gradle.org/8.10/dsl/org.gradle.api.invocation.Gradle.html

instance associated with it. Any property reference and method call in the init script will be
delegated to this Gradle instance.

Each init script implements the Script interface.

When writing init scripts, pay attention to the scope of the reference you are trying
NOTE to access. For example, properties loaded from gradle.properties are available on
Settings or Project instances but not on the Gradle one.

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works similarly to configuring
projects in a multi-project build.

The following sample shows how to perform extra configuration from an init script before the
projects are evaluated:

build.gradle

repositories {
mavenCentral()

}

tasks.register('showRepos') {
def repositoryNames = repositories.collect { it.name }
dolast {
println "All repos:"
println repositoryNames

init.gradle

allprojects {
repositories {
mavenlLocal()

}

build.gradle.kts
repositories {

mavenCentral()

}

tasks.register("showRepos") {

https://docs.gradle.org/8.10/dsl/org.gradle.api.Script.html

val repositoryNames = repositories.map { it.name }
dolLast {

println("All repos:")
println(repositoryNames)

init.gradle.kts

allprojects {
repositories {
mavenlLocal()

}

This sample uses this feature to configure an additional repository to be used only for specific
environments.

> gradle --init-script init.gradle.kts -q showRepos
All repos:

[MavenLocal, MavenRepo]

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

Adding external dependencies

Init scripts can also declare dependencies with the initscript() method, passing in a closure that
declares the init script classpath.

Declaring external dependencies for an init script:

init.gradle.kts

initseript {
repositories {
mavenCentral()

}

dependencies {
classpath("org.apache.commons:commons-math:2.0")

}

init.gradle

initscript {
repositories {
mavenCentral()

}

dependencies {
classpath 'org.apache.commons:commons-math:2.0'

}

The closure passed to the initscript() method configures a ScriptHandler instance. You declare the
init script classpath by adding dependencies to the classpath configuration.

This is the same way you declare, for example, the Java compilation classpath. You can use any of
the dependency types described in Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example and uses
classes from the init script classpath.

An init script with external dependencies:

init.gradle.kts

import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}

dependencies {
classpath("org.apache.commons:commons-math:2.0")

}
}

println(Fraction.ONE_FIFTH.multiply(2))

build.gradle.kts

tasks.register("doNothing")

https://docs.gradle.org/8.10/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

init.gradle
import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}
dependencies {
classpath 'org.apache.commons:commons-math:2.0'

}
}

println Fraction.ONE_FIFTH.multiply(2)

build.gradle

tasks.register('doNothing")

> gradle --init-script init.gradle.kts -q doNothing
2/5

> gradle --init-script init.gradle -q doNothing
2/5

Applying plugins

Plugins can be applied to init scripts like a Gradle build script or a Gradle settings file.

Using plugins in init scripts:

init.gradle.kts
apply<EnterpriseRepositoryPlugin>()

class EnterpriseRepositoryPlugin : Plugin<Gradle> {
companion object {
const val ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"
}

override fun apply(gradle: Gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES

gradle.allprojects {
repositories {

// Remove all repositories not pointing to the enterprise
repository url
all {
if (this !is MavenArtifactRepository || url.toString() !=
ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle("Repository ${(this as?
MavenArtifactRepository)?.url ?: name} removed. Only
$ENTERPRISE_REPOSITORY_URL is allowed")
remove(this)
}
}

// add the enterprise repository
add(maven {
name = "STANDARD_ENTERPRISE_REPOQ"
url = uri(ENTERPRISE_REPOSITORY_URL)

9]
}
}
}
}
build.gradle.kts
repositories{
mavenCentral()
}

data class RepositoryData(val name: String, val url: URI)

tasks.register("showRepositories") {
val repositoryData = repositories.withType<MavenArtifactRepository>().map
{ RepositoryData(it.name, it.url) }
dolast {
repositoryData.forEach {
println("repository: ${it.name} ('${it.url}')")
}

init.gradle
apply plugin: EnterpriseRepositoryPlugin

class EnterpriseRepositoryPlugin implements Plugin<Gradle> {

private static String ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"

void apply(Gradle gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
gradle.allprojects { project ->
project.repositories {

// Remove all repositories not pointing to the enterprise
repository url
all { ArtifactRepository repo ->
if (!(repo instanceof MavenArtifactRepository) ||
repo.url.toString() !'= ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle "Repository ${repo.url}
removed. Only $ENTERPRISE_REPOSITORY_URL is allowed"
remove repo
¥
}

// add the enterprise repository
maven {
name "STANDARD_ENTERPRISE_REPQ"
url ENTERPRISE_REPOSITORY_URL

}
}
}

}

}
build.gradle

repositories{

mavenCentral()
}
@Immutable

class RepositoryData {
String name
URT url

}

tasks.register('showRepositories') {
def repositoryData = repositories.collect { new RepositoryData(it.name,
it.url) }
dolLast {
repositoryData.each {
println "repository: ${it.name} ('${it.url}"')"
}

> gradle --init-script init.gradle.kts -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo")

> gradle --init-script init.gradle -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')
The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin
instance’s Plugin.apply(T) method.

The gradle object is passed as a parameter, which can be used to configure all aspects of a build. Of
course, the applied plugin can be resolved as an external dependency as described in External
dependencies for the init script

Using Shared Build Services

Shared build services allow tasks to share state or resources. For example, tasks might share a
cache of pre-computed values or use a web service or database instance.

A build service is an object that holds the state for tasks to use. It provides an alternative
mechanism for hooking into a Gradle build and receiving information about task execution and
operation completion.

Build services are configuration cacheable.

Gradle manages the service lifecycle, creating the service instance only when required and
cleaning it up when no longer needed. Gradle can also coordinate access to the build service,
ensuring that no more than a specified number of tasks use the service concurrently.

Implementing a build service

To implement a build service, create an abstract class that implements BuildService. Then, define
methods you want the tasks to use on this type.

abstract class BaseCountingService implements BuildService<CountingParams>,
AutoCloseable {

}

A build service implementation is treated as a custom Gradle type and can use any of the features
available to custom Gradle types.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Plugin.html#apply-T-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildService.html
properties_providers.pdf#properties_and_providers

A build service can optionally take parameters, which Gradle injects into the service instance when
creating it. To provide parameters, you define an abstract class (or interface) that holds the
parameters. The parameters type must implement (or extend) BuildServiceParameters. The service
implementation can access the parameters using this.getParameters(). The parameters type is also
a custom Gradle type.

When the build service does not require any parameters, you can use BuildServiceParameters.None
as the type of parameter.

interface CountingParams extends BuildServiceParameters {
Property<Integer> getInitial()

}

A build service implementation can also optionally implement AutoCloseable, in which case Gradle
will call the build service instance’s close() method when it discards the service instance. This
happens sometime between the completion of the last task that uses the build service and the end
of the build.

Here is an example of a service that takes parameters and is closeable:

WebServer.java

import org.gradle.api.file.DirectoryProperty;

import org.gradle.api.provider.Property;

import org.gradle.api.services.BuildService;

import org.gradle.api.services.BuildServiceParameters;

import java.net.URI;
import java.net.URISyntaxException;

public abstract class WebServer implements BuildService<WebServer.Params>,
AutoCloseable {

// Some parameters for the web server
interface Params extends BuildServiceParameters {
Property<Integer> getPort();

DirectoryProperty getResources();

}
private final URI uri;
public WebServer() throws URISyntaxException {
// Use the parameters
int port = getParameters().getPort().get();
uri = new URI(String.format("https://localhost:%d/", port));

// Start the server ...

https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildServiceParameters.html
properties_providers.pdf#properties_and_providers
https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildServiceParameters.None.html

System.out.println(String.format("Server is running at %s", uri));

// A public method for tasks to use
public URI getUri() {
return uri;

}

public void close() {
// Stop the server ...

}

Note that you should not implement the BuildService.getParameters() method, as Gradle will
provide an implementation of this.

A build service implementation must be thread-safe, as it will potentially be used by multiple tasks
concurrently.

Using a build service in a task
To use a build service from a task, you need to:

1. Add a property to the task of type Property<MyServiceType>.
2. Annotate the property with @Internal or @ServiceReference (since 8.0).

3. Assign a shared build service provider to the property (optional, when using
@ServiceReference(<serviceName>)).

4. Declare the association between the task and the service so Gradle can properly honor the build

service lifecycle and its usage constraints (also optional when using @ServiceReference).

Note that using a service with any other annotation is currently not supported. For example, it is
currently impossible to mark a service as an input to a task.

Annotating a shared build service property with @Internal

When you annotate a shared build service property with @Internal, you need to do two more
things:

1. Explicitly assign a build service provider obtained when registering the service with
BuildServiceRegistry.registerIfAbsent() to the property.
2. Explicitly declare the association between the task and the service via the Task.usesService.

Here is an example of a task that consumes the previous service via a property annotated with
@Internal:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildService.html#getParameters--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildServiceRegistry.html#registerIfAbsent-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/Task.html#usesService-org.gradle.api.provider.Provider-

Download.java

import org.gradle.api.DefaultTask;

import org.gradle.api.file.ReqularFileProperty;
import org.gradle.api.provider.Property;

import org.gradle.api.tasks.Internal;

import org.gradle.api.tasks.OutputFile;

import org.gradle.api.tasks.TaskAction;

import java.net.URI;

public abstract class Download extends DefaultTask {
// This property provides access to the service instance

abstract Property<WebServer> getServer();

abstract RegularFileProperty getOutputFile();

public void download() {
// Use the server to download a file
WebServer server = getServer().get();
URI uri = server.getUri().resolve("somefile.zip");
System.out.println(String.format("Downloading %s", uri));

Annotating a shared build service property with @ServiceReference

NOTE The @ServiceReference annotation is an incubating API and is subject to change in a
future release.

Otherwise, when you annotate a shared build service property with @ServiceReference, there is no

need to declare the association between the task and the service explicitly; also, if you provide a

service name to the annotation, and a shared build service is registered with that name, it will be

automatically assigned to the property when the task is created.

Here is an example of a task that consumes the previous service via a property annotated with
@ServiceReference:

Download.java

import org.gradle.api.DefaultTask;

import org.gradle.api.file.ReqularFileProperty;
import org.gradle.api.provider.Property;

import org.gradle.api.services.ServiceReference;

import org.gradle.api.tasks.OutputFile;
import org.gradle.api.tasks.TaskAction;

import java.net.URI;

public abstract class Download extends DefaultTask {
// This property provides access to the service instance
("Web“)
abstract Property<WebServer> getServer();

abstract RegularFileProperty getOutputFile();

public void download() {
// Use the server to download a file
WebServer server = getServer().get();
URT uri = server.getUri().resolve("somefile.zip");
System.out.println(String.format("Downloading %s", uri));

Registering a build service and connecting it to a task

To create a Dbuild service, you register the service instance wusing the
BuildServiceRegistry.registerIfAbsent() method. Registering the service does not create the service
instance. This happens on demand when a task first uses the service. The service instance will not
be created if no task uses the service during a build.

Currently, build services are scoped to a build, rather than a project, and these services are
available to be shared by the tasks of all projects. You can access the registry of shared build
services via Project.getGradle().getSharedServices().

Here is an example of a plugin that registers the previous service when the task property
consuming the service is annotated with @Internal:

DownloadPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.provider.Provider;

public class DownloadPlugin implements Plugin<Project> {
public void apply(Project project) {
// Register the service
Provider<WebServer> serviceProvider = project.getGradle()
.getSharedServices().registerIfAbsent("web", WebServer.class, spec -> {
// Provide some parameters

https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildServiceRegistry.html#registerIfAbsent-java.lang.String-java.lang.Class-org.gradle.api.Action-

spec.getParameters().getPort().set(5005);
1

project.getTasks().register("download", Download.class, task -> {
// Connect the service provider to the task
task.getServer().set(serviceProvider);
// Declare the association between the task and the service
task.usesService(serviceProvider);
task.getOutputFile().set(project.getlayout().getBuildDirectory().file

("result.zip"));
b
}

The plugin registers the service and receives a Provider<WebService> back. This provider can be
connected to task properties to pass the service to the task. Note that for a task property annotated
with @Internal, the task property needs to (1) be explicitly assigned with the provider obtained
during registation, and (2) you must tell Gradle the task uses the service via Task.usesService.

Compare that to when the task property consuming the service is annotated with
@ServiceReference:

DownloadPlugin.java

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.provider.Provider;

public class DownloadPlugin implements Plugin<Project> {
public void apply(Project project) {
// Register the service
project.getGradle().getSharedServices().registerIfAbsent("web", WebServer
.class, spec -> {
// Provide some parameters
spec.getParameters().getPort().set(5005);
1)

project.getTasks().register("download", Download.class, task -> {
task.getOutputFile().set(project.getlayout().getBuildDirectory().file
("result.zip"));
b
}

As you can see, there is no need to assign the build service provider to the task, nor to declare
explicitly that the task uses the service.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Task.html#usesService-org.gradle.api.provider.Provider-

Using shared build services from configuration actions

Generally, build services are intended to be used by tasks, and as they usually represent some
potentially expensive state to create, you should avoid using them at configuration time. However,
sometimes, using the service at configuration time can make sense. This is possible; call get() on
the provider.

Using a build service with the Worker API

In addition to using a build service from a task, you can use a build service from a Worker API
action, an artifact transform or another build service. To do this, pass the build service Provider as a
parameter of the consuming action or service, in the same way you pass other parameters to the
action or service.

For example, to pass a MyServiceType service to Worker API action, you might add a property of type
Property<MyServiceType> to the action’s parameters object and then connect the
Provider<MyServiceType> that you receive when registering the service to this property:

Download.java

import org.gradle.api.DefaultTask;

import org.gradle.api.provider.Property;

import org.gradle.api.services.ServiceReference;
import org.gradle.api.tasks.TaskAction;

import org.gradle.workers.WorkAction;

import org.gradle.workers.WorkParameters;

import org.gradle.workers.WorkQueue;

import org.gradle.workers.WorkerExecutor;

import javax.inject.Inject;
import java.net.URI;

public abstract class Download extends DefaultTask {

public static abstract class DownloadWorkAction implements WorkAction
<DownloadWorkAction.Parameters> {
interface Parameters extends WorkParameters {
// This property provides access to the service instance from the work
action
abstract Property<WebServer> getServer();

public void execute() {
// Use the server to download a file
WebServer server = getParameters().getServer().get();
URT uri = server.getUri().resolve("somefile.zip");
System.out.println(String.format("Downloading %s", uri));

abstract public WorkerExecutor getWorkerExecutor();

// This property provides access to the service instance from the task
("Web“)
abstract Property<WebServer> getServer();

public void download() {
WorkQueue workQueue = getWorkerExecutor().noIsolation();
workQueue.submit(DownloadWorkAction.class, parameter -> {
parameter.getServer().set(getServer());

b

Currently, it is impossible to use a build service with a worker API action that uses ClassLoader or
process isolation modes.

Accessing the build service concurrently

You can constrain concurrent execution when you register the service, by using the Property object
returned from BuildServiceSpec.getMaxParallelUsages(). When this property has no value, which is
the default, Gradle does not constrain access to the service. When this property has a value > 0,
Gradle will allow no more than the specified number of tasks to use the service concurrently.

When the consuming task property is annotated with @Internal, for the
constraint to take effect, the build service must be registered with the

IMPORTANT consuming task via Task.usesService(Provider<? extends BuildService<?>>).
This is not necessary if, instead, the consuming property is annotated with
@ServiceReference

Receiving information about task execution

A build service can be used to receive events as tasks are executed. To do this, create and register a
build service that implements OperationCompletionListener:

TaskEventsService.java

import org.gradle.api.services.BuildService;

import org.gradle.api.services.BuildServiceParameters;

import org.gradle.tooling.events.FinishEvent;

import org.gradle.tooling.events.OperationCompletionListener;
import org.gradle.tooling.events.task.TaskFinishEvent;

public abstract class TaskEventsService implements BuildService
<BuildServiceParameters.None>,

https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/BuildServiceSpec.html#getMaxParallelUsages--
https://docs.gradle.org/8.10/dsl/org.gradle.api.Task.html#org.gradle.api.Task:usesService(org.gradle.api.provider.Provider)
https://docs.gradle.org/8.10/javadoc/org/gradle/tooling/events/OperationCompletionListener.html

OperationCompletionListener { @M

public void onFinish(FinishEvent finishEvent) {
if (finishEvent instanceof TaskFinishEvent) { @
// Handle task finish event...

}

@ Implement the OperationCompletionListener interface and the BuildService interface.
@ Check if the finish event is a TaskFinishEvent.
Then, in the plugin, you can use the methods on the BuildEventsListenerRegistry service to start

receiving events:

TaskEventsPlugin.java

import org.gradle.api.Plugin;

import org.gradle.api.Project;

import org.gradle.api.provider.Provider;

import org.gradle.build.event.BuildEventsListenerRegistry;

import javax.inject.Inject;
public abstract class TaskEventsPlugin implements Plugin<Project> {
public abstract BuildEventsListenerRegistry getEventsListenerRegistry(); @
public void apply(Project project) {
Provider<TaskEventsService> serviceProvider =
project.qgetGradle().getSharedServices().registerIfAbsent(

"taskEvents", TaskEventsService.class, spec -> {}); @

getEventsListenerRegistry().onTaskCompletion(serviceProvider); ®

@ Use service injection to obtain an instance of the BuildEventsListenerRegistry.
@ Register the build service as usual.

(® Use the service Provider to subscribe to the build service to build events.

https://docs.gradle.org/8.10/javadoc/org/gradle/tooling/events/task/TaskFinishEvent.html
https://docs.gradle.org/8.10/javadoc/org/gradle/build/event/BuildEventsListenerRegistry.html
service_injection.pdf#service_injection

Dataflow Actions

NOTE The dataflow actions support is an incubating feature and is subject to change.

A preferred way of executing work in a Gradle build is using a task. However, some kinds of work
do not fit tasks well, such as custom handling of the build failure.

What if you want to play a cheerful sound when the build succeeds and a sad one when it fails?
This work piece has to process the task execution result, so it cannot be a task itself.

The Dataflow Actions API provides a way to schedule this type of work. A dataflow action is a
parameterized isolated piece of work that becomes eligible for execution as soon as all input
parameters become available.

Implementing a dataflow action
The first step is to implement the action itself. You must create a class implementing the FlowAction

interface:

import org.gradle.api.flow.FlowAction
import org.gradle.api.flow.FlowParameters

abstract class ReportConsumption : FlowAction<ReportConsumption.Params> {

interface Params : FlowParameters {

override fun execute(parameters: Params) {

}

The execute method must be implemented because this is where the work happens. An action
implementation is treated as a custom Gradle type and can use any of the features available to
custom Gradle types. In particular, some Gradle services can be injected into the implementation.

A dataflow action may accept parameters. To provide parameters, you define an abstract class (or
interface) to hold the parameters:

* The parameters type must implement (or extend) FlowParameters.
* The parameters type is also a custom Gradle type.

» The action implementation gets the parameters as an argument of the execute method.

When the action requires no parameters, you can use FlowParameters.None as the type of
parameter.

Here is an example of a dataflow action that takes a shared build service and a file path as

https://docs.gradle.org/8.10/javadoc/org/gradle/api/flow/FlowAction.html
properties_providers.pdf#properties_and_providers
https://docs.gradle.org/8.10/javadoc/org/gradle/api/flow/FlowParameters.html
properties_providers.pdf#properties_and_providers
https://docs.gradle.org/8.10/javadoc/org/gradle/api/flow/FlowParameters.None.html

parameters:

SoundPlay.java
package org.gradle.sample.sound;

import org.gradle.api.flow.FlowAction;

import org.gradle.api.flow.FlowParameters;
import org.gradle.api.provider.Property;

import org.gradle.api.services.ServiceReference;
import org.gradle.api.tasks.Input;

import java.io.File;

public abstract class SoundPlay implements FlowAction<SoundPlay.Parameters> {
interface Parameters extends FlowParameters {

@

Property<SoundService> getSoundService();

@
Property<File> getMediaFile();

public void execute(Parameters parameters) {
parameters.getSoundService().get().playSoundFile(parameters.getMediaFile(
)-9et());
}
+

@ Parameters in the parameter type must be annotated. If a parameter is annotated with
@ServiceReference, then a suitable shared build service implementation is automatically
assigned to the parameter when the action is created, according to the usual rules.

@ All other parameters must be annotated with @Input.

Using lifecycle event providers

Besides the usual value providers, Gradle provides dedicated providers for build lifecycle events,
like build completion. These providers are intended for dataflow actions and provide additional
ordering guarantees when used as inputs. The ordering also applies if you derive a provider from
the event provider by, for example, calling map or flatMap. You can obtain these providers from the
FlowProviders class.

flowProviders.buildWorkResult.map {
[
buildInvocationId: scopeldsService.buildInvocationld,
workspaceld: scopeldsService.workspaceld,

https://docs.gradle.org/8.10/javadoc/org/gradle/api/services/ServiceReference.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/Input.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/flow/FlowProviders.html

userId: scopeldsService.userId

If you’re not using a lifecycle event provider as an input to the dataflow action,
WARNING then the exact timing when the action is executed is not defined and may
change in the next version of Gradle.

Supplying the action for execution

You should not create FlowAction objects manually. Instead, you request to execute them in the
appropriate scope of FlowScope. In doing so, you can configure the parameters for the task:

SoundFeedbackPlugin.java
package org.gradle.sample.sound;

import org.gradle.api.Plugin;

import org.gradle.api.flow.FlowProviders;
import org.gradle.api.flow.FlowScope;

import org.gradle.api.initialization.Settings;

import javax.inject.Inject;
import java.io.File;

public abstract class SoundFeedbackPlugin implements Plugin<Settings> {

protected abstract FlowScope getFlowScope(); ®

protected abstract FlowProviders getFlowProviders(); @

public void apply(Settings settings) {
final File soundsDir = new File(settings.getSettingsDir(), "sounds");
getFlowScope().always(@
SoundPlay.class, ®
spec -> @
spec.getParameters().getMediaFile().set(
getFlowProviders().getBuildWorkResult().map(result -> ®
new File(
soundsDir,
result.getFailure().isPresent() ? "sad-trombone.mp3" :
"tada.mp3"

https://docs.gradle.org/8.10/javadoc/org/gradle/api/flow/FlowScope.html

@ Use service injection to obtain FlowScope and FlowProviders instances. They are available for
project and settings plugins.

@ Use an appropriate scope to run your actions. As the name suggests, actions in the always scope
are executed every time the build runs.

® Specify the class that implements the action.

@ Use the spec argument to configure the action parameters.

® A lifecycle event provider can be mapped into something else while preserving the action order.
As a result, when you run the build, and it completes successfully, the action will play the "tada"

sound. If the build fails at configuration or execution time, yowll hear "sad-trombone"
sound — assuming that build configuration proceeds far enough for the action to be registered.

Testing Build Logic with TestKit

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At this time, it is focused on functional testing. That is, testing build logic by exercising it
as part of a programmatically executed build. Over time, the TestKit will likely expand to facilitate
other kinds of tests.

Using TestKit
To use the TestKit, include the following in your plugin’s build:

Example 1. Declaring the TestKit dependency

build.gradle.kts

dependencies {
testImplementation(gradleTestKit())

}

build.gradle

dependencies {
testImplementation gradleTestKit()

}

The gradleTestKit() encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a

#ex-declaring-the-testkit-dependency
https://junit.org
https://testng.org

dependency must be explicitly declared.

Example 2. Declaring the JUnit dependency

build.gradle.kts

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

tasks.named<Test>("test") {
useJUnitPlatform()
}

build.gradle

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}

tasks.named('test', Test) {
useJUnitPlatform()
+

Functional testing with the Gradle runner

The GradleRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the
“logic under test”. The build can then be executed, potentially in a variety of ways (e.g. different
combinations of tasks and arguments). The correctness of the logic can then be verified by asserting

the following, potentially in combination:

* The build’s output;

* The build’s logging (i.e. console output);

» The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
GradleRunner.build() or GradleRunner.buildAndFail() methods depending on the anticipated

outcome.

The following demonstrates the usage of the Gradle runner in a Java JUnit test:

#ex-declaring-the-junit-dependency
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#build--
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail--

Example: Using GradleRunner with Java and JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;
import org.gradle.testkit.runner.GradleRunner;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.io.TempDir;

import java.io.BufferedWriter;
import java.io.File;

import java.io.FileWriter;
import java.io.IOException;

import static org.gradle.testkit.runner.TaskOutcome.SUCCESS;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

public class BuildlLogicFunctionalTest {

File testProjectDir;
private File settingsFile;
private File buildFile;

public void setup() {
settingsFile = new File(testProjectDir, "settings.gradle");
buildFile = new File(testProjectDir, "build.gradle");

public void testHelloWorldTask() throws IOException {
writeFile(settingsFile, "rootProject.name = "hello-world'");
String buildFileContent = "task helloWorld {" +
" dolLast {" +
! println 'Hello world!"'" +
" 14

nn,
r

writeFile(buildFile, buildFileContent);

BuildResult result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArqguments("helloWor1ld")

.build();

assertTrue(result.getOutput().contains("Hello world!"));
assertEquals(SUCCESS, result.task(":helloWorld").qgetOutcome());
}

private void writeFile(File destination, String content) throws IOException {

BufferedWriter output = null;
try {
output = new BufferedWriter(new FileWriter(destination));
output.write(content);
} finally {
if (output != null) {
output.close();
}

Any test execution framework can be used.

As Gradle build scripts can also be written in the Groovy programming language, it is often a
productive choice to write Gradle functional tests in Groovy. Furthermore, it is recommended to
use the (Groovy based) Spock test execution framework as it offers many compelling features over
the use of JUnit.

The following demonstrates the usage of the Gradle runner in a Groovy Spock test:

Example: Using GradleRunner with Groovy and Spock

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir

import spock.lang.Specification

class BuildlLogicFunctionalTest extends Specification {
File testProjectDir
File settingsFile
File buildFile

def setup() {
settingsFile = new File(testProjectDir, 'settings.gradle')
buildFile = new File(testProjectDir, 'build.gradle')

def "hello world task prints hello world"() {
given:
settingsFile << "rootProject.name = 'hello-world"'"
buildFile << """
task helloWorld {
dolLast {
println "Hello world!’
}
}

https://code.google.com/p/spock/

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArguments('helloWorld")
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWor1ld").outcome == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is
more complex in nature as external classes in a standalone project. The main driver behind this
approach is bundle the compiled code into a JAR file, publish it to a binary repository and reuse it
across various projects.

Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds
are executed in a separate process (i.e. not the same process executing the tests). Therefore, the test
build does not share the same classpath or classloaders as the test process and the code under test
is not implicitly available to the test build.

GradleRunner supports the same range of Gradle versions as the Tooling API. The

NOTE supported versions are defined in the compatibility matrix.

Builds with older Gradle versions may still work but there are no guarantees.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test
into the test build.

Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle
plugins. Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit.
When applied to a project, the plugin automatically adds the gradleTestKit() dependency to the
testApi configuration. Furthermore, it automatically generates the classpath for the code under test
and injects it via GradleRunner.withPluginClasspath() for any GradleRunner instance created by the
user. It’s important to note that the mechanism currently only works if the plugin under test is
applied using the plugins DSL. If the target Gradle version is prior to 2.8, automatic plugin classpath
injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the
classpath:

* Source set containing code under test: sourceSets.main

» Source set used for injecting the plugin classpath: sourceSets.test

java_gradle_plugin.pdf#java_gradle_plugin
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--

Any of these conventions can be reconfigured with the help of the class
GradlePluginDevelopmentExtension.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath
by using the standard conventions applied by the Java Gradle Plugin Development plugin.

Example 3. Using the Java Gradle Development plugin for generating the plugin metadata

build.gradle.kts

plugins {
groovy
‘java-gradle-plugin’

}

dependencies {
testImplementation("org.spockframework:spock-core:2.2-groovy-3.0") {
exclude(group = "org.codehaus.groovy")

}
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
}
build.gradle
plugins {
id "groovy'
id 'java-gradle-plugin’
I

dependencies {
testImplementation('org.spockframework:spock-core:2.2-groovy-3.0") {
exclude group: 'org.codehaus.groovy'

}

testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

Example: Automatically injecting the code under test classes into test builds

src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

def "hello world task prints hello world"() {
given:
settingsFile << "rootProject.name = 'hello-world""
buildFile << """
plugins {
id 'org.gradle.sample.helloworld'

https://docs.gradle.org/8.10/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
#ex-using-the-java-gradle-development-plugin-for-generating-the-plugin-metadata

}

when:

def result = GradleRunner.create()
.withProjectDir(testProjectDir)
.withArguments('helloWorld")
.withPluginClasspath()
.build()

then:
result.output.contains('Hello world!")
result.task(":helloWor1ld").outcome == SUCCESS

The following build script demonstrates how to reconfigure the conventions provided by the Java
Gradle Plugin Development plugin for a project that uses a custom Test source set.

NOTE A new configuration DSL for modeling the below functionalTest suite is available
via the incubating JVM Test Suite plugin.

Example 4. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

build.gradle.kts

plugins {
groovy
‘java-gradle-plugin’
}

val functionalTest = sourceSets.create("functionalTest")

val functionalTestTask = tasks.register<Test>("functionalTest") {
group = "verification"
testClassesDirs = functionalTest.output.classesDirs
classpath = functionalTest.runtimeClasspath
useJUnitPlatform()

+

tasks.check {
dependsOn(functionalTestTask)
}

gradlePlugin {
testSourceSets(functionalTest)

}

dependencies {
"functionalTestImplementation"("org.spockframework:spock-core:2.2-groovy-
3.0") {

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
#ex-reconfiguring-the-classpath-generation-conventions-of-the-java-gradle-development-plugin

exclude(group = "org.codehaus.groovy")

}

“functionalTestRuntimeOnly"("org.junit.platform:junit-platform-launcher")

build.gradle

plugins {

id "groovy'

id 'java-gradle-plugin’
}

def functionalTest = sourceSets.create('functionalTest"')

def functionalTestTask = tasks.register('functionalTest', Test) {
group = 'verification'
testClassesDirs = sourceSets.functionalTest.output.classesDirs
classpath = sourceSets.functionalTest.runtimeClasspath
useJUnitPlatform()

}

tasks.named("check") {
dependsOn functionalTestTask

}

gradlePlugin {
testSourceSets sourceSets.functionalTest

}

dependencies {
functionalTestImplementation('org.spockframework:spock-core:2.2-groovy-
3.0") {
exclude group: 'org.codehaus.groovy'

}

functionalTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'

Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working
directory” in a directory inside the JVM’s temp directory (i.e. the location specified by the
java.io.tmpdir system property, typically /tmp). Any configuration in the default Gradle User Home
(e.g. ~/.gradle/gradle.properties) is not used for test execution. The TestKit does not expose a
mechanism for fine grained control of all aspects of the environment (e.g., JDK). Future versions of
the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

The dedicated working directory is not deleted by the runner after the build. The TestKit provides
two ways to specify a location that is regularly cleaned, such as the project’s build folder:

* The org.gradle.testkit.dir system property;

¢ The GradleRunner.withTestKitDir(file testKitDir) method.

Setting the Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not
depend on all of Gradle’s implementation.

By default, the runner will attempt to find a Gradle distribution based on where the GradleRunner
class was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as
is the case when using the gradleTestKit() dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the test task of a
plugin project), the same distribution used to execute the tests will be used by the runner. When
using the runner as part of tests being executed by an IDE, the same distribution of Gradle that was
used when importing the project will be used. This means that the plugin will effectively be tested
with the same version of Gradle that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the
following GradleRunner methods:

* GradleRunner.withGradleVersion(java.lang.String)
* GradleRunner.withGradlelnstallation(java.io.File)
* GradleRunner.withGradleDistribution(java.net.URI)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Example: Specifying a Gradle version for test execution

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner

import static org.gradle.testkit.runner.TaskOutcome.*
import spock.lang.TempDir

import spock.lang.Specification

class BuildLogicFunctionalTest extends Specification {
File testProjectDir
File settingsFile
File buildFile

def setup() {
settingsFile = new File(testProjectDir, 'settings.gradle')
buildFile = new File(testProjectDir, 'build.gradle')

https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion-java.lang.String-
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation-java.io.File-
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution-java.net.URI-

def "can execute hello world task with Gradle version #gradleVersion"() {

given:

buildFile << """

task helloWorld {

dolast {

logger.quiet 'Hello world!'

}
}

settingsFile <<

when:

def result = GradleRunner.create()
.withGradleVersion(gradleVersion)
.withProjectDir(testProjectDir)
.withArquments('helloWorld")

.build()

then:

result.output.contains('Hello world!")
result.task(":helloWor1d").outcome == SUCCESS

where:

gradleVersion << ['5.0", '6.0.1']

Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some
runner features are not supported on earlier versions. In such cases, the runner will throw an
exception when attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Table 3. Gradle version compatibility

Feature

Inspecting executed tasks

Plugin classpath injection

Inspecting build output in
debug mode

Minimum Description

Version

2.5 Inspecting the executed tasks, using
BuildResult.getTasks() and similar methods.

2.8 Injecting the code under test
viaGradleRunner.withPluginClasspath(java.lang.Iterab
le).

2.9 Inspecting the build’s text output when run in debug

mode, using BuildResult.getOutput().

https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks--
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath-java.lang.Iterable-
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput--

Feature Minimum Description

Version
Automatic plugin classpath 2.13 Injecting the code under test automatically via
injection GradleRunner.withPluginClasspath() by applying the
Java Gradle Plugin Development plugin.
Setting environment 3.5 The Gradle Tooling API only supports setting
variables to be used by the environment variables in later versions.

build.

Debugging build logic

The runner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, executing
your tests in debug mode does not allow you to debug your build logic as you may expect. Any
breakpoints set in your IDE will be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

» Setting “org.gradle.testkit.debug” system property to true for the JVM using the GradleRunner
(i.e. not the build being executed with the runner);

* Calling the GradleRunner.withDebug(boolean) method.

The system property approach can be used when it is desirable to enable debugging support
without making an adhoc change to the runner configuration. Most IDEs offer the capability to set
JVM system properties for test execution, and such a feature can be used to set this system property.

Testing with the Build Cache

To enable the Build Cache in your tests, you can pass the --build-cache argument to GradleRunner
or use one of the other methods described in Enable the build cache. You can then check for the
task outcome TaskOutcome.FROM_CACHE when your plugin’s custom task is cached. This outcome
is only valid for Gradle 3.5 and newer.

Example: Testing cacheable tasks

BuildLogicFunctionalTest.groovy

def "cacheableTask is loaded from cache"() {
given:
buildFile << """
plugins {
id 'org.gradle.sample.helloworld'
}

when:
def result = runner()
.withArguments('--build-cache', 'cacheableTask')

https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath--
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug-boolean-
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html
https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/TaskOutcome.html#FROM_CACHE

.build()

then:
result.task(":cacheableTask").outcome == SUCCESS

when:

new File(testProjectDir, 'build').deleteDir()

result = runner()
.withArguments('--build-cache', 'cacheableTask')
.build()

then:
result.task(":cacheableTask").outcome == FROM_CACHE

Note that TestKit re-uses a Gradle User Home between tests (see
GradleRunner.withTestKitDir(java.io.File)) which contains the default location for the local build
cache. For testing with the build cache, the build cache directory should be cleaned between tests.
The easiest way to accomplish this is to configure the local build cache to use a temporary directory.

Example: Clean build cache between tests

BuildLogicFunctionalTest.groovy

File testProjectDir
File buildFile
File localBuildCacheDirectory

def setup() {
localBuildCacheDirectory = new File(testProjectDir, 'local-cache')
buildFile = new File(testProjectDir, 'settings.gradle') << """
buildCache {
local A
directory '${localBuildCacheDirectory.toURI()}'

}
}
buildFile = new File(testProjectDir, 'build.gradle")
}
Using Ant from Gradle

Gradle provides integration with Ant.

Gradle integrates with Ant, allowing you to use individual Ant tasks or entire Ant builds in your
Gradle builds. Using Ant tasks in a Gradle build script is often easier and more powerful than using
Ant’s XML format. Gradle can also be used as a powerful Ant task scripting tool.

Ant can be divided into two layers:

https://docs.gradle.org/8.10/javadoc/org/gradle/testkit/runner/GradleRunner.html#withTestKitDir-java.io.File-

1. Layer 1: The Ant language. It provides the syntax for the build.xml file, the handling of the
targets, special constructs like macrodefs, and more. In other words, this layer includes
everything except the Ant tasks and types. Gradle understands this language and lets you
import your Ant build.xml directly into a Gradle project. You can then use the targets of your
Ant build as if they were Gradle tasks.

2. Layer 2: The Ant tasks and types, like javac, copy or jar. For this layer, Gradle provides
integration using Groovy and the AntBuilder.

Since build scripts are Kotlin or Groovy scripts, you can execute an Ant build as an external
process. Your build script may contain statements like: "ant clean compile".execute()."”

Gradle’s Ant integration allows you to migrate your build from Ant to Gradle smoothly:

1. Begin by importing your existing Ant build.
2. Then, transition your dependency declarations from the Ant script to your build file.

3. Finally, move your tasks to your build file or replace them with Gradle’s plugins.

This migration process can be performed incrementally, and you can maintain a functional Gradle
build throughout the transition.

Ant integration is not fully compatible with the configuration cache. Using
WARNING Task.ant to run Ant task in the task action may work, but importing the Ant
build is not supported.

The Ant integration is provided by the AntBuilder API.

Using Ant tasks and types

Gradle provides a property called ant in your build script. This is a reference to an AntBuilder
instance.

AntBuilder is used to access Ant tasks, types, and properties from your build script.

You execute an Ant task by calling a method on the AntBuilder instance. You use the task name as
the method name:

build.gradle

ant.mkdir(dir: "$STAGE")
ant.copy(todir: "$STAGE/bin") {
ant.fileset(dir: 'bin', includes: "**")

}
ant.gzip(destfile:"build/file-${VERSION}.tar.gz", src: "build/file-${VERSION}.tar")

For example, you execute the Ant echo task using the ant.echo() method.

The attributes of the Ant task are passed as Map parameters to the method. Below is an example of
the echo task:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Task.html#getAnt--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/AntBuilder.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/AntBuilder.html

build.gradle.kts

tasks.register("hello") {
dolast {
val greeting = "hello from Ant"
ant.withGroovyBuilder {
"echo"("message" to greeting)

}

build.gradle

tasks.register('hello') {
dolast {
String greeting = "hello from Ant'
ant.echo(message: greeting)

$ gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

You can mix Groovy/Kotlin code and the Ant task markup. This can be extremely
powerful.

TIP

You pass nested text to an Ant task as a parameter of the task method call. In this example, we pass
the message for the echo task as nested text:

build.gradle.kts

tasks.register("hello") {
dolLast {
ant.withGroovyBuilder {
"echo"("message" to "hello from Ant")

}

build.gradle

tasks.register('hello') {
dolast {
ant.echo('hello from Ant')
}

$ gradle hello

> Task :hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same
way as tasks by calling a method with the same name as the element we want to define:

build.gradle.kts

tasks.register("zip") {
dolLast {
ant.withGroovyBuilder {
"zip"("destfile" to "archive.zip") {
"fileset"("dir" to "src") {
"include"("name" to "**.xml")
"exclude"("name" to "**.java")

build.gradle

tasks.register('zip') {
doLast {

ant.zip(destfile: 'archive.zip') {
fileset(dir: 'src') {
include(name: "**.xml")
exclude(name: '**.java')

You can access Ant types the same way you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can use directly in your build script. In
the following example, we create an Ant path object, then iterate over the contents of it:

build.gradle.kts

import org.apache.tools.ant.types.Path

tasks.register("list") {

dolLast {
val path = ant.withGroovyBuilder {
"path" {
"fileset"("dir" to "libs", "includes" to "*.jar")
¥
} as Path
path.list().forEach {
println(it)
}
}
}
build.gradle

tasks.register('list") {
dolast {
def path = ant.path {
fileset(dir: 'libs', includes: '*.jar')

}

path.list().each {
println it

}

Using custom Ant tasks

To make custom tasks available in your build, use the taskdef (usually easier) or typedef Ant task,
just as you would in a build.xml file. You can then refer to the custom Ant task as you would a built-
in Ant task:

build.gradle.kts

tasks.register("check") {
val checkstyleConfig = file("checkstyle.xml")
dolast {
ant.withGroovyBuilder {
"taskdef"("resource" to
"com/puppycrawl/tools/checkstyle/ant/checkstyle-ant-task.properties") {
"classpath" {
"fileset"("dir" to "libs", "includes" to "*.jar")
}

}
"checkstyle"("config" to checkstyleConfig) {

"fileset"("dir" to "src")

}

build.gradle

tasks.register('check') {
def checkstyleConfig = file('checkstyle.xml")
dolLast {
ant.taskdef(resource:
"com/puppycrawl/tools/checkstyle/ant/checkstyle-ant-task.properties') {
classpath {
fileset(dir: 'libs', includes: '*.jar')
}
}
ant.checkstyle(config: checkstyleConfig) {
fileset(dir: 'src')

}

You can use Gradle’s dependency management to assemble the classpath for the custom tasks. To
do this, you need to define a custom configuration for the classpath and add some dependencies to
it. This is described in more detail in Declaring Dependencies:

declaring_dependencies.html

build.gradle.kts
val pmd = configurations.create("pmd")

dependencies {
pmd(group = "pmd", name = "pmd", version = "4.2.5")

}

build.gradle

configurations {
pmd
}

dependencies {
pmd group: 'pmd', name:

pmd', version: '4.2.5'

}

To use the classpath configuration, use the asPath property of the custom configuration:

build.gradle.kts

tasks.register("check") {
dolLast {
ant.withGroovyBuilder {
"taskdef"("name" to "pmd",
"classname" to "net.sourceforge.pmd.ant.PMDTask",
"classpath" to pmd.asPath)
“pmd" ("shortFilenames" to true,
"failonruleviolation" to true,
"rulesetfiles" to file("pmd-rules.xml").toURI().toString())

"formatter"("type" to "text", "toConsole" to "true")
"fileset"("dir" to "src")

build.gradle

tasks.register('check') {
dolast {
ant.taskdef(name: 'pmd',
classname: 'net.sourceforge.pmd.ant.PMDTask',
classpath: configurations.pmd.asPath)
ant.pmd(shortFilenames: 'true',
failonruleviolation: 'true',
rulesetfiles: file('pmd-rules.xml').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: 'src')

Importing an Ant build

You can use the ant.importBuild() method to import an Ant build into your Gradle project.

When you import an Ant build, each Ant target is treated as a Gradle task. This means you can
manipulate and execute the Ant targets in the same way as Gradle tasks:

build.gradle.kts

ant.importBuild("build.xml")

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>
<target name="hello">
<echo>Hello, from Ant</echo>
</target>
</project>

$ gradle hello

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

You can add a task that depends on an Ant target:

build.gradle.kts
ant.importBuild("build.xml")

tasks.register("intro") {
dependsOn("hello")
dolast {
println("Hello, from Gradle")

}

build.gradle
ant.importBuild 'build.xml'

tasks.register('intro') {
dependsOn("hello")
dolast {
println 'Hello, from Gradle'

}

$ gradle intro

> Task :hello
[ant:echo] Hello, from Ant

> Task :intro
Hello, from Gradle

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Or, you can add behavior to an Ant target:

build.gradle.kts
ant.importBuild("build.xml")
tasks.named("hello") {
dolast {

println("Hello, from Gradle")
}

build.gradle
ant.importBuild 'build.xml'
hello {
dolLast {

println 'Hello, from Gradle'
}

$ gradle hello

> Task :hello

[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

It is also possible for an Ant target to depend on a Gradle task:

build.gradle.kts
ant.importBuild("build.xml")

tasks.register("intro") {
dolast {
println("Hello, from Gradle")
}

build.gradle
ant.importBuild 'build.xml'

tasks.register('intro') {
dolast {
println 'Hello, from Gradle'
}

build.xml

<project>
<target name="hello" depends="intro">
<echo>Hello, from Ant</echo>
</target>
</project>

$ gradle hello

> Task :intro
Hello, from Gradle

> Task :hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Sometimes, it may be necessary to “rename” the task generated for an Ant target to avoid a naming
collision with existing Gradle tasks. To do this, use the AntBuilder.importBuild(java.lang.Object,
org.gradle.api.Transformer) method:

build.gradle.kts

ant.importBuild("build.xml") { antTargetName ->

a-" + antTargetName

https://docs.gradle.org/8.10/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-

build.gradle

ant.importBuild('build.xml") { antTargetName ->

a-' + antTargetName

}
build.xml
<project>
<target name="hello">
<echo>Hello, from Ant</echo>
</target>
</project>

$ gradle a-hello

> Task :a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

While the second argument to this method should be a Transformer, when
programming in Groovy you can use a closure instead of an anonymous inner class
(or similar) due to Groovy’s support for automatically coercing closures to single-
abstract-method types.

NOTE

Using Ant properties and references
There are several ways to set an Ant property so that the property can be used by Ant tasks.

You can set the property directly on the AntBuilder instance. The Ant properties are also available
as a Map, which you can change.

You can also use the Ant property task:

https://docs.gradle.org/8.10/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

build.gradle.kts

ant.setProperty("buildDir", buildDir)
ant.properties.set("buildDir", buildDir)
ant.properties["buildDir"] = buildDir
ant.withGroovyBuilder {

"property"("name" to "buildDir", "location" to "buildDir")

}

build.gradle

ant.buildDir = buildDir

ant.properties.buildDir = buildDir
ant.properties['buildDir'] = buildDir
ant.property(name: 'buildDir', location: buildDir)

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the AntBuilder instance. The Ant properties are
also available as a Map:

build.xml

<property name="antProp" value="a property defined in an Ant build"/>

build.gradle.kts

println(ant.getProperty("antProp"))
println(ant.properties.get("antProp"))
println(ant.properties["antProp"])

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

build.gradle.kts
ant.withGroovyBuilder { "path"("id" to "classpath", "location" to "libs") }
ant.references.set("classpath”, ant.withGroovyBuilder { "path"("location" to
"1ibs") })

ant.references["classpath"] = ant.withGroovyBuilder { "path"("location" to
"libs") }

build.gradle
ant.path(id: 'classpath', location: 'libs")

ant.references.classpath = ant.path(location: 'libs")
ant.references['classpath'] = ant.path(location: 'libs")

build.xml

<path refid="classpath"/>

There are several ways to get an Ant reference:

build.xml

<path id="antPath" location="1ibs"/>

build.gradle.kts

println(ant.references.get("antPath"))
println(ant.references["antPath"])

build.gradle

println ant.references.antPath

println ant.references['antPath']

Using Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in
the Gradle output. By default, these are mapped as follows:

Ant Message Priority Gradle Log Level
VERBOSE DEBUG

DEBUG DEBUG

INFO INFO

WARN WARN

ERROR ERROR

Fine-tuning Ant logging

The default mapping of Ant message priority to the Gradle log level can sometimes be problematic.
For example, no message priority maps directly to the LIFECYCLE log level, which is the default for
Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages
from Gradle, a build would have to be run with the log level set to INFO, potentially logging much
more output than is desired.

Conversely, if an Ant task logs messages at too high of a level, suppressing those messages would
require the build to be run at a higher log level, such as QUIET. However, this could result in other
desirable outputs being suppressed.

To help with this, Gradle allows the user to fine-tune the Ant logging and control the mapping of
message priority to the Gradle log level. This is done by setting the priority that should map to the
default Gradle LIFECYCLE log level using the AntBuilder.setLifecycleLoglLevel(java.lang.String)
method. When this value is set, any Ant message logged at the configured priority or above will be
logged at least at LIFECYCLE. Any Ant message logged below this priority will be logged at INFO at
most.

For example, the following changes the mapping such that Ant INFO priority messages are exposed
at the LIFECYCLE log level:

build.gradle.kts
ant.lifecycleLoglLevel = AntBuilder.AntMessagePriority.INFO

tasks.register("hello") {
dolLast {
ant.withGroovyBuilder {
"echo"("level" to "info", "message" to "hello from info

https://docs.gradle.org/8.10/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel-java.lang.String-

priority!")
}
}

build.gradle
ant.lifecycleloglLevel = "INFQ"

tasks.register('hello') {
dolLast {
ant.echo(level: "info", message: "hello from info priority!"

}

$ gradle hello

> Task :hello
[ant:echo] hello from info priority!

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

On the other hand, if the lifecycleLoglevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the INFO level
and suppressed by default.

[1] Not compatible with the configuration cache.

[2] In Groovy you can execute Strings.

AUTHORING JVM BUILDS

Building Java & JVM projects

Gradle uses a convention-over-configuration approach to building JVM-based projects that borrows
several conventions from Apache Maven. In particular, it uses the same default directory structure
for source files and resources, and it works with Maven-compatible repositories.

We will look at Java projects in detail in this chapter, but most of the topics apply to other
supported JVM languages as well, such as Kotlin, Groovy and Scala. If you don’t have much
experience with building JVM-based projects with Gradle, take a look at the Java samples for step-
by-step instructions on how to build various types of basic Java projects.

The example in this section use the Java Library Plugin. However the described
NOTE features are shared by all JVM plugins. Specifics of the different plugins are
available in their dedicated documentation.

There are a number of hands-on samples that you can explore for Java, Groovy, Scala

TIP
and Kotlin.

Introduction

The simplest build script for a Java project applies the Java Library Plugin and optionally sets the
project version and selects the Java toolchain to use:

Example 5. Applying the Java Library Plugin

build.gradle.kts

plugins {
‘java-library®

}

java {
toolchain {
languageVersion = JavalanguageVersion.of(17)
}
}

version = "1.2.1"

build.gradle

plugins {
id 'java-library'

https://kotlinlang.org/docs/reference/using-gradle.html#targeting-the-jvm
../samples/index.html#java
../samples/index.html#java
../samples/index.html#groovy
../samples/index.html#scala
../samples/index.html#kotlin
#ex-applying-the-java-library-plugin

java {
toolchain {
languageVersion = JavalanguageVersion.of(17)

version = '1.2.1"

By applying the Java Library Plugin, you get a whole host of features:

* A compilelava task that compiles all the Java source files under sr¢/main/java
* A compileTestJava task for source files under src/test/java
* A test task that runs the tests from src/test/java

* A jar task that packages the main compiled classes and resources from sr¢/main/resources into a
single JAR named <project>-<version>.jar

* A javadoc task that generates Javadoc for the main classes

This isn’t sufficient to build any non-trivial Java project — at the very least, you’ll probably have
some file dependencies. But it means that your build script only needs the information that is
specific to your project.

Although the properties in the example are optional, we recommend that you
specify them in your projects. Configuring the toolchain protects against problems

NOTE with the project being built with different Java versions. The version string is
important for tracking the progression of the project. The project version is also
used in archive names by default.

The Java Library Plugin also integrates the above tasks into the standard Base Plugin lifecycle tasks:

* jar is attached to assemble

e test is attached to check

The rest of the chapter explains the different avenues for customizing the build to your
requirements. You will also see later how to adjust the build for libraries, applications, web apps
and enterprise apps.

Declaring your source files via source sets

Gradle’s Java support was the first to introduce a new concept for building source-based projects:
source sets. The main idea is that source files and resources are often logically grouped by type,
such as application code, unit tests and integration tests. Each logical group typically has its own
sets of file dependencies, classpaths, and more. Significantly, the files that form a source set don’t
have to be located in the same directory!

base_plugin.pdf#sec:base_tasks

Source sets are a powerful concept that tie together several aspects of compilation:

* the source files and where they’re located
* the compilation classpath, including any required dependencies (via Gradle configurations)

» where the compiled class files are placed

You can see how these relate to one another in this diagram:

I sourceSetCompileOnly ' | sourceSetImplementation I
(configuration) I | (configuration) I

Compilation

classpath

compileSourceSetJava Output directory

Figure 1. Source sets and Java compilation

The shaded boxes represent properties of the source set itself. On top of that, the Java Library
Plugin automatically creates a compilation task for every source set you or a plugin defines —
named compileSourceSetJava — and several dependency configurations.

The main source set

Most language plugins, Java included, automatically create a source set called main, which is used
for the project’s production code. This source set is special in that its name is not included in the
names of the configurations and tasks, hence why you have just a compilelava task and compileOnly
and implementation configurations rather than compileMainlava, mainCompileOnly and
mainImplementation respectively.

Java projects typically include resources other than source files, such as properties files, that may
need processing — for example by replacing tokens within the files — and packaging within the
final JAR. The Java Library Plugin handles this by automatically creating a dedicated task for each
defined source set called processSourceSetResources (or processResources for the main source set).
The following diagram shows how the source set fits in with this task:

glossary.pdf#sub:terminology_configuration
java_plugin.pdf#java_source_set_configurations

h

Resource files

processSourceSetJava Output directory

Figure 2. Processing non-source files for a source set

As before, the shaded boxes represent properties of the source set, which in this case comprises the
locations of the resource files and where they are copied to.

In addition to the main source set, the Java Library Plugin defines a test source set that represents
the project’s tests. This source set is used by the test task, which runs the tests. You can learn more
about this task and related topics in the Java testing chapter.

Projects typically use this source set for unit tests, but you can also use it for integration, acceptance
and other types of test if you wish. The alternative approach is to define a new source set for each
of your other test types, which is typically done for one or both of the following reasons:

* You want to keep the tests separate from one another for aesthetics and manageability

» The different test types require different compilation or runtime classpaths or some other
difference in setup

You can see an example of this approach in the Java testing chapter, which shows you how to set up
integration tests in a project.

You’ll learn more about source sets and the features they provide in:
* Customizing file and directory locations
» Configuring Java integration tests

Source set configurations

When a source set is created, it also creates a number of configurations as described above. Build
logic should not attempt to create or access these configurations until they are first created by the
source set.

When creating a source set, if one of these automatically created configurations already exists,
Gradle will emit a deprecation warning. If the existing configuration’s role is different than the role
that the source set would have assigned, its role will be mutated to the correct value and another
deprecation warning will be emitted.

The build below demonstrates this unwanted behavior.

Example 6. Configurations created prior to their associated source sets

build.gradle.kts

configurations {
val myCodeCompileClasspath: Configuration by creating

#ex-configurations-created-prior-to-their-associated-source-sets

sourceSets {
val myCode: SourceSet by creating

build.gradle

configurations {
myCodeCompileClasspath

}

sourceSets {
myCode

In this case, the following deprecation warning is emitted:

When creating configurations during sourceSet custom setup, Gradle found that

configuration customCompileClasspath already exists with permitted usage(s):
Consumable - this configuration can be selected by another project as a dependency
Resolvable - this configuration can be resolved by this project to a set of files
Declarable - this configuration can have dependencies added to it

Yet Gradle expected to create it with the usage(s):
Resolvable - this configuration can be resolved by this project to a set of files

Following two simple best practices will avoid this problem:

1. Don’t create configurations with names that will be used by source sets, such as names ending
in Api, Implementation, ApiElements, CompileOnly, CompileOnlyApi, RuntimeOnly, RuntimeClasspath or
RuntimeElements. (This list is not exhaustive.)

2. Create any custom source sets prior to any custom configurations.

Remember that any time you reference a configuration within the configurations container - with
or without supplying an initialization action - Gradle will create the configuration. Sometimes when
using the Groovy DSL this creation is not obvious, as in the example below, where
myCustomConfiguration is created prior to the call to extendsFrom.

Example 7. Custom Configuration creation in Groovy

build.gradle

configurations {
myCustomConfiguration.extendsFrom(implementation)

#ex-custom-configuration-creation-in-groovy

Managing your dependencies

The vast majority of Java projects rely on libraries, so managing a project’s dependencies is an
important part of building a Java project. Dependency management is a big topic, so we will focus
on the basics for Java projects here. If you’d like to dive into the detail, check out the introduction to
dependency management.

Specifying the dependencies for your Java project requires just three pieces of information:

* Which dependency you need, such as a name and version
* What it’s needed for, e.g. compilation or running

e Where to look for it

The first two are specified in a dependencies {} block and the third in a repositories {} block. For
example, to tell Gradle that your project requires version 3.6.7 of Hibernate Core to compile and
run your production code, and that you want to download the library from the Maven Central
repository, you can use the following fragment:

Example 8. Declaring dependencies

build.gradle.kts

repositories {
mavenCentral()

}

dependencies {
implementation("org.hibernate:hibernate-core:3.6.7.Final")

}

build.gradle

repositories {
mavenCentral()

}

dependencies {
implementation 'org.hibernate:hibernate-core:3.6.7.Final’

}

http://hibernate.org/
#ex-declaring-dependencies

The Gradle terminology for the three elements is as follows:

* Repository (ex: mavenCentral()) — where to look for the modules you declare as dependencies

* Configuration (ex: implementation) — a named collection of dependencies, grouped together for
a specific goal such as compiling or running a module — a more flexible form of Maven scopes

* Module coordinate (ex: org.hibernate:hibernate-core-3.6.7.Final) — the ID of the dependency,
usually in the form '<group>:<module>:<version>' (or '<groupld>:<artifactld>:<version>' in
Maven terminology)

You can find a more comprehensive glossary of dependency management terms here.
As far as configurations go, the main ones of interest are:
» compileOnly — for dependencies that are necessary to compile your production code but
shouldn’t be part of the runtime classpath
* implementation (supersedes compile) — used for compilation and runtime
* runtimeOnly (supersedes runtime) — only used at runtime, not for compilation
* testCompileOnly — same as compileOnly except it’s for the tests
* testImplementation — test equivalent of implementation

* testRuntimeOnly — test equivalent of runtimeOnly
You can learn more about these and how they relate to one another in the plugin reference chapter.

Be aware that the Java Library Plugin offers two additional configurations — api and
compileOnlyApi — for dependencies that are required for compiling both the module and any
modules that depend on it.

Why no compile configuration?

The Java Library Plugin has historically used the compile configuration for dependencies that are
required to both compile and run a project’s production code. It is now deprecated, and will issue
warnings when used, because it doesn’t distinguish between dependencies that impact the public
API of a Java library project and those that don’t. You can learn more about the importance of this
distinction in Building Java libraries.

We have only scratched the surface here, so we recommend that you read the dedicated
dependency management chapters once you’re comfortable with the basics of building Java
projects with Gradle. Some common scenarios that require further reading include:

* Defining a custom Maven- or Ivy-compatible repository

» Using dependencies from a local filesystem directory

* Declaring dependencies with changing (e.g. SNAPSHOT) and dynamic (range) versions

* Declaring a sibling project as a dependency

* Controlling transitive dependencies and their versions

» Testing your fixes to a 3rd-party dependency via composite builds (a better alternative to
publishing to and consuming from Maven Local)

glossary.pdf#dependency_management_terminology
java_plugin.pdf#sec:java_plugin_and_dependency_management
declaring_repositories_adv.pdf#sec:maven_repo
declaring_repositories_adv.pdf#sec:ivy_repositories
declaring_repositories_adv.pdf#sub:flat_dir_resolver
declaring_dependencies_adv.pdf#sub:project_dependencies
declaring_repositories_adv.pdf#sub:maven_local

Youw’ll discover that Gradle has a rich API for working with dependencies — one that takes time to
master, but is straightforward to use for common scenarios.

Compiling your code

Compiling both your production and test code can be trivially easy if you follow the conventions:

1
2.

Put your production source code under the sr¢/main/java directory
Put your test source code under src¢/test/java

Declare your production compile dependencies in the compileOnly or implementation
configurations (see previous section)

Declare your test compile dependencies in the testCompileOnly or testImplementation
configurations

Run the compileJava task for the production code and compileTestJ]ava for the tests

Other JVM language plugins, such as the one for Groovy, follow the same pattern of conventions.
We recommend that you follow these conventions wherever possible, but you don’t have to. There
are several options for customization, as you’ll see next.

Customizing file and directory locations

Imagine you have a legacy project that uses an src directory for the production code and test for the
test code. The conventional directory structure won’t work, so you need to tell Gradle where to find
the source files. You do that via source set configuration.

Each source set defines where its source code resides, along with the resources and the output
directory for the class files. You can override the convention values by using the following syntax:

Example 9. Declaring custom source directories

build.gradle.kts

sourceSets {

main {
java {
setSreDirs(listOf("src"))
}
}
test {
java {
setSreDirs(listOf("test"))
}
}

#ex-declaring-custom-source-directories

build.gradle

sourceSets {

main {
java {
sreDirs = ['src']
}
}
test {
java {
srcDirs = ["test']
}
}

Now Gradle will only search directly in src and test for the respective source code. What if you
don’t want to override the convention, but simply want to add an extra source directory, perhaps
one that contains some third-party source code you want to keep separate? The syntax is similar:

Example 10. Declaring custom source directories additively

build.gradle.kts

sourceSets {

main {
java {
srcDir("thirdParty/src/main/java")
}
}
}
build.gradle

sourceSets {
main {
java {
srcDir 'thirdParty/src/main/java’

}

#ex-declaring-custom-source-directories-additively

Crucially, we’re using the method srcDir() here to append a directory path, whereas setting the
srcDirs property replaces any existing values. This is a common convention in Gradle: setting a
property replaces values, while the corresponding method appends values.

You can see all the properties and methods available on source sets in the DSL reference for
SourceSet and SourceDirectorySet. Note that srcDirs and srcDir() are both on SourceDirectorySet.

Changing compiler options

Most of the compiler options are accessible through the corresponding task, such as compileJava
and compileTestJava. These tasks are of type JavaCompile, so read the task reference for an up-to-
date and comprehensive list of the options.

For example, if you want to use a separate JVM process for the compiler and prevent compilation
failures from failing the build, you can use this configuration:

Example 11. Setting Java compiler options

build.gradle.kts
tasks.compileJava {
options.isIncremental = true

options.isFork = true
options.isFailOnError = false

build.gradle

compilelava {

options.incremental = true
options.fork = true
options.failOnError = false

That’s also how you can change the verbosity of the compiler, disable debug output in the byte code
and configure where the compiler can find annotation processors.

Targeting a specific Java version

By default, Gradle will compile Java code to the language level of the JVM running Gradle. If you
need to target a specific version of Java when compiling, Gradle provides multiple options:

1. Using Java toolchains is a preferred way to target a language version.
A toolchain uniformly handles compilation, execution and Javadoc generation, and it can be
configured on the project level.

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.SourceSet.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.file.SourceDirectorySet.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.compile.JavaCompile.html
#ex-setting-java-compiler-options

2. Using release property is possible starting from Java 10.
Selecting a Java release makes sure that compilation is done with the configured language level
and against the JDK APIs from that Java version.

3. Using sourceCompatibility and targetCompatibility properties.
Although not generally advised, these options were historically used to configure the Java
version during compilation.

Using toolchains

When Java code is compiled using a specific toolchain, the actual compilation is carried out by a
compiler of the specified Java version. The compiler provides access to the language features and
JDK APIs for the requested Java language version.

In the simplest case, the toolchain can be configured for a project using the java extension. This
way, not only compilation benefits from it, but also other tasks such as test and javadoc will also
consistently use the same toolchain.

build.gradle.kts

java {
toolchain {
languageVersion = JavalanguageVersion.of(17)

build.gradle

java {
toolchain {
languageVersion = JavalanguageVersion.of(17)

You can learn more about this in the Java toolchains guide.

Using Java release version

Setting the release flag ensures the specified language level is used regardless of which compiler
actually performs the compilation. To use this feature, the compiler must support the requested
release version. It is possible to specify an earlier release version while compiling with a more
recent toolchain.

Gradle supports using the release flag from Java 10. It can be configured on the compilation task as
follows.

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:release
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:release

Example 12. Setting Java release flag

build.gradle.kts

tasks.compileJava {
options.release = 7

}

build.gradle

compileJava {
options.release = 7

}

The release flag provides guarantees similar to toolchains. It validates that the Java sources are not
using language features introduced in later Java versions, and also that the code does not access
APIs from more recent JDKs. The bytecode produced by the compiler also corresponds to the
requested Java version, meaning that the compiled code cannot be executed on older JVMs.

The release option of the Java compiler was introduced in Java 9. However, using this option with
Gradle is only possible starting with Java 10, due to a bug in Java 9.

Using Java compatibility options

Using compatibility properties can lead to runtime failures when executing
WARNING compiled code due to weaker guarantees they provide. Instead, consider using
toolchains or the release flag.

The sourceCompatibility and targetCompatibility options correspond to the Java compiler options
-source and -target. They are considered a legacy mechanism for targeting a specific Java version.
However, these options do not protect against the use of APIs introduced in later Java versions.

sourceCompatibility

Defines the language version of Java used in your source files.

targetCompatibility
Defines the minimum JVM version your code should run on, i.e. it determines the version of the
bytecode generated by the compiler.

These options can be set per JavaCompile task, or on the java { } extension for all compile tasks,
using properties with the same names.

Targeting Java 6 and Java 7

Gradle itself can only run on a JVM with Java version 8 or higher. However, Gradle still supports

#ex-setting-java-release-flag
https://bugs.openjdk.java.net/browse/JDK-8139607
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.compile.JavaCompile.html

compiling, testing, generating Javadocs and executing applications for Java 6 and Java 7. Java 5 and
below are not supported.

NOTE If using Java 10+, leveraging the release flag might be an easier solution, see above.

To use Java 6 or Java 7, the following tasks need to be configured:

* JavaCompile task to fork and use the correct Java home
* Javadoc task to use the correct javadoc executable

* Test and the JavaExec task to use the correct java executable.
With the usage of Java toolchains, this can be done as follows:

Example 13. Configuring Java 7 build

build.gradle.kts

java {
toolchain {
languageVersion = JavalanguageVersion.of(7)

build.gradle

java {
toolchain {
languageVersion = JavalanguageVersion.of(7)

The only requirement is that Java 7 is installed and has to be either in a location Gradle can detect
automatically or explicitly configured.

Compiling independent sources separately

Most projects have at least two independent sets of sources: the production code and the test code.
Gradle already makes this scenario part of its Java convention, but what if you have other sets of
sources? One of the most common scenarios is when you have separate integration tests of some
form or other. In that case, a custom source set may be just what you need.

You can see a complete example for setting up integration tests in the Java testing chapter. You can
set up other source sets that fulfil different roles in the same way. The question then becomes:
when should you define a custom source set?

#ex-configuring-java-7-build

To answer that question, consider whether the sources:

1. Need to be compiled with a unique classpath
2. Generate classes that are handled differently from the main and test ones

3. Form a natural part of the project

If your answer to both 3 and either one of the others is yes, then a custom source set is probably the
right approach. For example, integration tests are typically part of the project because they test the
code in main. In addition, they often have either their own dependencies independent of the test
source set or they need to be run with a custom Test task.

Other common scenarios are less clear cut and may have better solutions. For example:

» Separate API and implementation JARs — it may make sense to have these as separate projects,
particularly if you already have a multi-project build

* Generated sources — if the resulting sources should be compiled with the production code, add
their path(s) to the main source set and make sure that the compilelava task depends on the task
that generates the sources

If you’re unsure whether to create a custom source set or not, then go ahead and do so. It should be
straightforward and if it’s not, then it’s probably not the right tool for the job.

Managing resources

Many Java projects make use of resources beyond source files, such as images, configuration files
and localization data. Sometimes these files simply need to be packaged unchanged and sometimes
they need to be processed as template files or in some other way. Either way, the Java Library
Plugin adds a specific Copy task for each source set that handles the processing of its associated
resources.

The task’s name follows the convention of processSourceSetResources — or processResources for the
main source set — and it will automatically copy any files in src/[sourceSet]/resources to a directory
that will be included in the production JAR. This target directory will also be included in the
runtime classpath of the tests.

Since processResources is an instance of the ProcessResources task, you can perform any of the
processing described in the Working With Files chapter.

Java properties files and reproducible builds

You can easily create Java properties files via the WriteProperties task, which fixes a well-known
problem with Properties.store() that can reduce the usefulness of incremental builds.

The standard Java API for writing properties files produces a unique file every time, even when the
same properties and values are used, because it includes a timestamp in the comments. Gradle’s
WriteProperties task generates exactly the same output byte-for-byte if none of the properties have
changed. This is achieved by a few tweaks to how a properties file is generated:

* no timestamp comment is added to the output

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.WriteProperties.html

* the line separator is system independent, but can be configured explicitly (it defaults to '\n")
* the properties are sorted alphabetically
Sometimes it can be desirable to recreate archives in a byte for byte way on different machines. You

want to be sure that building an artifact from source code produces the same result, byte for byte,
no matter when and where it is built. This is necessary for projects like reproducible-builds.org.

These tweaks not only lead to better incremental build integration, but they also help with
reproducible builds. In essence, reproducible builds guarantee that you will see the same results
from a build execution — including test results and production binaries — no matter when or on
what system you run it.

Running tests

Alongside providing automatic compilation of unit tests in sr¢/test/java, the Java Library Plugin has
native support for running tests that use JUnit 3, 4 & 5 (JUnit 5 support came in Gradle 4.6) and
TestNG. You get:

* An automatic test task of type Test, using the test source set

* An HTML test report that includes the results from all Test tasks that run

Easy filtering of which tests to run
* Fine-grained control over how the tests are run
» The opportunity to create your own test execution and test reporting tasks
You do not get a Test task for every source set you declare, since not every source set represents

tests! That’'s why you typically need to create your own Test tasks for things like integration and
acceptance tests if they can’t be included with the test source set.

As there is a lot to cover when it comes to testing, the topic has its own chapter in which we look at:

* How tests are run

» How to run a subset of tests via filtering

* How Gradle discovers tests

* How to configure test reporting and add your own reporting tasks

* How to make use of specific JUnit and TestNG features

You can also learn more about configuring tests in the DSL reference for Test.

Packaging and publishing

How you package and potentially publish your Java project depends on what type of project it is.
Libraries, applications, web applications and enterprise applications all have differing
requirements. In this section, we will focus on the bare bones provided by the Java Library Plugin.

By default, the Java Library Plugin provides the jar task that packages all the compiled production
classes and resources into a single JAR. This JAR is also automatically built by the assemble task.

https://reproducible-builds.org
https://docs.gradle.org/4.6/release-notes.html#junit-5-support
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html

Furthermore, the plugin can be configured to provide the javadocJar and sourcesJar tasks to
package Javadoc and source code if so desired. If a publishing plugin is used, these tasks will
automatically run during publishing or can be called directly.

Example 14. Configure a project to publish Javadoc and sources

build.gradle.kts

java {
withJavadocJar()
withSourcesJar()

build.gradle

java {
withJavadoclar()
withSourcesJar()

If you want to create an 'uber' (AKA 'fat’) JAR, then you can use a task definition like this:

Example 15. Creating a Java uber or fat JAR

build.gradle.kts

plugins {
java

}
version = "1.0.0"

repositories {
mavenCentral()

}

dependencies {
implementation("commons-io:commons-i0:2.6")

}

tasks.register<Jar>("uberJar") {
archiveClassifier = "uber"

from(sourceSets.main.get().output)

#ex-configure-a-project-to-publish-javadoc-and-sources
#ex-creating-a-java-uber-or-fat-jar

dependsOn(configurations.runtimeClasspath)
from({
configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
})
}

build.gradle

plugins {
id 'java'

}

version = '1.0.0'

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-i0:2.6'

}

tasks.register('uberJar', Jar) {
archiveClassifier = 'uber'

from sourceSets.main.output

dependsOn configurations.runtimeClasspath
from {
configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }

}
}

See Jar for more details on the configuration options available to you. And note that you need to use
archiveClassifier rather than archiveAppendix here for correct publication of the JAR.

You can use one of the publishing plugins to publish the JARs created by a Java project:
* Maven Publish Plugin

* Ivy Publish Plugin

Modifying the JAR manifest

Each instance of the Jar, War and Ear tasks has a manifest property that allows you to customize the

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Jar.html

MANIFEST.MF file that goes into the corresponding archive. The following example demonstrates
how to set attributes in the JAR’s manifest:

Example 16. Customization of MANIFEST.MF

build.gradle.kts
tasks.jar {
manifest {
attributes(
“Implementation-Title" to "Gradle",
"Implementation-Version" to archiveVersion
)
}
}
build.gradle
jar {
manifest {

attributes("Implementation-Title": "Gradle",
"Implementation-Version": archiveVersion)

See Manifest for the configuration options it provides.

You can also create standalone instances of Manifest. One reason for doing so is to share manifest
information between JARs. The following example demonstrates how to share common attributes

between JARs:

Example 17. Creating a manifest object.

build.gradle.kts

val sharedManifest = java.manifest {
attributes (
"Implementation-Title" to "Gradle",
"Implementation-Version" to version

tasks.register<Jar>("fooJar") {
manifest = java.manifest {
from(sharedManifest)

#ex-customization-of-manifest-mf
https://docs.gradle.org/8.10/javadoc/org/gradle/api/java/archives/Manifest.html
#ex-creating-a-manifest-object

build.gradle

def sharedManifest = java.manifest {
attributes("Implementation-Title": "Gradle",
"Implementation-Version": version)
}
tasks.register('fooJar', Jar) {
manifest = java.manifest {
from sharedManifest

}

Another option available to you is to merge manifests into a single Manifest object. Those source
manifests can take the form of a text for or another Manifest object. In the following example, the
source manifests are all text files except for sharedManifest, which is the Manifest object from the
previous example:

Example 18. Separate MANIFEST.MF for a particular archive

build.gradle.kts

tasks.register<Jar>("barJar") {
manifest {

attributes("key1" to "valuel")

from(sharedManifest, "src/config/basemanifest.txt")

from(1ist0f("src/config/javabasemanifest.txt",
"src/config/libbasemanifest.txt")) {

eachEntry(Action<ManifestMergeDetails> {
if (baseValue != mergeValue) {
value = baseValue

}

if (key == "foo") {
exclude()

}

}

#ex-separate-manifest-mf-for-a-particular-archive

build.gradle

tasks.register('barJar', Jar) {
manifest {

attributes keyl: 'valuel'

from sharedManifest, 'src/config/basemanifest.txt'

from(['src/config/javabasemanifest.txt',
'src/config/libbasemanifest.txt']) {

eachEntry { details ->
if (details.baseValue != details.mergeValue) {
details.value = baseValue

}

if (details.key == 'foo') {
details.exclude()

}

Manifests are merged in the order they are declared in the from statement. If the base manifest and
the merged manifest both define values for the same key, the merged manifest wins by default. You
can fully customize the merge behavior by adding eachEntry actions in which you have access to a
ManifestMergeDetails instance for each entry of the resulting manifest. Note that the merge is done
lazily, either = when generating the JAR or when Manifest.writeTo() or
Manifest.getEffectiveManifest() are called.

Speaking of writeTo(), you can use that to easily write a manifest to disk at any time, like so:

Example 19. Saving a MANIFEST.MF to disk

build.gradle.kts

tasks.jar { manifest.writeTo(layout.buildDirectory.file("mymanifest.mf")) }

build.gradle

tasks.named('jar') { manifest.writeTo(layout.buildDirectory.file(
‘mymanifest.mf')) }

https://docs.gradle.org/8.10/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
#ex-saving-a-manifest-mf-to-disk

Generating API documentation

The Java Library Plugin provides a javadoc task of type Javadoc, that will generate standard
Javadocs for all your production code, i.e. whatever source is in the main source set. The task
supports the core Javadoc and standard doclet options described in the Javadoc reference
documentation. See CoreJavadocOptions and Standard]JavadocDocletOptions for a complete list of
those options.

As an example of what you can do, imagine you want to use Asciidoc syntax in your Javadoc
comments. To do this, you need to add Asciidoclet to Javadoc’s doclet path. Here’s an example that
does just that:

Example 20. Using a custom doclet with Javadoc

build.gradle.kts
val asciidoclet by configurations.creating

dependencies {
asciidoclet("org.asciidoctor:asciidoclet:1.+")

}

tasks.register("configureJavadoc") {
dolLast {
tasks.javadoc {
options.doclet = "org.asciidoctor.Asciidoclet"”
options.docletpath = asciidoclet.files.tolist()

tasks.javadoc {
dependsOn("configurelavadoc")

}

build.gradle

configurations {
asciidoclet

}

dependencies {
asciidoclet 'org.asciidoctor:asciidoclet:1.+'

}

tasks.register('configurelavadoc') {
dolast {
javadoc {

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#options
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#options
https://docs.gradle.org/8.10/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
https://docs.gradle.org/8.10/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
#ex-using-a-custom-doclet-with-javadoc

options.doclet = 'org.asciidoctor.Asciidoclet’
options.docletpath = configurations.asciidoclet.files.tolList()

}
}
}
javadoc {
dependsOn configureJavadoc
}

You don’t have to create a configuration for this, but it’s an elegant way to handle dependencies
that are required for a unique purpose.

You might also want to create your own Javadoc tasks, for example to generate API docs for the
tests:

Example 21. Defining a custom Javadoc task

build.gradle.kts

tasks.register<Javadoc>("testJavadoc") {
source = sourceSets.test.get().allJava

}

build.gradle

tasks.register('testJavadoc', Javadoc) {
source = sourceSets.test.allJlava

}

These are just two non-trivial but common customizations that you might come across.

Cleaning the build

The Java Library Plugin adds a clean task to your project by virtue of applying the Base Plugin. This
task simply deletes everything in the layout.buildDirectory directory, hence why you should always
put files generated by the build in there. The task is an instance of Delete and you can change what
directory it deletes by setting its dir property.

Building JVM components

All of the specific JVM plugins are built on top of the Java Plugin. The examples above only
illustrated concepts provided by this base plugin and shared with all JVM plugins.

#ex-defining-a-custom-javadoc-task
base_plugin.pdf#base_plugin
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Delete.html
java_plugin.pdf#java_plugin

Read on to understand which plugins fits which project type, as it is recommended to pick a specific
plugin instead of applying the Java Plugin directly.

Building Java libraries

The unique aspect of library projects is that they are used (or "consumed") by other Java projects.
That means the dependency metadata published with the JAR file — usually in the form of a Maven
POM — is crucial. In particular, consumers of your library should be able to distinguish between
two different types of dependencies: those that are only required to compile your library and those
that are also required to compile the consumer.

Gradle manages this distinction via the Java Library Plugin, which introduces an api configuration
in addition to the implementation one covered in this chapter. If the types from a dependency
appear in public fields or methods of your library’s public classes, then that dependency is exposed
via your library’s public API and should therefore be added to the api configuration. Otherwise, the
dependency is an internal implementation detail and should be added to implementation.

If you’re unsure of the difference between an API and implementation dependency, the Java
Library Plugin chapter has a detailed explanation. In addition, you can explore a basic, practical
sample of building a Java library.

Building Java applications

Java applications packaged as a JAR aren’t set up for easy launching from the command line or a
desktop environment. The Application Plugin solves the command line aspect by creating a
distribution that includes the production JAR, its dependencies and launch scripts Unix-like and
Windows systems.

See the plugin’s chapter for more details, but here’s a quick summary of what you get:

* assemble creates ZIP and TAR distributions of the application containing everything needed to
run it

* A run task that starts the application from the build (for easy testing)

 Shell and Windows Batch scripts to start the application

You can see a basic example of building a Java application in the corresponding sample.

Building Java web applications

Java web applications can be packaged and deployed in a number of ways depending on the
technology you use. For example, you might use Spring Boot with a fat JAR or a Reactive-based
system running on Netty. Whatever technology you use, Gradle and its large community of plugins
will satisfy your needs. Core Gradle, though, only directly supports traditional Servlet-based web
applications deployed as WAR files.

That support comes via the War Plugin, which automatically applies the Java Plugin and adds an
extra packaging step that does the following:

 Copies static resources from sr¢/main/webapp into the root of the WAR

../samples/sample_building_java_libraries.html
../samples/sample_building_java_applications.html
https://projects.spring.io/spring-boot/
https://www.reactivemanifesto.org/
https://netty.io/
war_plugin.pdf#war_plugin

* Copies the compiled production classes into a WEB-INF/classes subdirectory of the WAR
» Copies the library dependencies into a WEB-INF/lib subdirectory of the WAR

This is done by the war task, which effectively replaces the jar task — although that task remains
—and is attached to the assemble lifecycle task. See the plugin’s chapter for more details and
configuration options.

There is no core support for running your web application directly from the build, but we do
recommend that you try the Gretty community plugin, which provides an embedded Servlet
container.

Building Java EE applications

Java enterprise systems have changed a lot over the years, but if you’re still deploying to JEE
application servers, you can make use of the Ear Plugin. This adds conventions and a task for
building EAR files. The plugin’s chapter has more details.

Building Java Platforms

A Java platform represents a set of dependency declarations and constraints that form a cohesive
unit to be applied on consuming projects. The platform has no source and no artifact of its own. It
maps in the Maven world to a BOM.

The support comes via the Java Platform plugin, which sets up the different configurations and
publication components.

NOTE This plugin is the exception as it does not apply the Java Plugin.

Enabling Java preview features

Using a Java preview feature is very likely to make your code incompatible
with that compiled without a feature preview. As a consequence, we strongly
recommend you not to publish libraries compiled with preview features and
restrict the use of feature previews to toy projects.

WARNING

To enable Java preview features for compilation, test execution and runtime, you can use the
following DSL snippet:

Example 22. Enabling Java feature preview

build.gradle.kts

tasks.withType<JavaCompile>().configureEach {
options.compilerArgs.add("--enable-preview")

}

tasks.withType<Test>().configureEach {
jvmArgs("--enable-preview")

https://plugins.gradle.org/plugin/org.gretty
ear_plugin.pdf#ear_plugin
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management
https://openjdk.java.net/jeps/12
#ex-enabling-java-feature-preview

}

tasks.withType<JavaExec>().configureEach {
jvmArgs("--enable-preview")

}

build.gradle

tasks.withType(JavaCompile).configureEach {
options.compilerArgs += "--enable-preview"

}

tasks.withType(Test).configureEach {
jvmArgs += "--enable-preview"

}

tasks.withType(JavaExec).configureEach {
jvmArgs += "--enable-preview"

}

Building other JVM language projects

If you want to leverage the multi language aspect of the JVM, most of what was described here will
still apply.

Gradle itself provides Groovy and Scala plugins. The plugins automatically apply support for
compiling Java code and can be further enhanced by combining them with the java-library plugin.

Compilation dependency between languages

These plugins create a dependency between Groovy/Scala compilation and Java compilation (of
source code in the java folder of a source set). You can change this default behavior by adjusting the
classpath of the involved compile tasks as shown in the following example:

Example 23. Changing the classpath of compile tasks

build.gradle.kts

tasks.named<AbstractCompile>("compileGroovy") {
// Groovy only needs the declared dependencies
// (and not longer the output of compileJava)
classpath = sourceSets.main.get().compileClasspath
by
tasks.named<AbstractCompile>("compileJava") {
// Java also depends on the result of Groovy compilation

#ex-changing-the-classpath-of-compile-tasks

// (which automatically makes it depend of compileGroovy)
classpath += files(sourceSets.main.get().groovy.classesDirectory)

build.gradle

tasks.named('compileGroovy') {
// Groovy only needs the declared dependencies
// (and not longer the output of compileJava)
classpath = sourceSets.main.compileClasspath

}

tasks.named('compileJava') {
// Java also depends on the result of Groovy compilation
// (which automatically makes it depend of compileGroovy)
classpath += files(sourceSets.main.groovy.classesDirectory)

1. By setting the compileGroovy classpath to be only sourceSets.main.compileClasspath, we
effectively remove the previous dependency on compilelava that was declared by having the
classpath also take into consideration sourceSets.main.java.classesDirectory

2. By adding sourceSets.main.groovy.classesDirectory to the compileJava classpath, we effectively

declare a dependency on the compileGroovy task

All of this is possible through the use of directory properties.

Extra language support

Beyond core Gradle, there are other great plugins for more JVM languages!

Testing in Java & JVM projects

Testing on the JVM is a rich subject matter. There are many different testing libraries and
frameworks, as well as many different types of test. All need to be part of the build, whether they
are executed frequently or infrequently. This chapter is dedicated to explaining how Gradle
handles differing requirements between and within builds, with significant coverage of how it
integrates with the two most common testing frameworks: JUnit and TestNG.

It explains:

* Ways to control how the tests are run (Test execution)
* How to select specific tests to run (Test filtering)
* What test reports are generated and how to influence the process (Test reporting)

 How Gradle finds tests to run (Test detection)

https://plugins.gradle.org/search?term=jvm
https://junit.org/
https://testng.org/

* How to make use of the major frameworks' mechanisms for grouping tests together (Test
grouping)

But first, let’s look at the basics of JVM testing in Gradle.

A new configuration DSL for modeling test execution phases is available via the

NOTE
incubating JVM Test Suite plugin.

The basics

All JVM testing revolves around a single task type: Test. This runs a collection of test cases using any
supported test library — JUnit, JUnit Platform or TestNG — and collates the results. You can then
turn those results into a report via an instance of the TestReport task type.

In order to operate, the Test task type requires just two pieces of information:

* Where to find the compiled test classes (property: Test.getTestClassesDirs())

* The execution classpath, which should include the classes under test as well as the test library
that you’re using (property: Test.getClasspath())

When you’re using a JVM language plugin — such as the Java Plugin — you will automatically get
the following:

e A dedicated test source set for unit tests

* A test task of type Test that runs those unit tests

The JVM language plugins use the source set to configure the task with the appropriate execution
classpath and the directory containing the compiled test classes. In addition, they attach the test
task to the check lifecycle task.

It’s also worth bearing in mind that the test source set automatically creates corresponding
dependency configurations — of which the most useful are testImplementation and testRuntimeOnly
— that the plugins tie into the test task’s classpath.

All you need to do in most cases is configure the appropriate compilation and runtime
dependencies and add any necessary configuration to the test task. The following example shows a
simple setup that uses JUnit Platform and changes the maximum heap size for the tests' JVM to 1
gigabyte:

Example 24. A basic configuration for the 'test’ task

build.gradle.kts

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
testRuntimeOnly("org.junit.platform:junit-platform-Tlauncher")
}

tasks.named<Test>("test") {

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.TestReport.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:classpath
java_plugin.pdf#java_plugin
organizing_tasks.pdf#sec:lifecycle_tasks
java_plugin.pdf#java_source_set_configurations
java_plugin.pdf#java_source_set_configurations
#ex-a-basic-configuration-for-the-test-task

useJUnitPlatform()
maxHeapSize = "1G6"

testlogging {
events("passed")

}

build.gradle

dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1"
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

tasks.named('test', Test) {
useJUnitPlatform()

maxHeapSize = '1G'

testlogging {
events "passed"

}

The Test task has many generic configuration options as well as several framework-specific ones
that you can find described in JUnitOptions, JUnitPlatformOptions and TestNGOptions. We cover a
significant number of them in the rest of the chapter.

If you want to set up your own Test task with its own set of test classes, then the easiest approach is
to create your own source set and Test task instance, as shown in Configuring integration tests.

Test execution

Gradle executes tests in a separate (‘forked') JVM, isolated from the main build process. This
prevents classpath pollution and excessive memory consumption for the build process. It also
allows you to run the tests with different JVM arguments than the build is using.

You can control how the test process is launched via several properties on the Test task, including
the following:

maxParallelForks — default: 1

You can run your tests in parallel by setting this property to a value greater than 1. This may
make your test suites complete faster, particularly if you run them on a multi-core CPU. When
using parallel test execution, make sure your tests are properly isolated from one another. Tests

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/junit/JUnitOptions.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/junitplatform/JUnitPlatformOptions.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html

that interact with the filesystem are particularly prone to conflict, causing intermittent test
failures.

Your tests can distinguish between parallel test processes by using the value of the
org.gradle.test.worker property, which is unique for each process. You can use this for anything
you want, but it’s particularly useful for filenames and other resource identifiers to prevent the
kind of conflict we just mentioned.

forkEvery — default: 0 (no maximum)

This property specifies the maximum number of test classes that Gradle should run on a test
process before its disposed of and a fresh one created. This is mainly used as a way to manage
leaky tests or frameworks that have static state that can’t be cleared or reset between tests.

Warning: a low value (other than 0) can severely hurt the performance of the tests

ignoreFailures — default: false

If this property is true, Gradle will continue with the project’s build once the tests have
completed, even if some of them have failed. Note that, by default, the Test task always executes
every test that it detects, irrespective of this setting.

failFast — (since Gradle 4.6) default: false

Set this to true if you want the build to fail and finish as soon as one of your tests fails. This can
save a lot of time when you have a long-running test suite and is particularly useful when
running the build on continuous integration servers. When a build fails before all tests have run,
the test reports only include the results of the tests that have completed, successfully or not.

You can also enable this behavior by using the --fail-fast command line option, or disable it
respectively with --no-fail-fast.

testLogging — default: not set

This property represents a set of options that control which test events are logged and at what
level. You can also configure other logging behavior via this property. See TestLoggingContainer
for more detail.

dryRun — default: false

If this property is true, Gradle will simulate the execution of the tests without actually running
them. This will still generate reports, allowing for inspection of what tests were selected. This
can be used to verify that your test filtering configuration is correct without actually running the
tests.

You can also enable this behavior by using the --test-dry-run command-line option, or disable it
respectively with --no-test-dry-run.

See Test for details on all the available configuration options.

The test process can exit unexpectedly if configured incorrectly. For instance, if the Java executable
does not exist or an invalid JVM argument is provided, the test process will fail to start. Similarly, if
a test makes programmatic changes to the test process, this can also cause unexpected failures.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html

For example, issues may occur if a SecurityManager is modified in a test because Gradle’s internal
messaging depends on reflection and socket communication, which may be disrupted if the
permissions on the security manager change. In this particular case, you should restore the original
SecurityManager after the test so that the gradle test worker process can continue to function.

Test filtering

It’s a common requirement to run subsets of a test suite, such as when you’re fixing a bug or
developing a new test case. Gradle provides two mechanisms to do this:

* Filtering (the preferred option)

* Test inclusion/exclusion

Filtering supersedes the inclusion/exclusion mechanism, but you may still come across the latter in
the wild.

With Gradle’s test filtering you can select tests to run based on:
* A fully-qualified class name or fully qualified method name, e.g. org.gradle.SomeTest,

org.gradle.SomeTest.someMethod

* A simple class name or method name if the pattern starts with an upper-case letter, e.g.
SomeTest, SomeTest.someMethod (since Gradle 4.7)

* "' wildcard matching

You can enable filtering either in the build script or via the --tests command-line option. Here’s an
example of some filters that are applied every time the build runs:

Example 25. Filtering tests in the build script

build.gradle.kts

tasks.test {
filter {
//include specific method in any of the tests
includeTestsMatching("*UiCheck")

//include all tests from package
includeTestsMatching("org.gradle.internal.*")

//include all integration tests
includeTestsMatching("*IntegTest")

https://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html
#ex-filtering-tests-in-the-build-script

build.gradle

test {
filter {
//include specific method in any of the tests
includeTestsMatching "*UiCheck"
//include all tests from package
includeTestsMatching "org.gradle.internal.*"
//include all integration tests
includeTestsMatching "*IntegTest"
}
}

For more details and examples of declaring filters in the build script, please see the TestFilter
reference.

The command-line option is especially useful to execute a single test method. When you use --
tests, be aware that the inclusions declared in the build script are still honored. It is also possible to
supply multiple --tests options, all of whose patterns will take effect. The following sections have
several examples of using the command-line option.

Not all test frameworks play well with filtering. Some advanced, synthetic tests may
NOTE not be fully compatible. However, the vast majority of tests and use cases work
perfectly well with Gradle’s filtering mechanism.

The following two sections look at the specific cases of simple class/method names and fully-
qualified names.

Simple name pattern

Since 4.7, Gradle has treated a pattern starting with an uppercase letter as a simple class name, or a
class name + method name. For example, the following command lines run either all or exactly one
of the tests in the SomeTest(lass test case, regardless of what package it’s in:

Executes all tests in SomeTest(Class
gradle test --tests SomeTest(lass

Executes a single specified test in SomeTestClass
gradle test --tests SomeTest(Class.someSpecificMethod

gradle test --tests SomeTest(Class.*someMethod*

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/TestFilter.html

Fully-qualified name pattern

Prior to 4.7 or if the pattern doesn’t start with an uppercase letter, Gradle treats the pattern as fully-
qualified. So if you want to use the test class name irrespective of its package, you would use
--tests *.SomeTest(lass. Here are some more examples:

specific class
gradle test --tests org.gradle.SomeTest(Class

specific class and method
gradle test --tests org.gradle.SomeTest(lass.someSpecificMethod

method name containing spaces
gradle test --tests "org.gradle.SomeTestClass.some method containing spaces”

all classes at specific package (recursively)
gradle test --tests 'all.in.specific.package*'

specific method at specific package (recursively)
gradle test --tests 'all.in.specific.package*.someSpecificMethod'

gradle test --tests '*IntegTest’
gradle test --tests '*IntegTest*ui*’
gradle test --tests '*ParameterizedTest.foo*'

the second iteration of a parameterized test
gradle test --tests '*ParameterizedTest.*[2]'

Note that the wildcard *' has no special understanding of the '.' package separator. It’s purely text
based. So --tests *.SomeTest(lass will match any package, regardless of its 'depth'.

You can also combine filters defined at the command line with continuous build to re-execute a
subset of tests immediately after every change to a production or test source file. The following
executes all tests in the 'com.mypackage.foo' package or subpackages whenever a change triggers
the tests to run:

gradle test --continuous --tests "com.mypackage.foo.*"

Test reporting
The Test task generates the following results by default:

* An HTML test report

* XML test results in a format compatible with the Ant JUnit report task — one that is supported
by many other tools, such as CI servers

» An efficient binary format of the results used by the Test task to generate the other formats

In most cases, youw’ll work with the standard HTML report, which automatically includes the results
from all your Test tasks, even the ones you explicitly add to the build yourself. For example, if you
add a Test task for integration tests, the report will include the results of both the unit tests and the
integration tests if both tasks are run.

NOTE To aggregate test results across multiple subprojects, see the Test Report
Aggregation Plugin.

Unlike with many of the testing configuration options, there are several project-level convention

properties that affect the test reports. For example, you can change the destination of the test

results and reports like so:

Example 26. Changing the default test report and results directories

build.gradle.kts

reporting.baseDir = file("my-reports")
java.testResultsDir = layout.buildDirectory.dir("my-test-results")

tasks.register("showDirs") {
val rootDir = project.rootDir
val reportsDir = project.reporting.baseDirectory
val testResultsDir = project.java.testResultsDir

dolast {

logger.quiet(rootDir.toPath().relativize(reportsDir.get().asFile.toPath()).to
String())

logger.quiet(rootDir.toPath().relativize(testResultsDir.get().asFile.toPath()
).toString())

}
+

build.gradle

reporting.baseDir = "my-reports”
java.testResultsDir = layout.buildDirectory.dir("my-test-results")

tasks.register('showDirs"') {
def rootDir = project.rootDir
def reportsDir = project.reporting.baseDirectory
def testResultsDir = project.java.testResultsDir

dolast {

test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
test_report_aggregation_plugin.pdf#test_report_aggregation_plugin
java_plugin.pdf#sec:java_convention_properties
java_plugin.pdf#sec:java_convention_properties
#ex-changing-the-default-test-report-and-results-directories

logger.quiet(rootDir.toPath().relativize(reportsDir.get().asFile
.toPath()).toString())
logger.quiet(rootDir.toPath().relativize(testResultsDir.get().asFile
.toPath()).toString())
}
}

Output of gradle -q showDirs

> gradle -q showDirs
my-reports
build/my-test-results

Follow the link to the convention properties for more details.

There is also a standalone TestReport task type that you can use to generate a custom HTML test
report. All it requires are a value for destinationDir and the test results you want included in the
report. Here is a sample which generates a combined report for the unit tests from all subprojects:

Example 27. Creating a unit test report for subprojects

buildSrc/src/main/kotlin/myproject.java-conventions.gradle.kts

plugins {
id("java")
}

// Disable the test report for the individual test task
tasks.named<Test>("test") {
reports.html.required = false

}

// Share the test report data to be aggregated for the whole project
configurations.create("binaryTestResultsElements") {
isCanBeResolved = false
isCanBeConsumed = true
attributes {
attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Category.DOCUMENTATION))
attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
}
outgoing.artifact(tasks.test.map { task ->
task.getBinaryResultsDirectory().get() })
}

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.TestReport.html
#ex-creating-a-unit-test-report-for-subprojects

build.gradle.kts

val testReportData by configurations.creating {
isCanBeConsumed = false
attributes {
attribute(Category.CATEGORY_ATTRIBUTE,
objects.named(Cateqory.DOCUMENTATION))
attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named("test-report-
data"))
}
}

dependencies {
testReportData(project(":core"))
testReportData(project(":util"))
}

tasks.register<TestReport>("testReport") {
destinationDirectory = reporting.baseDirectory.dir("allTests")
// Use test results from testReportData configuration
testResults.from(testReportData)

buildSrc/src/main/groovy/myproject.java-conventions.gradle

plugins {
id 'java'

}

// Disable the test report for the individual test task
test {
reports.html.required = false

}

// Share the test report data to be aggregated for the whole project
configurations {
binaryTestResultsElements {
canBeResolved = false
canBeConsumed = true
attributes {
attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
"test-report-data'))
}

outgoing.artifact(test.binaryResultsDirectory)

build.gradle

// A resolvable configuration to collect test reports data
configurations {
testReportData {
canBeConsumed = false
attributes {
attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.DOCUMENTATION))
attribute(DocsType.DOCS_TYPE_ATTRIBUTE, objects.named(DocsType,
"test-report-data'))
}
}
}

dependencies {
testReportData project(':core')
testReportData project(':util")
}

tasks.register('testReport', TestReport) {
destinationDirectory = reporting.baseDirectory.dir('allTests")
// Use test results from testReportData configuration
testResults.from(configurations.testReportData)

In this example, we use a convention plugin myproject.java-conventions to expose the test results
from a project to Gradle’s variant aware dependency management engine.

The plugin declares a consumable binaryTestResultsElements configuration that represents the
binary test results of the test task. In the aggregation project’s build file, we declare the
testReportData configuration and depend on all of the projects that we want to aggregate the results
from. Gradle will automatically select the binary test result variant from each of the subprojects
instead of the project’s jar file. Lastly, we add a testReport task that aggregates the test results from
the testResultsDirs property, which contains all of the binary test results resolved from the
testReportData configuration.

You should note that the TestReport type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by
multiple test tasks, then the test report will include executions of that class, but it can be hard to
distinguish individual executions of that class and their output.

Communicating test results to CI servers and other tools via XML files

The Test tasks creates XML files describing the test results, in the “JUnit XML” pseudo standard. This
standard is used by the JUnit 4, JUnit Jupiter, and TestNG test frameworks, and is configured using
the same DSL block for each of these. It is common for CI servers and other tooling to observe test
results via these XML files.

By default, the files are written to layout.buildDirectory.dir("test-results/$testTaskName") with a
file per test class. The location can be changed for all test tasks of a project, or individually per test
task.

Example 28. Changing JUnit XML results location for all test tasks

build.gradle.kts

java.testResultsDir = layout.buildDirectory.dir("junit-xml")

build.gradle

java.testResultsDir = layout.buildDirectory.dir("junit-xml")

With the above configuration, the XML files will be written to layout.buildDirectory.dir("junit-
xml/$testTaskName").

Example 29. Changing JUnit XML results location for a particular test task

build.gradle.kts

tasks.test {
reports {
junitXml.outputlLocation = layout.buildDirectory.dir("test-junit-xml")

}

build.gradle

test {
reports {
junitXml.outputlocation = layout.buildDirectory.dir("test-junit-xml")

}

With the above configuration, the XML files for the test task will be written to
layout.buildDirectory.dir("test-results/test-junit-xml"). The location of the XML files for other
test tasks will be unchanged.

#ex-changing-junit-xml-results-location-for-all-test-tasks
#ex-changing-junit-xml-results-location-for-a-particular-test-task

Configuration options

The content of the XML files can also be configured to convey the results differently, by configuring
the JUnitXmlReport options.

Example 30. Configuring how the results are conveyed

build.gradle.kts

tasks.test {

reports {
junitXml.apply {
includeSystemQutLog = false // defaults to true
includeSystemErrLog = false // defaults to true

isOutputPerTestCase = true // defaults to false
mergeReruns = true // defaults to false

}
}
}
build.gradle
test {
reports {
junitXml {
includeSystemQutLog = false // defaults to true
includeSystemErrLog = false // defaults to true
outputPerTestCase = true // defaults to false
mergeReruns = true // defaults to false
}
}
}

includeSystemOutLog & includeSystemErrLog

The includeSystemOutLog option allows configuring whether or not test output written to standard
out is exported to the XML report file. The includeSystemErrLog option allows configuring whether
or not test error output written to standard error is exported to the XML report file.

These options affect both test-suite level output (such as @BeforeClass/@BeforeAll output) and test
class and method-specific output (@Before/@BeforeEach and @Test). If either option is disabled, the
element that normally contains that content will be excluded from the XML report file.

The default for each option is true.

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/JUnitXmlReport.html
#ex-configuring-how-the-results-are-conveyed

outputPerTestCase

The outputPerTestCase option, when enabled, associates any output logging generated during a test
case to that test case in the results. When disabled (the default) output is associated with the test
class as whole and not the individual test cases (e.g. test methods) that produced the logging output.
Most modern tools that observe JUnit XML files support the “output per test case” format.

If you are using the XML files to communicate test results, it is recommended to enable this option
as it provides more useful reporting.

mergeReruns

When mergeReruns is enabled, if a test fails but is then retried and succeeds, its failures will be
recorded as <flakyFailure> instead of <failure>, within one <testcase>. This is effectively the
reporting produced by the surefire plugin of Apache Maven™ when enabling reruns. If your CI
server understands this format, it will indicate that the test was flaky. If it does not, it will indicate
that the test succeeded as it will ignore the <flakyFailure> information. If the test does not succeed
(i.e. it fails for every retry), it will be indicated as having failed whether your tool understands this
format or not.

When mergeReruns is disabled (the default), each execution of a test will be listed as a separate test
case.

If you are using build scans or Develocity, flaky tests will be detected regardless of this setting.

Enabling this option is especially useful when using a CI tool that uses the XML test results to
determine build failure instead of relying on Gradle’s determination of whether the build failed or
not, and you wish to not consider the build failed if all failed tests passed when retried. This is the
case for the Jenkins CI server and its JUnit plugin. With mergeReruns enabled, tests that pass-on-retry
will no longer cause this Jenkins plugin to consider the build to have failed. However, failed test
executions will be omitted from the Jenkins test result visualizations as it does not consider
<flakyFailure> information. The separate Flaky Test Handler Jenkins plugin can be used in addition
to the JUnit Jenkins plugin to have such “flaky failures” also be visualized.

Tests are grouped and merged based on their reported name. When using any kind of test
parameterization that affects the reported test name, or any other kind of mechanism that
produces a potentially dynamic test name, care should be taken to ensure that the test name is
stable and does not unnecessarily change.

Enabling the mergeReruns option does not add any retry/rerun functionality to test execution.
Rerunning can be enabled by the test execution framework (e.g. JUnit's @RepeatedTest), or via the
separate Test Retry Gradle plugin.

Test detection

By default, Gradle will run all tests that it detects, which it does by inspecting the compiled test
classes. This detection uses different criteria depending on the test framework used.

For JUnit, Gradle scans for both JUnit 3 and 4 test classes. A class is considered to be a JUnit test if it:

https://maven.apache.org/components/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://scans.gradle.com
https://gradle.com/gradle-enterprise-solution-overview/failure-analytics/
https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/flaky-test-handler
https://junit.org/junit5/docs/current/user-guide/#writing-tests-repeated-tests
https://github.com/gradle/test-retry-gradle-plugin

» Ultimately inherits from TestCase or GroovyTest(ase
* Is annotated with @RunWith

* Contains a method annotated with @Test or a super class does
For TestNG, Gradle scans for methods annotated with @Test.

Note that abstract classes are not executed. In addition, be aware that Gradle scans up the
inheritance tree into jar files on the test classpath. So if those JARs contain test classes, they will also
be run.

If you don’t want to use test class detection, you can disable it by setting the scanForTest(lasses
property on Test to false. When you do that, the test task uses only the includes and excludes
properties to find test classes.

If scanForTestClasses is false and no include or exclude patterns are specified, Gradle defaults to
running any class that matches the patterns **/*Tests.class and **/*Test.class, excluding those
that match **/Abstract*.class.

With JUnit Platform, only includes and excludes are used to filter test classes —

NOTE
scanForTestClasses has no effect.

Test logging

Gradle allows fine-tuned control over events that are logged to the console. Logging is configurable
on a per-log-level basis and by default, the following events are logged:

When the log level is Events that are logged Additional configuration
ERROR, QUIET or WARNING None None

LIFECYCLE Test failures Exception format is SHORT
INFO Test failures, skipped tests, test Stacktraces are truncated.

standard output and test
standard error

DEBUG All events Full stacktraces are logged.

Test logging can be modified on a per-log-level basis by adjusting the appropriate TestLogging
instances in the testLogging property of the test task. For example, to adjust the INFO level test
logging configuration, modify the TestLoggingContainer.getInfo() property.

Test grouping

JUnit, JUnit Platform and TestNG allow sophisticated groupings of test methods.

This section applies to grouping individual test classes or methods within a
collection of tests that serve the same testing purpose (unit tests, integration tests,
acceptance tests, etc.). For dividing test classes based upon their purpose, see the
incubating JVM Test Suite plugin.

NOTE

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html
http://junit.org/junit5/docs/current/user-guide
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#FAILED
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestExceptionFormat.html#SHORT
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#FAILED
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#SKIPPED
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_OUT
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_OUT
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_ERROR
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html#STANDARD_ERROR
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogEvent.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLogging.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/AbstractTestTask.html#getTestLogging--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/logging/TestLoggingContainer.html#getInfo--
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin

JUnit 4.8 introduced the concept of categories for grouping JUnit 4 tests classes and methods."
Test.useJUnit(org.gradle.api.Action) allows you to specify the JUnit categories you want to include

and exclude. For example, the following configuration includes tests in CategoryA and excludes
those in CategoryB for the test task:

Example 31. JUnit Categories

build.gradle.kts

tasks.test {
useJUnit {

includeCategories("org.gradle.junit.CategoryA")
excludeCategories("org.gradle.junit.CategoryB")

build.gradle

test {
useJUnit {
includeCategories 'org.gradle.junit.CategoryA’
excludeCategories 'org.gradle.junit.CategoryB'

JUnit Platform introduced tagging to replace categories. You can specify the included/excluded tags
via Test.useJUnitPlatform(org.gradle.api.Action), as follows:

Example 32. JUnit Platform Tags

build.gradle.kts

tasks.withType<Test>().configureEach {
useJUnitPlatform {
includeTags("fast")
excludeTags("slow")

build.gradle

tasks.withType(Test).configureEach {

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useJUnit(org.gradle.api.Action)
#ex-junit-categories
http://junit.org/junit5/docs/current/user-guide
http://junit.org/junit5/docs/current/user-guide/#writing-tests-tagging-and-filtering
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform-org.gradle.api.Action-
#ex-junit-platform-tags

useJUnitPlatform {
includeTags 'fast'
excludeTags 'slow'

The TestNG framework uses the concept of test groups for a similar effect.”” You can configure
which test groups to include or exclude during the test execution via the
Test.useTestNG(org.gradle.api.Action) setting, as seen here:

Example 33. Grouping TestNG tests

build.gradle.kts

tasks.named<Test>("test") {
useTestNG {
val options = this as TestNGOptions
options.excludeGroups("integrationTests")
options.includeGroups("unitTests")

}
}
build.gradle
test {
useTestNG {
excludeGroups 'integrationTests'
includeGroups 'unitTests'
}
}
Using JUnit 5

JUnit 5 is the latest version of the well-known JUnit test framework. Unlike its predecessor, JUnit 5 is
modularized and composed of several modules:

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

The JUnit Platform serves as a foundation for launching testing frameworks on the JVM. JUnit
Jupiter is the combination of the new programming model and extension model for writing tests
and extensions in JUnit 5. JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based
tests on the platform.

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:useTestNG(org.gradle.api.Action)
#ex-grouping-testng-tests
http://junit.org/junit5
http://junit.org/junit5/docs/current/user-guide/#writing-tests
http://junit.org/junit5/docs/current/user-guide/#extensions

The following code enables JUnit Platform support in build.gradle:

Example 34. Enabling JUnit Platform to run your tests

build.gradle.kts

tasks.named<Test>("test") {
useJUnitPlatform()

}

build.gradle

tasks.named('test', Test) {
useJUnitPlatform()

}

See Test.useJUnitPlatform() for more details.

Compiling and executing JUnit Jupiter tests

To enable JUnit Jupiter support in Gradle, all you need to do is add the following dependency:

Example 35. JUnit Jupiter dependencies

build.gradle.kts
dependencies {

testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")

build.gradle
dependencies {

testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1"
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

You can then put your test cases into sr¢/test/java as normal and execute them with gradle test.

#ex-enabling-junit-platform-to-run-your-tests
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform--
#ex-junit-jupiter-dependencies

Executing legacy tests with JUnit Vintage

If you want to run JUnit 3/4 tests on JUnit Platform, or even mix them with Jupiter tests, you should
add extra JUnit Vintage Engine dependencies:

Example 36. [Unit Vintage dependencies

build.gradle.kts

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
testCompileOnly("junit:junit:4.13")
testRuntimeOnly("org.junit.vintage:junit-vintage-engine")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")

build.gradle

dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter:5.7.1'
testCompileOnly 'junit:junit:4.13'
testRuntimeOnly 'org.junit.vintage:junit-vintage-engine'
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

In this way, you can use gradle test to test JUnit 3/4 tests on JUnit Platform, without the need to
rewrite them.

Filtering test engine

JUnit Platform allows you to use different test engines. JUnit currently provides two TestEngine
implementations out of the box: junit-jupiter-engine and junit-vintage-engine. You can also write
and plug in your own TestEngine implementation as documented here.

By default, all test engines on the test runtime classpath will be used. To control specific test engine
implementations explicitly, you can add the following setting to your build script:

Example 37. Filter specific engines

build.gradle.kts

tasks.withType<Test>().configureEach {
useJUnitPlatform {
includeEngines("junit-vintage")
// excludeEngines("junit-jupiter")

#ex-junit-vintage-dependencies
https://junit.org/junit5/docs/current/api/org.junit.jupiter.engine/module-summary.html
https://junit.org/junit5/docs/current/api/org.junit.vintage.engine/module-summary.html
https://junit.org/junit5/docs/current/user-guide/#launcher-api-engines-custom
#ex-filter-specific-engines

build.gradle

tasks.withType(Test).configureEach {
useJUnitPlatform {
includeEngines 'junit-vintage'
// excludeEngines 'junit-jupiter

Test execution order in TestNG

TestNG allows explicit control of the execution order of tests when you use a testng.xml file.
Without such a file — or an equivalent one configured by TestNGOptions.getSuiteXmlBuilder() —
you can’t specify the test execution order. However, what you can do is control whether all aspects
of a test — including its associated @BeforeXXX and @After XXX methods, such as those annotated with
@Before/AfterClass and @Before/AfterMethod — are executed before the next test starts. You do this
by setting the TestNGOptions.getPreserveOrder() property to true. If you set it to false, you may
encounter scenarios in which the execution order is something like: TestA.doBeforeClass() -
TestB.doBeforeClass() — TestA tests.

While preserving the order of tests is the default behavior when directly working with testng.xml
files, the TestNG API that is used by Gradle’s TestNG integration executes tests in unpredictable
order by default.” The ability to preserve test execution order was introduced with TestNG version
5.14.5. Setting the preserveOrder property to true for an older TestNG version will cause the build to
fail.

Example 38. Preserving order of TestNG tests

build.gradle.kts
tasks.test {

useTestNG {
preserveOrder = true

build.gradle

test {
useTestNG {

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getSuiteXmlBuilder--
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/testing/testng/TestNGOptions.html#getPreserveOrder--
https://jitpack.io/com/github/cbeust/testng/master/javadoc/org/testng/TestNG.html
#ex-preserving-order-of-testng-tests

preserveOrder true

The groupByInstance property controls whether tests should be grouped by instance rather than by
class. The TestNG documentation explains the difference in more detail, but essentially, if you have
a test method A() that depends on B(), grouping by instance ensures that each A-B pairing, e.g. B(1)-
A(1), is executed before the next pairing. With group by class, all B() methods are run and then all
A() ones.

Note that you typically only have more than one instance of a test if you’re using a data provider to
parameterize it. Also, grouping tests by instances was introduced with TestNG version 6.1. Setting
the groupByInstances property to true for an older TestNG version will cause the build to fail.

Example 39. Grouping TestNG tests by instances

build.gradle.kts

tasks.test {
useTestNG {
groupByInstances = true

build.gradle

test {
useTestNG {
groupByInstances = true

TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed
multiple times with different inputs. Gradle includes the parameter values in its reporting of the
test method execution.

Given a parameterized test method named aTestMethod that takes two parameters, it will be
reported with the name aTestMethod(toStringValueOfParam1, toStringValueOfParam2). This makes it
easy to identify the parameter values for a particular iteration.

http://testng.org/doc/documentation-main.html#dependencies-with-annotations
#ex-grouping-testng-tests-by-instances
http://testng.org/doc/documentation-main.html#parameters

Configuring integration tests

A common requirement for projects is to incorporate integration tests in one form or another. Their
aim is to verify that the various parts of the project are working together properly. This often
means that they require special execution setup and dependencies compared to unit tests.

The simplest way to add integration tests to your build is by leveraging the incubating JVM Test
Suite plugin. If an incubating solution is not something for you, here are the steps you need to take
in your build:

1. Create a new source set for them

2. Add the dependencies you need to the appropriate configurations for that source set
3. Configure the compilation and runtime classpaths for that source set

4. Create a task to run the integration tests

You may also need to perform some additional configuration depending on what form the
integration tests take. We will discuss those as we go.

Let’s start with a practical example that implements the first three steps in a build script, centered
around a new source set intTest:

Example 40. Setting up working integration tests

build.gradle.kts

sourceSets {
create("intTest") {
compileClasspath += sourceSets.main.get().output
runtimeClasspath += sourceSets.main.get().output

val intTestImplementation by configurations.getting {
extendsFrom(configurations.implementation.get())

}
val intTestRuntimeOnly by configurations.getting

configurations["intTestRuntimeOnly"].extendsFrom(configurations.runtimeOnly.g

et())

dependencies {
intTestImplementation("org.junit.jupiter:junit-jupiter:5.7.1")
intTestRuntimeOnly("org.junit.platform:junit-platform-launcher")

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
jvm_test_suite_plugin.pdf#jvm_test_suite_plugin
#ex-setting-up-working-integration-tests

build.gradle

sourceSets {

intTest {
compileClasspath += sourceSets.main.output
runtimeClasspath += sourceSets.main.output

configurations {
intTestImplementation.extendsFrom implementation
intTestRuntimeOnly.extendsFrom runtimeOnly

dependencies {
intTestImplementation 'org.junit.jupiter:junit-jupiter:5.7.1"
intTestRuntimeOnly 'org.junit.platform:junit-platform-launcher'’

This will set up a new source set called intTest that automatically creates:

* intTestImplementation, intTestCompileOnly, intTestRuntimeOnly configurations (and a few others
that are less commonly needed)

* A compilelIntTestJava task that will compile all the source files under src/intTest/java

If you are working with the Intelli] IDE, you may wish to flag the directories in these
NOTE additional source sets as containing test source rather than production source as
explained in the Idea Plugin documentation.

The example also does the following, not all of which you may need for your specific integration
tests:

* Adds the production classes from the main source set to the compilation and runtime classpaths
of the integration tests — sourceSets.main.output is a file collection of all the directories
containing compiled production classes and resources

* Makes the intTestImplementation configuration extend from implementation, which means that
all the declared dependencies of the production code also become dependencies of the
integration tests

* Does the same for the intTestRuntimeOnly configuration

In most cases, you want your integration tests to have access to the classes under test, which is why
we ensure that those are included on the compilation and runtime classpaths in this example. But
some types of test interact with the production code in a different way. For example, you may have
tests that run your application as an executable and verify the output. In the case of web
applications, the tests may interact with your application via HTTP. Since the tests don’t need direct
access to the classes under test in such cases, you don’t need to add the production classes to the

java_plugin.pdf#java_source_set_configurations
idea_plugin.pdf#sec:idea_identify_additional_source_sets

test classpath.

Another common step is to attach all the unit test dependencies to the integration tests as well —
via intTestImplementation.extendsFrom testImplementation — but that only makes sense if the
integration tests require all or nearly all the same dependencies that the unit tests have.

There are a couple of other facets of the example you should take note of:
* += allows you to append paths and collections of paths to compileClasspath and runtimeClasspath
instead of overwriting them
» If you want to use the convention-based configurations, such as intTestImplementation, you

must declare the dependencies after the new source set

Creating and configuring a source set automatically sets up the compilation stage, but it does
nothing with respect to running the integration tests. So the last piece of the puzzle is a custom test
task that uses the information from the new source set to configure its runtime classpath and the
test classes:

Example 41. Defining a working integration test task

build.gradle.kts

val integrationTest = task<Test>("integrationTest") {
description = "Runs integration tests."
group = "verification"

testClassesDirs = sourceSets["intTest"].output.classesDirs
classpath = sourceSets["intTest"].runtimeClasspath
shouldRunAfter("test")

useJUnitPlatform()

testlogging {

events("passed")

}

tasks.check { dependsOn(integrationTest) }

build.gradle

tasks.register('integrationTest', Test) {
description = 'Runs integration tests.'
group = 'verification'

testClassesDirs = sourceSets.intTest.output.classesDirs
classpath = sourceSets.intTest.runtimeClasspath

#ex-defining-a-working-integration-test-task

shouldRunAfter test
useJUnitPlatform()

testlogging {
events "passed"

}

check.dependsOn integrationTest

Again, we’re accessing a source set to get the relevant information, i.e. where the compiled test
classes are — the test(lassesDirs property — and what needs to be on the classpath when running
them — classpath.

Users commonly want to run integration tests after the unit tests, because they are often slower to
run and you want the build to fail early on the unit tests rather than later on the integration tests.
That’s why the above example adds a shouldRunAfter() declaration. This is preferred over
mustRunAfter () so that Gradle has more flexibility in executing the build in parallel.

For information on how to determine code coverage for tests in additional source sets, see the
JaCoCo Plugin and the JaCoCo Report Aggregation Plugin chapters.

Testing Java Modules

If you are developing Java Modules, everything described in this chapter still applies and any of the
supported test frameworks can be used. However, there are some things to consider depending on
whether you need module information to be available, and module boundaries to be enforced,
during test execution. In this context, the terms whitebox testing (module boundaries are
deactivated or relaxed) and blackbox testing (module boundaries are in place) are often used.
Whitebox testing is used/needed for unit testing and blackbox testing fits functional or integration
test requirements.

Sample: Java Modules multi-project with integration tests

Whitebox unit test execution on the classpath

The simplest setup to write unit tests for functions or classes in modules is to not use module
specifics during test execution. For this, you just need to write tests the same way you would write
them for normal libraries. If you don’t have a module-info.java file in your test source set
(src/test/java) this source set will be considered as traditional Java library during compilation and
test runtime. This means, all dependencies, including Jars with module information, are put on the
classpath. The advantage is that all internal classes of your (or other) modules are then accessible
directly in tests. This may be a totally valid setup for unit testing, where we do not care about the
larger module structure, but only about testing single functions.

NOTE If you are using Eclipse: By default, Eclipse also runs unit tests as modules using

jacoco_plugin.pdf#jacoco_plugin
jacoco_report_aggregation_plugin.pdf#jacoco_report_aggregation_plugin
../samples/sample_java_modules_multi_project_with_integration_tests.html

module patching (see below). In an imported Gradle project, unit testing a module
with the Eclipse test runner might fail. You then need to manually adjust the
classpath/module path in the test run configuration or delegate test execution to
Gradle.

This only concerns the test execution. Unit test compilation and development works
fine in Eclipse.

Blackbox integration testing

For integration tests, you have the option to define the test set itself as additional module. You do
this similar to how you turn your main sources into a module: by adding a module-info.java file to
the corresponding source set (e.g. integrationTests/java/module-info.java).

You can find a full example that includes blackbox integration tests here.

In Eclipse, compiling multiple modules in one project is currently not support.
NOTE Therefore the integration test (blackbox) setup described here only works in Eclipse
if the tests are moved to a separate subproject.

Whitebox test execution with module patching

Another approach for whitebox testing is to stay in the module world by patching the tests into the
module under test. This way, module boundaries stay in place, but the tests themselves become part
of the module under test and can then access the module’s internals.

For which uses cases this is relevant and how this is best done is a topic of discussion. There is no
general best approach at the moment. Thus, there is no special support for this in Gradle right now.

You can however, setup module patching for tests like this:

* Add a module-info.java to your test source set that is a copy of the main module-info.java with
additional dependencies needed for testing (e.g. requires org.junit.jupiter.api).

* Configure both the testCompilelava and test tasks with arguments to patch the main classes
with the test classes as shown below.

Example 42. Patch module for testing using command line arguments

build.gradle.kts

val moduleName = "org.gradle.sample"
val patchArgs = 1listOf("--patch-module”,
"$moduleName=${tasks.compileJava.get().destinationDirectory.asFile.get().path
)
tasks.compileTestJava {
options.compilerArgs.addAll(patchArgs)
}
tasks.test {
jvmArgs(patchArgs)

../samples/sample_java_modules_multi_project_with_integration_tests.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=520667
#ex-patch-module-for-testing-using-command-line-arguments

build.gradle

def moduleName = "org.gradle.sample"
def patchArgs = ["--patch-module", "$moduleName=%{tasks.compileJava
.destinationDirectory.asFile.get().path}"]
tasks.named('compileTestlava') {

options.compilerArgs += patchArgs
}
tasks.named('test") {

jvmArgs += patchArgs

}
NOTE If custom arguments are used for patching, these are not picked up by Eclipse and
IDEA. You will most likely see invalid compilation errors in the IDE.
Skipping the tests

If you want to skip the tests when running a build, you have a few options. You can either do it via
command line arguments or in the build script. To do it on the command line, you can use the -x or
--exclude-task option like so:

gradle build -x test

This excludes the test task and any other task that it exclusively depends on, i.e. no other task
depends on the same task. Those tasks will not be marked "SKIPPED" by Gradle, but will simply not
appear in the list of tasks executed.

Skipping a test via the build script can be done a few ways. One common approach is to make test
execution conditional via the Task.onlyIf(String, org.gradle.api.specs.Spec) method. The following
sample skips the test task if the project has a property called mySkipTests:

Example 43. Skipping the unit tests based on a project property

build.gradle.kts

tasks.test {
val skipTestsProvider = providers.gradleProperty("mySkipTests")
onlyIf("mySkipTests property is not set") {
IskipTestsProvider.isPresent()

}

controlling_task_execution.pdf#sec:skipping_tasks
https://docs.gradle.org/8.10/dsl/org.gradle.api.Task.html#org.gradle.api.Task:onlyIf(java.lang.String,org.gradle.api.specs.Spec)
#ex-skipping-the-unit-tests-based-on-a-project-property

build.gradle

def skipTestsProvider = providers.gradleProperty('mySkipTests')
test.onlyIf("mySkipTests property is not set") {
IskipTestsProvider.present

}

In this case, Gradle will mark the skipped tests as "SKIPPED" rather than exclude them from the
build.

Forcing tests to run

In well-defined builds, you can rely on Gradle to only run tests if the tests themselves or the
production code change. However, you may encounter situations where the tests rely on a third-
party service or something else that might change but can’t be modeled in the build.

You can always use the --rerun built-in task option to force a task to rerun.
gradle test --rerun

Alternatively, if build caching is not enabled, you can also force tests to run by cleaning the output
of the relevant Test task — say test — and running the tests again, like so:

gradle cleanTest test

cleanTest is based on a task rule provided by the Base Plugin. You can use it for any task.

Debugging when running tests

On the few occasions that you want to debug your code while the tests are running, it can be
helpful if you can attach a debugger at that point. You can either set the Test.getDebug() property to
true or use the --debug-jvm command line option, or use --no-debug-jvm to set it to false.

When debugging for tests is enabled, Gradle will start the test process suspended and listening on
port 5005.

You can also enable debugging in the DSL, where you can also configure other properties:

test {
debugOptions {
enabled = true
host = 'localhost'
port = 4455
server = true
suspend = true

base_plugin.pdf#sec:base_tasks
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

With this configuration the test JVM will behave just like when passing the --debug-jvm argument
but it will listen on port 4455.

To debug the test process remotely via network, the host needs to be set to the machine’s IP address
or "*" (listen on all interfaces).

Using test fixtures

Producing and using test fixtures within a single project

Test fixtures are commonly used to setup the code under test, or provide utilities aimed at
facilitating the tests of a component. Java projects can enable test fixtures support by applying the
java-test-fixtures plugin, in addition to the java or java-library plugins:

Example 44. Applying the Java test fixtures plugin

lib/build.gradle.kts

plugins {
// A Java Library
‘java-library®
// which produces test fixtures
‘java-test-fixtures®
// and is published
‘maven-publish®

¥
lib/build.gradle

plugins {
// A Java Library
id 'java-library'
// which produces test fixtures
id 'java-test-fixtures'
// and is published
id 'maven-publish'

}

This will automatically create a testFixtures source set, in which you can write your test fixtures.
Test fixtures are configured so that:

* they can see the main source set classes

#ex-applying-the-java-test-fixtures-plugin

* test sources can see the testﬁxtures classes

For example for this main class:

src/main/java/com/acme/Person.java

public class Person {
private final String firstName;
private final String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String getFirstName() {

return firstName;

}

public String getlLastName() {
return lastName;

}

/] ...

A test fixture can be written in src/testFixtures/java:

src/testFixtures/java/com/acme/Simpsons.java

public class Simpsons {

private
private
private
private
private
private

static final
static final
static final
static final
static final
static final

add (HOMER) ;
add (MARGE);
add(BART);
add(LISA);
add(MAGGIE);

)

public static Person

public static Person

public static Person

public static Person

Person HOMER = new Person("Homer", "Simpson");

Person MARGE = new Person("Marjorie", "Simpson");
Person BART = new Person("Bartholomew", "Simpson");
Person LISA = new Person("Elisabeth Marie", "Simpson");
Person MAGGIE = new Person("Margaret Eve", "Simpson");
List<Person> FAMILY = new ArrayList<Person>() {{

homer() { return HOMER; }
marge() { return MARGE; }
bart() { return BART; }

lisa() { return LISA; }

public static Person maggie() { return MAGGIE; }

/] ...

Declaring dependencies of test fixtures

Similarly to the Java Library Plugin, test fixtures expose an API and an implementation
configuration:

Example 45. Declaring test fixture dependencies

lib/build.gradle.kts

dependencies {
testImplementation("junit:junit:4.13")

// API dependencies are visible to consumers when building
testFixturesApi("org.apache.commons:commons-1lang3:3.9")

// Implementation dependencies are not leaked to consumers when building
testFixturesImplementation("org.apache.commons:commons-text:1.6")

lib/build.gradle

dependencies {
testImplementation 'junit:junit:4.13"

// API dependencies are visible to consumers when building
testFixturesApi 'org.apache.commons:commons-lang3:3.9'

// Implementation dependencies are not leaked to consumers when building
testFixturesImplementation 'org.apache.commons:commons-text:1.6'

It’s worth noticing that if a dependency is an implementation dependency of test fixtures, then when
compiling tests that depend on those test fixtures, the implementation dependencies will not leak
into the compile classpath. This results in improved separation of concerns and better compile
avoidance.

Consuming test fixtures of another project

Test fixtures are not limited to a single project. It is often the case that a dependent project tests also
needs the test fixtures of the dependency. This can be achieved very easily using the testFixtures
keyword:

java_library_plugin.html
#ex-declaring-test-fixture-dependencies

Example 46. Adding a dependency on test fixtures of another project

build.gradle.kts

dependencies {
implementation(project(":1ib"))

testImplementation("junit:junit:4.13")
testImplementation(testFixtures(project(":1ib")))

build.gradle

dependencies {
implementation(project(":1ib"))

testImplementation 'junit:junit:4.13"
testImplementation(testFixtures(project(":1ib")))

Publishing test fixtures

One of the advantages of using the java-test-fixtures plugin is that test fixtures are published. By
convention, test fixtures will be published with an artifact having the test-fixtures classifier. For
both Maven and Ivy, an artifact with that classifier is simply published alongside the regular
artifacts. However, if you use the maven-publish or ivy-publish plugin, test fixtures are published as
additional variants in Gradle Module Metadata and you can directly depend on test fixtures of
external libraries in another Gradle project:

Example 47. Adding a dependency on test fixtures of an external library

build.gradle.kts
dependencies {
// Adds a dependency on the test fixtures of Gson, however this

// project doesn't publish such a thing
functionalTest(testFixtures("com.google.code.gson:gson:2.8.5"))

build.gradle

dependencies {

#ex-adding-a-dependency-on-test-fixtures-of-another-project
https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-1.0-specification.md
#ex-adding-a-dependency-on-test-fixtures-of-an-external-library

// Adds a dependency on the test fixtures of Gson, however this
// project doesn't publish such a thing
functionalTest testFixtures("com.google.code.gson:gson:2.8.5")

It’s worth noting that if the external project is not publishing Gradle Module Metadata, then
resolution will fail with an error indicating that such a variant cannot be found

Output of gradle dependencyInsight --configuration functionalTest(Classpath --dependency gson
> gradle dependencyInsight --configuration functionalTest(lasspath --dependency gson

> Task :dependencyInsight
com.google.code.gson:gson:2.8.5 FAILED
Failures:
- Could not resolve com.google.code.gson:gson:2.8.5.
- Unable to find a variant providing the requested capability

‘com.google.code.gson:gson-test-fixtures':

- Variant 'compile' provides 'com.google.code.gson:gson:2.8.5"

- Variant 'enforced-platform-compile' provides
"com.google.code.gson:gson-derived-enforced-platform:2.8.5'

- Variant 'enforced-platform-runtime' provides
‘com.google.code.gson:gson-derived-enforced-platform:2.8.5"

- Variant 'javadoc' provides 'com.google.code.gson:gson:2.8.5'

- Variant 'platform-compile' provides 'com.google.code.gson:gson-
derived-platform:2.8.5'

- Variant 'platform-runtime' provides 'com.google.code.gson:gson-
derived-platform:2.8.5"

- Variant 'runtime' provides 'com.google.code.gson:gson:2.8.

- Variant 'sources' provides 'com.google.code.gson:gson:2.8.

1

5
5I

com.google.code.gson:gson:2.8.5 FAILED
\--- functionalTestClasspath

A web-based, searchable dependency report is available by adding the --scan option.

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

The error message mentions the missing com.google.code.gson:gson-test-fixtures capability, which
is indeed not defined for this library. That’s because by convention, for projects that use the java-
test-fixtures plugin, Gradle automatically creates test fixtures variants with a capability whose
name is the name of the main component, with the appendix -test-fixtures.

If you publish your library and use test fixtures, but do not want to publish the

NOTE . . o .
fixtures, you can deactivate publishing of the test fixtures variants as shown below.

Example 48. Disable publishing of test fixtures variants

build.gradle.kts

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["testFixturesApiEl
ements"]) { skip() }
javaComponent.withVariantsFromConfiguration(configurations["testFixturesRunti
meElements"]) { skip() }

build.gradle

components.java.withVariantsFromConfiguration(configurations.testFixturesApiE
lements) { skip() }
components.java.withVariantsFromConfiguration(configurations.testFixturesRunt
imeElements) { skip() }

Managing Dependencies of JVM Projects

This chapter explains how to apply basic dependency management concepts to JVM-based projects.
For a detailed introduction to dependency management, see dependency management in Gradle.

Dissecting a typical build script

Let’s have a look at a very simple build script for a JVM-based project. It applies the Java Library
plugin which automatically introduces a standard project layout, provides tasks for performing
typical work and adequate support for dependency management.

Example 49. Dependency declarations for a JVM-based project

build.gradle.kts

plugins {
‘java-library®

}

repositories {
mavenCentral()

}

dependencies {
implementation("org.hibernate:hibernate-core:3.6.7.Final")
api("com.google.guava:guava:23.0")
testImplementation("junit:junit:4.+")

#ex-disable-publishing-of-test-fixtures-variants
#ex-dependency-declarations-for-a-jvm-based-project

build.gradle

plugins {
id 'java-library'

}

repositories {
mavenCentral()

}

dependencies {
implementation 'org.hibernate:hibernate-core:3.6.7.Final’
api 'com.google.guava:guava:23.0'
testImplementation 'junit:junit:4.+'

The Project.dependencies{} code block declares that Hibernate core 3.6.7.Final is required to
compile the project’s production source code. It also states that junit >= 4.0 is required to compile
the project’s tests. All dependencies are supposed to be looked up in the Maven Central repository
as defined by Project.repositories{}. The following sections explain each aspect in more detail.

Declaring module dependencies

There are various types of dependencies that you can declare. One such type is a module
dependency. A module dependency represents a dependency on a module with a specific version
built outside the current build. Modules are usually stored in a repository, such as Maven Central, a
corporate Maven or Ivy repository, or a directory in the local file system.

To define an module dependency, you add it to a dependency configuration:

Example 50. Definition of a module dependency

build.gradle.kts

dependencies {
implementation("org.hibernate:hibernate-core:3.6.7.Final")

}

build.gradle

dependencies {

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
#ex-definition-of-a-module-dependency

implementation 'org.hibernate:hibernate-core:3.6.7.Final’

To find out more about defining dependencies, have a look at Declaring Dependencies.

Using dependency configurations

A Configuration is a named set of dependencies and artifacts. There are three main purposes for a
configuration:

Declaring dependencies

A plugin uses configurations to make it easy for build authors to declare what other subprojects
or external artifacts are needed for various purposes during the execution of tasks defined by
the plugin. For example a plugin may need the Spring web framework dependency to compile
the source code.

Resolving dependencies

A plugin uses configurations to find (and possibly download) inputs to the tasks it defines. For
example Gradle needs to download Spring web framework JAR files from Maven Central.

Exposing artifacts for consumption
A plugin uses configurations to define what artifacts it generates for other projects to consume.
For example the project would like to publish its compiled source code packaged in the JAR file
to an in-house Artifactory repository.

With those three purposes in mind, let’s take a look at a few of the standard configurations defined
by the Java Library Plugin.

implementation

The dependencies required to compile the production source of the project which are not part of
the API exposed by the project. For example the project uses Hibernate for its internal
persistence layer implementation.

api
The dependencies required to compile the production source of the project which are part of the
API exposed by the project. For example the project uses Guava and exposes public interfaces
with Guava classes in their method signatures.

testimplementation

The dependencies required to compile and run the test source of the project. For example the
project decided to write test code with the test framework JUnit.

Various plugins add further standard configurations. You can also define your own custom
configurations in your build via Project.configurations{}. See What are dependency configurations
for the details of defining and customizing dependency configurations.

https://docs.gradle.org/8.10/dsl/org.gradle.api.artifacts.Configuration.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
dependency_configurations.pdf#sec:what-are-dependency-configurations

Declaring common Java repositories

How does Gradle know where to find the files for external dependencies? Gradle looks for them in
a repository. A repository is a collection of modules, organized by group, name and version. Gradle
understands different repository types, such as Maven and Ivy, and supports various ways of
accessing the repository via HTTP or other protocols.

By default, Gradle does not define any repositories. You need to define at least one with the help of
Project.repositories{} before you can use module dependencies. One option is use the Maven
Central repository:

Example 51. Usage of Maven central repository

build.gradle.kts

repositories {
mavenCentral()

}

build.gradle

repositories {
mavenCentral()

}

You can also have repositories on the local file system. This works for both Maven and Ivy
repositories.

Example 52. Usage of a local Ivy directory

build.gradle.kts
repositories {
ivy {
// URL can refer to a local directory
url = uri("../local-repo")

build.gradle

repositories {

https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
#ex-usage-of-maven-central-repository
#ex-usage-of-a-local-ivy-directory

ivy {
// URL can refer to a local directory
url "../local-repo"

A project can have multiple repositories. Gradle will look for a dependency in each repository in
the order they are specified, stopping at the first repository that contains the requested module.

To find out more about defining repositories, have a look at Declaring Repositories.

Publishing artifacts

To learn more about publishing artifacts, have a look at publishing plugins.

[1] The JUnit wiki contains a detailed description on how to work with JUnit categories: https://github.com/junit-team/junit/wiki/
Categories.

[2] The TestNG documentation contains more details about test groups: http://testng.org/doc/documentation-main.html#test-
groups.

[3] The TestNG documentation contains more details about test ordering when working with testng.xml files: http://testng.org/doc/
documentation-main.html#testng-xml.

https://github.com/junit-team/junit/wiki/Categories
https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml

JAVA TOOLCHAINS

Toolchains for JVM projects

Working on multiple projects can require interacting with multiple versions of the Java language.
Even within a single project different parts of the codebase may be fixed to a particular language
level due to backward compatibility requirements. This means different versions of the same tools
(a toolchain) must be installed and managed on each machine that builds the project.

A Java toolchain is a set of tools to build and run Java projects, which is usually provided by the
environment via local JRE or JDK installations. Compile tasks may use javac as their compiler, test
and exec tasks may use the java command while javadoc will be used to generate documentation.

By default, Gradle uses the same Java toolchain for running Gradle itself and building JVM projects.
However, this may only sometimes be desirable. Building projects with different Java versions on
different developer machines and CI servers may lead to unexpected issues. Additionally, you may
want to build a project using a Java version that is not supported for running Gradle.

In order to improve reproducibility of the builds and make build requirements clearer, Gradle
allows configuring toolchains on both project and task levels. You can also control the JVM used to
run Gradle itself using the Daemon JVM criteria.

Toolchains for projects

You can define what toolchain to use for a project by stating the Java language version in the java
extension block:

build.gradle.kts

java {
toolchain {
languageVersion = JavalanguageVersion.of(17)

}

build.gradle

java {
toolchain {
languageVersion = JavalanguageVersion.of(17)

}

Executing the build (e.g. using gradle check) will now handle several things for you and others
running your build:

1. Gradle configures all compile, test and javadoc tasks to use the defined toolchain.
2. Gradle detects locally installed toolchains.

3. Gradle chooses a toolchain matching the requirements (any Java 17 toolchain for the example
above).

4. If no matching toolchain is found, Gradle can automatically download a matching one based on
the configured toolchain download repositories.

Toolchain support is available in the Java plugins and for the tasks they define.

NOTE For the Groovy plugin, compilation is supported but not yet Groovydoc generation.

For the Scala plugin, compilation and Scaladoc generation are supported.

Selecting toolchains by vendor

In case your build has specific requirements from the used JRE/JDK, you may want to define the
vendor for the toolchain as well. JymVendorSpec has a list of well-known JVM vendors recognized by
Gradle. The advantage is that Gradle can handle any inconsistencies across JDK versions in how
exactly the JVM encodes the vendor information.

build.gradle.kts

java {
toolchain {
languageVersion = JavalanguageVersion.of(11)
vendor = JvmVendorSpec.ADOPTIUM

}
}
build.gradle
java {
toolchain {
languageVersion = JavalanguageVersion.of(11)
vendor = JvmVendorSpec.ADOPTIUM
}
¥

If the vendor you want to target is not a known vendor, you can still restrict the toolchain to those
matching the java.vendor system property of the available toolchains.

https://docs.gradle.org/8.10/javadoc/org/gradle/jvm/toolchain/JvmVendorSpec.html

The following snippet uses filtering to include a subset of available toolchains. This example only
includes toolchains whose java.vendor property contains the given match string. The matching is
done in a case-insensitive manner.

build.gradle.kts

java {
toolchain {
languageVersion = JavalanguageVersion.of(11)
vendor = JvmVendorSpec.matching("customString")

}
}
build.gradle
java {
toolchain {
languageVersion = JavalanguageVersion.of(11)
vendor = JvmVendorSpec.matching("customString")
}
}

Selecting toolchains by virtual machine implementation

If your project requires a specific implementation, you can filter based on the implementation as
well. Currently available implementations to choose from are:

VENDOR_SPECIFIC

Acts as a placeholder and matches any implementation from any vendor (e.g. hotspot, zulu, ...)

19

Matches only virtual machine implementations using the Open]J9/IBM]9 runtime engine.

For example, to use an IBM JVM, distributed via AdoptOpen]DK, you can specify the filter as shown
in the example below.

build.gradle.kts

java {
toolchain {
languageVersion = JavalanguageVersion.of(11)
vendor = JvmVendorSpec.IBM
implementation = JvmImplementation.J9

https://www.eclipse.org/openj9/
https://adoptopenjdk.net/

build.gradle

java {
toolchain {
languageVersion = JavalanguageVersion.of(11)
vendor = JvmVendorSpec.IBM
implementation = JvmImplementation.J]9

The Java major version, the vendor (if specified) and implementation (if specified)

NOTE . . o .
will be tracked as an input for compilation and test execution.

Configuring toolchain specifications

Gradle allows configuring multiple properties that affect the selection of a toolchain, such as
language version or vendor. Even though these properties can be configured independently, the
configuration must follow certain rules in order to form a valid specification.

A JavaToolchainSpec is considered valid in two cases:

1. when no properties have been set, i.e. the specification is empty;

2. when lanquageVersion has been set, optionally followed by setting any other property.
In other words, if a vendor or an implementation are specified, they must be accompanied by the
language version. Gradle distinguishes between toolchain specifications that configure the

language version and the ones that do not. A specification without a language version, in most
cases, would be treated as a one that selects the toolchain of the current build.

Usage of invalid instances of JavaToolchainSpec results in a build error since Gradle 8.0.

Toolchains for tasks

In case you want to tweak which toolchain is used for a specific task, you can specify the exact tool
a task is using. For example, the Test task exposes a Javalauncher property that defines which java
executable to use for launching the tests.

In the example below, we configure all java compilation tasks to use Java 8. Additionally, we
introduce a new Test task that will run our unit tests using a JDK 17.

list/build.gradle.kts

tasks.withType<JavaCompile>().configureEach {
javaCompiler = javaToolchains.compilerFor {
languageVersion = JavalanguageVersion.of(8)
}
¥

tasks.register<Test>("testsOn17") {
javalauncher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(17)

}

list/build.gradle

tasks.withType(JavaCompile).configureEach {
javaCompiler = javaToolchains.compilerFor {
languageVersion = JavalanguageVersion.of(8)
}
¥

task('testsOn17', type: Test) {
javalauncher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(17)

}

In addition, in the application subproject, we add another Java execution task to run our
application with JDK 17.

application/build.gradle.kts

tasks.register<JavaExec>("runOn17") {
javalauncher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(17)

}
classpath = sourceSets["main"].runtimeClasspath
mainClass = application.mainClass

application/build.gradle

task('runOn17"', type: JavaExec) {
javalauncher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(17)

}

classpath = sourceSets.main.runtimeClasspath
mainClass = application.mainClass

Depending on the task, a JRE might be enough while for other tasks (e.g. compilation), a JDK is
required. By default, Gradle prefers installed JDKs over JREs if they can satisfy the requirements.

Toolchains tool providers can be obtained from the javaToolchains extension.
Three tools are available:

* A JavaCompiler which is the tool used by the JavaCompile task
* A Javalauncher which is the tool used by the JavaExec or Test tasks

* A JavadocTool which is the tool used by the Javadoc task

Integration with tasks relying on a Java executable or Java home

Any task that can be configured with a path to a Java executable, or a Java home location, can
benefit from toolchains.

While you will not be able to wire a toolchain tool directly, they all have the metadata that gives
access to their full path or to the path of the Java installation they belong to.

For example, you can configure the java executable for a task as follows:

build.gradle.kts

val launcher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(11)

}

tasks.sampleTask {
javaExecutable = launcher.map { it.executablePath }

}

https://docs.gradle.org/8.10/javadoc/org/gradle/jvm/toolchain/JavaToolchainService.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:javaCompiler
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:javaLauncher
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:javaLauncher
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:javadocTool

build.gradle

def launcher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(11)

}

tasks.named('sampleTask') {
javaExecutable = launcher.map { it.executablePath }

}

As another example, you can configure the Java Home for a task as follows:

build.gradle.kts

val launcher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(11)

}

tasks.anotherSampleTask {
javaHome = launcher.map { it.metadata.installationPath }

}

build.gradle

def launcher = javaToolchains.launcherFor {
languageVersion = JavalanguageVersion.of(11)

}

tasks.named('anotherSampleTask') {
javaHome = launcher.map { it.metadata.installationPath }

}

If you require a path to a specific tool such as Java compiler, you can obtain it as follows:

build.gradle.kts

val compiler = javaToolchains.compilerFor {
languageVersion = JavalanguageVersion.of(11)

}

tasks.yetAnotherSampleTask {
javaCompilerExecutable = compiler.map { it.executablePath }

}

build.gradle

def compiler = javaToolchains.compilerFor {
languageVersion = JavalanguageVersion.of(11)

}

tasks.named('yetAnotherSampleTask') {
javaCompilerExecutable = compiler.map { it.executablePath }

}

The examples above use tasks with ReqularFileProperty and DirectoryProperty
properties which allow lazy configuration. Doing respectively
WARNING launcher.get().executablePath, launcher.get().metadata.installationPath or
compiler.get().executablePath instead will give you the full path for the given
toolchain but note that this may realize (and provision) a toolchain eagerly.

Auto-detection of installed toolchains

By default, Gradle automatically detects local JRE/JDK installations so no further configuration is
required by the user. The following is a list of common package managers, tools, and locations that
are supported by the JVM auto-detection.

JVM auto-detection knows how to work with:

* Operation-system specific locations: Linux, macOS, Windows

Package Managers: Asdf-vm, Jabba, SDKMAN!

* Maven Toolchain specifications

Intelli] IDEA installations

Among the set of all detected JRE/JDK installations, one will be picked according to the Toolchain
Precedence Rules.

Whether you are using toolchain auto-detection or you are configuring Custom
NOTE toolchain locations, installations that are non-existing or without a bin/java
executable will be ignored with a warning, but they won’t generate an error.

How to disable auto-detection

In order to disable auto-detection, you can use the org.gradle.java.installations.auto-detect
Gradle property:

https://asdf-vm.com/#/
https://github.com/shyiko/jabba
https://sdkman.io/
https://maven.apache.org/guides/mini/guide-using-toolchains.html
https://www.jetbrains.com/help/idea/sdk.html#jdk-from-ide

 Either start gradle using -Porg.gradle.java.installations.auto-detect=false

* Or putorg.gradle.java.installations.auto-detect=false into your gradle.properties file.

Auto-provisioning

If Gradle can’t find a locally available toolchain that matches the requirements of the build, it can
automatically download one (as long as a toolchain download repository has been configured; for
detail, see relevant section). Gradle installs the downloaded JDKs in the Gradle User Home.

NOTE Gradle only downloads JDK versions for GA releases. There is no support for
downloading early access versions.

Once installed in the Gradle User Home, a provisioned JDK becomes one of the JDKs visible to auto-

detection and can be used by any subsequent builds, just like any other JDK installed on the system.

Since auto-provisioning only kicks in when auto-detection fails to find a matching JDK, auto-
provisioning can only download new JDKs and is in no way involved in updating any of the already
installed ones. None of the auto-provisioned JDKs will ever be revisited and automatically updated
by auto-provisioning, even if there is a newer minor version available for them.

Toolchain Download Repositories

Toolchain download repository definitions are added to a build by applying specific settings
plugins. For details on writing such plugins, consult the Toolchain Resolver Plugins page.

One example of a toolchain resolver plugin is the Foojay Toolchains Plugin, based on the foojay
Disco API. It even has a convention variant, which automatically takes care of all the needed
configuration, just by being applied:

settings.gradle.kts

plugins {
id("org.gradle.toolchains.foojay-resolver-convention") version("0.8.0")

}

settings.gradle

plugins {
id 'org.gradle.toolchains.foojay-resolver-convention' version '0.8.0'

}

In general, when applying toolchain resolver plugins, the toolchain download resolvers provided
by them also need to be configured. Let’s illustrate with an example. Consider two toolchain

https://github.com/gradle/foojay-toolchains
https://github.com/foojayio/discoapi
https://github.com/foojayio/discoapi

resolver plugins applied by the build:

* One is the Foojay plugin mentioned above, which downloads toolchains via the
FoojayToolchainResolver it provides.

* The other contains a FICTITIOUS resolver named MadeUpResolver.

The following example uses these toolchain resolvers in a build via the toolchainManagement block in
the settings file:

settings.gradle.kts

toolchainManagement {
jym { @
javaRepositories {
repository("foojay") { @
resolverClass =
org.gradle.toolchains.foojay.FoojayToolchainResolver::class.java
}
repository("made_up") { ®
resolverClass = MadeUpResolver::class.java
credentials {
username = "user"
password = "password"

}
authentication {
create<DigestAuthentication>("digest")

} @

settings.gradle

toolchainManagement {
jym { @
javaRepositories {
repository('foojay') { @
resolverClass = org.gradle.toolchains.foojay
.FoojayToolchainResolver
}
repository('made_up') { ®
resolverClass = MadeUpResolver
credentials {
username "user"
password "password"

authentication {
digest(BasicAuthentication)
} @

@ In the toolchainManagement block, the jvm block contains configuration for Java toolchains.

@ The javaRepositories block defines named Java toolchain repository configurations. Use the
resolver(lass property to link these configurations to plugins.

® Toolchain declaration order matters. Gradle downloads from the first repository that provides a
match, starting with the first repository in the list.

@ You can configure toolchain repositories with the same set of authentication and authorization
options used for dependency management.

The jvm block in toolchainManagement only resolves after applying a toolchain

WARNING .
resolver plugin.

Viewing and debugging toolchains

Gradle can display the list of all detected toolchains including their metadata.

For example, to show all toolchains of a project, run:

gradle -q javaToolchains

Output of gradle -q javaToolchains

> gradle -q javaToolchains

+ Options
| Auto-detection: Enabled
| Auto-download: Enabled

+ AdoptOpen]DK 1.8.0_242

| Location: /Users/username/myJavalnstalls/8.0.242.hs-adpt/jre

| Language Version: 8

| Vendor: AdoptOpen]DK

| Architecture: x86_64

| Is JDK: false

| Detected by: Gradle property 'org.gradle.java.installations.paths'

+ Microsoft JDK 16.0.2+7
| Location: /Users/username/.sdkman/candidates/java/16.0.2.7.1-ms
| Language Version: 16

declaring_repositories_adv.pdf#sec:authentication_schemes
declaring_repositories_adv.pdf#sec:authentication_schemes

| Vendor: Microsoft

| Architecture: aarch64
| Is JDK: true
| Detected by: SDKMAN!

+ Open]DK 15-ea

| Location: /Users/user/customJdks/15.ea.21-open
| Language Version: 15

| Vendor: AdoptOpen]DK

| Architecture: x86_64

| Is JDK: true

| Detected by: environment variable 'JDK16'

+ Oracle JDK 1.7.0_80
| Location:
/Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home/jre
| Language Version: 7

| Vendor: Oracle

| Architecture: x86_64

| Is JDK: false

| Detected by: MacOS java_home

This can help to debug which toolchains are available to the build, how they are detected and what
kind of metadata Gradle knows about those toolchains.

Disabling auto provisioning

In order to disable auto-provisioning, you can use the org.gradle.java.installations.auto-download
Gradle property:

 Either start gradle using -Porg.gradle.java.installations.auto-download=false

* Or putorg.gradle.java.installations.auto-download=false into a gradle.properties file.

After disabling the auto provisioning, ensure that the specified JRE/JDK version in
the build file is already installed locally. Then, stop the Gradle daemon so that it can
be reinitialized for the next build. You can use the ./gradlew --stop command to
stop the daemon process.

NOTE

Removing an auto-provisioned toolchain

When removing an auto-provisioned toolchain is necessary, remove the relevant toolchain located
in the /jdks directory within the Gradle User Home.

The Gradle Daemon caches information about your project, including configuration
details such as toolchain paths or versions. Changes to a project’s toolchain

NOTE configuration might only occur once the Gradle Daemon is restarted. It is
recommended to stop the Gradle Daemon to ensure that Gradle updates the
configuration for subsequent builds.

Custom toolchain locations

If auto-detecting local toolchains is not sufficient or disabled, there are additional ways you can let
Gradle know about installed toolchains.

If your setup already provides environment variables pointing to installed JVMs, you can also let
Gradle know about which environment variables to take into account. Assuming the environment
variables JDK8 and JRE17 point to valid java installations, the following instructs Gradle to resolve
those environment variables and consider those installations when looking for a matching
toolchain.

org.gradle.java.installations.fromEnv=JDK8, JRE17

Additionally, you can provide a comma-separated list of paths to specific installations using the
org.gradle.java.installations.paths property. For example, using the following in your
gradle.properties will let Gradle know which directories to look at when detecting toolchains.
Gradle will treat these directories as possible installations but will not descend into any nested
directories.

org.gradle.java.installations.paths=/custom/path/jdk1.8,/shared/jrell

Gradle does not prioritize custom toolchains over auto-detected toolchains. If you
NOTE enable auto-detection in your build, custom toolchains extend the set of toolchain
locations. Gradle picks a toolchain according to the precedence rules.

Toolchain installations precedence

Gradle will sort all the JDK/JRE installations matching the toolchain specification of the build and
will pick the first one. Sorting is done based on the following rules:

1. the installation currently running Gradle is preferred over any other

2. JDK installations are preferred over JRE ones

3. certain vendors take precedence over others; their ordering (from the highest priority to
lowest):

a. ADOPTIUM

b. ADOPTOPEN]DK
c. AMAZON

d. APPLE

e. AZUL

=h

BELLSOFT
GRAAL_VM

Z @

HEWLETT_PACKARD

i. IBM
j- JETBRAINS
k. MICROSOFT
L. ORACLE
m. SAP
n. TENCENT
0. everything else
4. higher major versions take precedence over lower ones
5. higher minor versions take precedence over lower ones

6. installation paths take precedence according to their lexicographic ordering (last resort criteria
for deterministically deciding between installations of the same type, from the same vendor and
with the same version)

All these rules are applied as multilevel sorting criteria, in the order shown. Let’s illustrate with an
example. A toolchain specification requests Java version 17. Gradle detects the following matching
installations:

* Oracle JREv17.0.1
* Oracle JDKv17.0.0

Microsoft JDK 17.0.0

Microsoft JRE 17.0.1

Microsoft JDK 17.0.1

Assume that Gradle runs on a major Java version other than 17. Otherwise, that installation would
have priority.

When we apply the above rules to sort this set we will end up with following ordering:

Microsoft JDK 17.0.1
Microsoft JDK 17.0.0
Oracle JDK v17.0.0
Microsoft JRE v17.0.1

G W M

Oracle JRE v17.0.1

Gradle prefers JDKs over JREs, so the JREs come last. Gradle prefers the Microsoft vendor over
Oracle, so the Microsoft installations come first. Gradle prefers higher version numbers, so JDK
17.0.1 comes before JDK 17.0.0.

So Gradle picks the first match in this order: Microsoft JDK 17.0.1.

Toolchains for plugin authors

When creating a plugin or a task that uses toolchains, it is essential to provide sensible defaults and

allow users to override them.

For JVM projects, it is usually safe to assume that the java plugin has been applied to the project.
The java plugin is automatically applied for the core Groovy and Scala plugins, as well as for the
Kotlin plugin. In such a case, using the toolchain defined via the java extension as a default value
for the tool property is appropriate. This way, the users will need to configure the toolchain only
once on the project level.

The example below showcases how to use the default toolchain as convention while allowing users
to individually configure the toolchain per task.

build.gradle.kts
abstract class CustomTaskUsingToolchains : DefaultTask() {

@get:Nested
abstract val launcher: Property<Javalauncher> @

init {
val toolchain =
project.extensions.getByType<JavaPluginExtension>().toolchain @
val defaultlLauncher = javaToolchainService.launcherFor(toolchain) ®
launcher.convention(defaultLauncher) @

}

@TaskAction

fun showConfiguredToolchain() {
println(launcher.get().executablePath)
println(launcher.get().metadata.installationPath)

}

@get:Inject
protected abstract val javaToolchainService: JavaToolchainService

build.gradle

abstract class CustomTaskUsingToolchains extends DefaultTask {

abstract Property<Javalauncher> getlauncher() @

CustomTaskUsingToolchains() {
def toolchain = project.extensions.getByType(JavaPluginExtension
.class).toolchain @
Provider<Javalauncher> defaultLauncher = getJavaToolchainService()
.launcherFor(toolchain) ®

launcher.convention(defaultLauncher) @

def showConfiguredToolchain() {
println launcher.get().executablePath
println launcher.get().metadata.installationPath

protected abstract JavaToolchainService getJavaToolchainService()

@ We declare a Javalauncher property on the task. The property must be marked as a @Nested input
to make sure the task is responsive to toolchain changes.

@ We obtain the toolchain spec from the java extension to use it as a default.
® Using the JavaToolchainService we get a provider of the JavalLauncher that matches the toolchain.

@ Finally, we wire the launcher provider as a convention for our property.

In a project where the java plugin was applied, we can use the task as follows:

build.gradle.kts

plugins {
java

}

java {
toolchain { @
languageVersion = JavalanguageVersion.of(8)
}
¥

tasks.register<CustomTaskUsingToolchains>("showDefaultToolchain") @
tasks.register<CustomTaskUsingToolchains>("showCustomToolchain") {

launcher = javaToolchains.launcherFor { ®
languageVersion = JavalanguageVersion.of(17)

build.gradle

plugins {

id 'java'

}
java {
toolchain { @
languageVersion = JavalanguageVersion.of(8)
}
}

tasks.register('showDefaultToolchain', CustomTaskUsingToolchains) @

tasks.register('showCustomToolchain', CustomTaskUsingToolchains) {
launcher = javaToolchains.launcherFor { ®
languageVersion = JavalanguageVersion.of(17)

@ The toolchain defined on the java extension is used by default to resolve the launcher.
@ The custom task without additional configuration will use the default Java 8 toolchain.

® The other task overrides the value of the launcher by selecting a different toolchain using
javaToolchains service.

When a task needs access to toolchains without the java plugin being applied the toolchain service
can be used directly. If an unconfigured toolchain spec is provided to the service, it will always
return a tool provider for the toolchain that is running Gradle. This can be achieved by passing an
empty lambda when requesting a tool: javaToolchainService.launcherFor({}).

You can find more details on defining custom tasks in the Authoring tasks documentation.

Toolchains limitations

Gradle may detect toolchains incorrectly when it’s running in a JVM compiled against musl, an
alternative implementation of the C standard library. JVMs compiled against musl can sometimes
override the LD_LIBRARY_PATH environment variable to control dynamic library resolution. This can
influence forked java processes launched by Gradle, resulting in unexpected behavior.

As a consequence, using multiple java toolchains is discouraged in environments with the musl
library. This is the case in most Alpine distributions — consider using another distribution, like
Ubuntu, instead. If you are using a single toolchain, the JVM running Gradle, to build and run your
application, you can safely ignore this limitation.

Toolchain Resolver Plugins

In Gradle version 7.6 and above, Gradle provides a way to define Java toolchain auto-provisioning
logic in plugins. This page explains how to author a toolchain resolver plugin. For details on how
toolchain auto-provisioning interacts with these plugins, see Toolchains.

https://musl.libc.org/

Provide a download URI

Toolchain resolver plugins provide logic to map a toolchain request to a download response. At the
moment the download response only contains a download URL, but may be extended in the future.

For the download URL only secure protocols like https are accepted. This is

WARNING
required to make sure no one can tamper with the download in flight.

The plugins provide the mapping logic via an implementation of JavaToolchainResolver:

JavaToolchainResolverImplementation.java

public abstract class JavaToolchainResolverImplementation
implements JavaToolchainResolver { @

public Optional<JavaToolchainDownload> resolve(JavaToolchainRequest request) { @
return Optional.empty(); // custom mapping logic goes here instead

}

@ This class is abstract because JavaToolchainResolver is a build service. Gradle provides dynamic
implementations for certain abstract methods at runtime.

@ The mapping method returns a download response wrapped in an Optional. If the resolver
implementation can’t provide a matching toolchain, the enclosing Optional contains an empty
value.

Register the resolver in a plugin
Use a settings plugin (Plugin<Settings>) to register the JavaToolchainResolver implementation:

JavaToolchainResolverPlugin.java
public abstract class JavaToolchainResolverPlugin implements Plugin<Settings> { @

protected abstract JavaToolchainResolverRegistry getToolchainResolverRegistry();

@

public void apply(Settings settings) {
settings.getPlugins().apply("jvm-toolchain-management"); @

JavaToolchainResolverRegistry registry = getToolchainResolverRegistry();
registry.register(JavaToolchainResolverImplementation.class);

@ The plugin uses property injection, so it must be abstract and a settings plugin.

@ To register the resolver implementation, use property injection to access the
JavaToolchainResolverRegistry Gradle service.

https://docs.gradle.org/8.10/javadoc/org/gradle/jvm/toolchain/JavaToolchainRequest.html
https://docs.gradle.org/8.10/javadoc/org/gradle/jvm/toolchain/JavaToolchainDownload.html
https://docs.gradle.org/8.10/javadoc/org/gradle/jvm/toolchain/JavaToolchainResolver.html
service_injection.pdf#property_injection
https://docs.gradle.org/8.10/javadoc/org/gradle/jvm/toolchain/JavaToolchainResolverRegistry.html

® Resolver plugins must apply the jvm-toolchain-management base plugin. This dynamically adds
the jvm block to toolchainManagement, which makes registered toolchain repositories usable from
the build.

JVM PLUGINS

The Java Library Plugin

The Java Library plugin expands the capabilities of the Java Plugin (java) by providing specific
knowledge about Java libraries. In particular, a Java library exposes an API to consumers (i.e., other
projects using the Java or the Java Library plugin). All the source sets, tasks and configurations
exposed by the Java plugin are implicitly available when using this plugin.

Usage

To use the Java Library plugin, include the following in your build script:

Example 53. Using the Java Library plugin

build.gradle.kts

plugins {
‘java-library®

}

build.gradle

plugins {
id 'java-library'

}

API and implementation separation

The key difference between the standard Java plugin and the Java Library plugin is that the latter
introduces the concept of an API exposed to consumers. A library is a Java component meant to be
consumed by other components. It’s a very common use case in multi-project builds, but also as
soon as you have external dependencies.

The plugin exposes two configurations that can be used to declare dependencies: api and
implementation. The api configuration should be used to declare dependencies which are exported
by the library API, whereas the implementation configuration should be used to declare
dependencies which are internal to the component.

java_plugin.pdf#java_plugin
java_plugin.pdf#java_plugin
java_plugin.pdf#java_plugin
#ex-using-the-java-library-plugin
dependency_configurations.pdf#sec:what-are-dependency-configurations

Example 54. Declaring API and implementation dependencies

build.gradle.kts

dependencies {
api("org.apache.httpcomponents:httpclient:4.5.7")
implementation("org.apache.commons:commons-1ang3:3.5")

build.gradle

dependencies {
api 'org.apache.httpcomponents:httpclient:4.5.7'
implementation 'org.apache.commons:commons-lang3:3.5"

Dependencies appearing in the api configurations will be transitively exposed to consumers of the
library, and as such will appear on the compile classpath of consumers. Dependencies found in the
implementation configuration will, on the other hand, not be exposed to consumers, and therefore
not leak into the consumers' compile classpath. This comes with several benefits:

» dependencies do not leak into the compile classpath of consumers anymore, so you will never
accidentally depend on a transitive dependency

« faster compilation thanks to reduced classpath size

* less recompilations when implementation dependencies change: consumers would not need to
be recompiled

* cleaner publishing: when used in conjunction with the new maven-publish plugin, Java libraries
produce POM files that distinguish exactly between what is required to compile against the
library and what is required to use the library at runtime (in other words, don’t mix what is
needed to compile the library itself and what is needed to compile against the library).

The compile and runtime configurations have been removed with Gradle 7.0. Please
NOTE refer to the upgrade guide how to migrate to implementation and api
configurations .

If your build consumes a published module with POM metadata, the Java and Java Library plugins
both honor api and implementation separation through the scopes used in the POM. Meaning that
the compile classpath only includes Maven compile scoped dependencies, while the runtime
classpath adds the Maven runtime scoped dependencies as well.

This often does not have an effect on modules published with Maven, where the POM that defines
the project is directly published as metadata. There, the compile scope includes both dependencies
that were required to compile the project (i.e. implementation dependencies) and dependencies

#ex-declaring-api-and-implementation-dependencies
upgrading_version_6.pdf#sec:configuration_removal

required to compile against the published library (i.e. API dependencies). For most published
libraries, this means that all dependencies belong to the compile scope. If you encounter such an
issue with an existing library, you can consider a component metadata rule to fix the incorrect
metadata in your build. However, as mentioned above, if the library is published with Gradle, the
produced POM file only puts api dependencies into the compile scope and the remaining
implementation dependencies into the runtime scope.

If your build consumes modules with Ivy metadata, you might be able to activate api and
implementation separation as described here if all modules follow a certain structure.

Separating compile and runtime scope of modules is active by default in Gradle
NOTE 50+. In Gradle 4.6+, you need to activate it by adding
enableFeaturePreview('IMPROVED_POM_SUPPORT') in settings.gradle.

Recognizing API and implementation dependencies

This section will help you identify API and Implementation dependencies in your code using simple
rules of thumb. The first of these is:

* Prefer the implementation configuration over api when possible

This keeps the dependencies off of the consumer’s compilation classpath. In addition, the
consumers will immediately fail to compile if any implementation types accidentally leak into the
public API.

So when should you use the api configuration? An API dependency is one that contains at least one
type that is exposed in the library binary interface, often referred to as its ABI (Application Binary
Interface). This includes, but is not limited to:

* types used in super classes or interfaces

* types used in public method parameters, including generic parameter types (where public is
something that is visible to compilers. L.e., public, protected and package private members in the
Java world)

* types used in public fields

* public annotation types
By contrast, any type that is used in the following list is irrelevant to the ABIL, and therefore should
be declared as an implementation dependency:

* types exclusively used in method bodies

* types exclusively used in private members

* types exclusively found in internal classes (future versions of Gradle will let you declare which

packages belong to the public API)

The following class makes use of a couple of third-party libraries, one of which is exposed in the
class’s public API and the other is only used internally. The import statements don’t help us
determine which is which, so we have to look at the fields, constructors and methods instead:

Example: Making the difference between API and implementation

src/main/java/org/gradle/HttpClientWrapper.java

// The following types can appear anywhere in the code
// but say nothing about API or implementation usage
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.HttpStatus;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;

public class HttpClientWrapper {
private final HttpClient client; // private member: implementation details

// HttpClient 1is used as a parameter of a public method

// so "leaks" into the public API of this component

public HttpClientWrapper(HttpClient client) {
this.client = client;

}

// public methods belongs to your API
public byte[] doRawGet(String url) {
HttpGet request = new HttpGet(url);
try {
HttpEntity entity = doGet(request);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
entity.writeTo(baos);
return baos.toByteArray();
} catch (Exception e) {
ExceptionUtils.rethrow(e); // this dependency is internal only
} finally {
request.releaseConnection();
¥

return null;

}

// HttpGet and HttpEntity are used in a private method, so they don't belong to
the API
private HttpEntity doGet(HttpGet get) throws Exception {
HttpResponse response = client.execute(get);
if (response.getStatusLine().getStatusCode() != HttpStatus.SC_O0K) {
System.err.println("Method failed: " + response.getStatusLine());
}

return response.getEntity();

The public constructor of HttpClientWrapper uses HttpClient as a parameter, so it is exposed to
consumers and therefore belongs to the API. Note that HttpGet and HttpEntity are used in the
signature of a private method, and so they don’t count towards making HttpClient an API
dependency.

On the other hand, the ExceptionUtils type, coming from the commons-1ang library, is only used in a
method body (not in its signature), so it’s an implementation dependency.

Therefore, we can deduce that httpclient is an API dependency, whereas commons-lang is an
implementation dependency. This conclusion translates into the following declaration in the build
script:

Example 55. Declaring API and implementation dependencies

build.gradle.kts
dependencies {

api("org.apache.httpcomponents:httpclient:4.5.7")
implementation("org.apache.commons:commons-1ang3:3.5")

build.gradle
dependencies {

api 'org.apache.httpcomponents:httpclient:4.5.7"
implementation 'org.apache.commons:commons-lang3:3.5'

The Java Library plugin configurations

The following graph describes how configurations are setup when the Java Library plugin is in use.

#ex-declaring-api-and-implementation-dependencies

apiElements(C)

compileClasspath(R) runtimeElements (C) runtimeClasspath(R)

* The configurations in green are the ones a user should use to declare dependencies

* The configurations in pink are the ones used when a component compiles, or runs against the
library

» The configurations in blue are internal to the component, for its own use

And the next graph describes the test configurations setup:

-+

testCompileClasspath(R) testRuntimeClasspath(R)

The role of each configuration is described in the following tables:

Table 4. Java Library plugin - configurations used to declare dependencies

Configura Role Consu Resolv Description

tion name mable? able?

api Declaring API no no This is where you declare dependencies which
dependencies are transitively exported to consumers, for

compile time and runtime.

Configura
tion name

implementa
tion

compileOnl
y

compileOnl
yApi

runtimeOnl
y

testImplem
entation

testCompil
eOnly

testRuntim
eOnly

Role

Declaring
implementation
dependencies

Declaring compile
only dependencies

Declaring compile
only API
dependencies

Declaring runtime
dependencies

Test dependencies

Declaring test
compile only
dependencies

Declaring test
runtime
dependencies

Consu
mable?

no

no

no

no

no

no

no

Resolv Description

able?

no

no

no

no

no

no

no

This is where you declare dependencies which
are purely internal and not meant to be
exposed to consumers (they are still exposed to
consumers at runtime).

This is where you declare dependencies which
are required at compile time, but not at
runtime. This typically includes dependencies
which are shaded when found at runtime.

This is where you declare dependencies which
are required at compile time by your module
and consumers, but not at runtime. This
typically includes dependencies which are
shaded when found at runtime.

This is where you declare dependencies which
are only required at runtime, and not at
compile time.

This is where you declare dependencies which
are used to compile tests.

This is where you declare dependencies which
are only required at test compile time, but
should not leak into the runtime. This typically
includes dependencies which are shaded when
found at runtime.

This is where you declare dependencies which
are only required at test runtime, and not at
test compile time.

Table 5. Java Library plugin — configurations used by consumers

Configurat Role

ion name

apiklements For compiling

against this
library

runtimeElem For executing

ents

this library

Consu Resolv Description
mable? able?

yes

yes

no

no

This configuration is meant to be used by
consumers, to retrieve all the elements necessary
to compile against this library.

This configuration is meant to be used by
consumers, to retrieve all the elements necessary
to run against this library.

Table 6. Java Library plugin - configurations used by the library itself

Configurat
ion name

compileCla
sspath

runtimeCla
sspath

testCompil
eClasspath

testRuntim
eClasspath

Role Consu Resolv Description
mable? able?

For compiling this no
library

For executing this no
library

For compiling the no
tests of this library

For executing tests no
of this library

yes

yes

yes

yes

This configuration contains the compile
classpath of this library, and is therefore used
when invoking the java compiler to compile it.

This configuration contains the runtime
classpath of this library

This configuration contains the test compile
classpath of this library.

This configuration contains the test runtime
classpath of this library

Building Modules for the Java Module System

Since Java 9, Java itself offers a module system that allows for strict encapsulation during compile
and runtime. You can turn a Java library into a Java Module by creating a module-info.java file in
the main/java source folder.

L—— ma

in

L—— java

L—— module-info.java

In the module info file, you declare a module name, which packages of your module you want to
export and which other modules you require.

module-info.java file

module or
requi

g.gradle.sample {
res com.google.gson;

// real module

requires org.apache.commons.lang3; // automatic module
// commons-cli-1.4.jar is not a module and cannot be required

To tell the Java compiler that a Jar is a module, as opposed to a traditional Java library, Gradle needs
to place it on the so called module path. It is an alternative to the classpath, which is the traditional
way to tell the compiler about compiled dependencies. Gradle will automatically put a Jar of your
dependencies on the module path, instead of the classpath, if these three things are true:

* java.modularity.inferModulePath is not turned off

* We are actually building a module (as opposed to a traditional library) which we expressed by
adding the module-info.java file. (Another option is to add the Automatic-Module-Name Jar
manifest attribute as described further down.)

* The Jar our module depends on is itself a module, which Gradles decides based on the presence
of a module-info.class—the compiled version of the module descriptor—in the Jar. (Or,

https://www.oracle.com/corporate/features/understanding-java-9-modules.html

alternatively, the presence of an Automatic-Module-Name attribute the Jar manifest)

In the following, some more details about defining Java modules and how that interacts with
Gradle’s dependency management are described. You can also look at a ready made example to try
out the Java Module support directly.

Declaring module dependencies

There is a direct relationship to the dependencies you declare in the build file and the module
dependencies you declare in the module-info.java file. Ideally the declarations should be in sync as
seen in the following table.

Table 7. Mapping between Java module directives and Gradle configurations to declare dependencies

Java Module Directive Gradle Configuration Purpose

requires implementation Declaring implementation dependencies
requires transitive api Declaring API dependencies

requires static compileOnly Declaring compile only dependencies
requires static transitive compileOnlyApi Declaring compile only API dependencies

Gradle currently does not automatically check if the dependency declarations are in sync. This may
be added in future versions.

For more details on declaring module dependencies, please refer to documentation on the Java
Module System.

Declaring package visibility and services

The Java module system supports additional more fine granular encapsulation concepts than
Gradle itself currently does. For example, you explicitly need to declare which packages are part of
your API and which are only visible inside your module. Some of these capabilities might be added
to Gradle itself in future versions. For now, please refer to documentation on the Java Module
System to learn how to use these features in Java Modules.

Declaring module versions

Java Modules also have a version that is encoded as part of the module identity in the module-
info.class file. This version can be inspected when a module is running.

Example 56. Declare the module version in the build script or directly as compile task option

build.gradle.kts
version = "1.2"
tasks.compilelava {

// use the project's version or define one directly
options.javaModuleVersion = provider { version as String }

../samples/sample_java_modules_multi_project.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
#ex-declare-the-module-version-in-the-build-script-or-directly-as-compile-task-option

build.gradle
version = '1.2'

tasks.named('compileJava') {
// use the project's version or define one directly
options.javaModuleVersion = provider { version }

Using libraries that are not modules

You probably want to use external libraries, like OSS libraries from Maven Central, in your modular
Java project. Some libraries, in their newer versions, are already full modules with a module
descriptor. For example, com.google.code.gson:gson:2.8.9 that has the module name
com.google.gson

Others, like org.apache.commons:commons-1lang3:3.10, may not offer a full module descriptor but will
at least contain an Automatic-Module-Name entry in their manifest file to define the module’s name
(org.apache.commons.lang3 in the example). Such modules, that only have a name as module
description, are called automatic module that export all their packages and can read all modules on
the module path.

A third case are traditional libraries that provide no module information at all—for example
commons-cli:commons-cli:1.4. Gradle puts such libraries on the classpath instead of the module path.
The classpath is then treated as one module (the so called unnamed module) by Java.

Example 57. Dependencies to modules and libraries declared in build file

build.gradle.kts

dependencies {

implementation("com.google.code.gson:gson:2.8.9") // real module
implementation("org.apache.commons:commons-1ang3:3.10") // automatic
module
implementation("commons-cli:commons-cli:1.4") // plain library
}
build.gradle

dependencies {
implementation 'com.google.code.gson:gson:2.8.9' // real module

#ex-dependencies-to-modules-and-libraries-declared-in-build-file

implementation 'org.apache.commons:commons-1lang3:3.10" // automatic
module
implementation 'commons-cli:commons-cli:1.4' // plain library

Module dependencies declared in module-info.java file

module org.gradle.sample.lib {
requires com.google.gson; // real module
requires org.apache.commons.lang3; // automatic module
// commons-cli-1.4.jar is not a module and cannot be required

While a real module cannot directly depend on the unnamed module (only by adding command
line flags), automatic modules can also see the unnamed module. Thus, if you cannot avoid to rely
on a library without module information, you can wrap that library in an automatic module as part
of your project. How you do that is described in the next section.

Another way to deal with non-modules is to enrich existing Jars with module descriptors yourself
using artifact transforms. This sample contains a small buildSrc plugin registering such a transform
which you may use and adjust to your needs. This can be interesting if you want to build a fully
modular application and want the java runtime to treat everything as a real module.

Disabling Java Module support

In rare cases, you might want to disable the built-in Java Module support and define the module
path by other means. To achieve this, you can disable the functionality to automatically put any Jar
on the module path. Then Gradle puts Jars with module information on the classpath, even if you
have a module-info.java in your source set. This corresponds to the behaviour of Gradle versions
<7.0.

To make this work, you need to set modularity.inferModulePath = false on the Java extension (for
all tasks) or on individual tasks.

Example 58. Disable Gradle’s module path inference

build.gradle.kts
java {
modularity.inferModulePath = false
}
tasks.compilelava {
modularity.inferModulePath = false

}

../samples/sample_java_modules_with_transform.html
#ex-disable-gradles-module-path-inference

build.gradle

java {
modularity.inferModulePath = false
}
tasks.named('compileJava') {
modularity.inferModulePath = false

}

Building an automatic module

If you can, you should always write complete module-info.java descriptors for your modules. Still,
there are a few cases where you might consider to (initally) only provide a module name for an
automatic module:

* You are working on a library that is not a module but you want to make it usable as such in the
next release. Adding an Automatic-Module-Name is a good first step (most popular OSS libraries on
Maven central have done it by now).

* As discussed in the previous section, an automatic module can be used as an adapter between
your real modules and a traditional library on the classpath.

To turn a normal Java project into an automatic module, just add the manifest entry with the
module name:

Example 59. Declare an automatic module name as Jar manifest attribute

build.gradle.kts

tasks.jar {
manifest {
attributes("Automatic-Module-Name" to "org.gradle.sample")

build.gradle

tasks.named('jar") {
manifest {
attributes('Automatic-Module-Name': 'org.gradle.sample')

#ex-declare-an-automatic-module-name-as-jar-manifest-attribute

=== You can define an automatic module as part of a multi-project that otherwise
defines real modules (e.g. as an adapter to another library). While this works fine in
the Gradle build, such automatic module projects are not correctly recognized by
IDEA/Eclipse at the moment. You can work around it by manually adding the Jar
built for the automatic module to the dependencies of the project that does not find
it in the IDE’s UI. ===

NOTE

Using classes instead of jar for compilation

A feature of the java-library plugin is that projects which consume the library only require the
classes folder for compilation, instead of the full JAR. This enables lighter inter-project
dependencies as resources processing (processResources task) and archive construction (jar task)
are no longer executed when only Java code compilation is performed during development.

The usage or not of the classes output instead of the JAR is a consumer decision. For
NOTE example, Groovy consumers will request classes and processed resources as these
may be needed for executing AST transformation as part of the compilation process.

Increased memory usage for consumers

An indirect consequence is that up-to-date checking will require more memory, because Gradle will
snapshot individual class files instead of a single jar. This may lead to increased memory
consumption for large projects, with the benefit of having the compilelava task up-to-date in more
cases (e.g. changing resources no longer changes the input for compilelava tasks of upstream
projects)

Significant build performance drop on Windows for huge multi-projects

Another side effect of the snapshotting of individual class files, only affecting Windows systems, is
that the performance can significantly drop when processing a very large amount of class files on
the compile classpath. This only concerns very large multi-projects where a lot of classes are
present on the classpath by using many api dependencies. To mitigate this, you can set the
org.gradle.java.compile-classpath-packaging system property to true to change the behavior of the
Java Library plugin to use jars instead of class folders for everything on the compile classpath. Note,
since this has other performance impacts and potentially side effects, by triggering all jar tasks at
compile time, it is only recommended to activate this if you suffer from the described performance
issue on Windows.

Distributing a library

Aside from publishing a library to a component repository, you may sometimes need to package a
library and its dependencies in a distribution deliverable. The Java Library Distribution Plugin is
there to help you do just that.

The Application Plugin

The Application plugin facilitates creating an executable JVM application. It makes it easy to start

java_library_distribution_plugin.pdf#java_library_distribution_plugin

the application locally during development, and to package the application as a TAR and/or ZIP
including operating system specific start scripts.

Applying the Application plugin also implicitly applies the Java plugin. The main source set is
effectively the “application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A main distribution is
created that packages up the application, including code dependencies and generated start scripts.

Building JVM applications
To use the application plugin, include the following in your build script:

Example 60. Using the application plugin

build.gradle.kts

plugins {
application

}

build.gradle

plugins {
id 'application’

}

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry
point) of the application.

Example 61. Configure the application main class

build.gradle.kts
application {

mainClass = "org.gradle.sample.Main"

}

build.gradle

application {
mainClass = 'org.gradle.sample.Main'

java_plugin.pdf#java_plugin
distribution_plugin.pdf#distribution_plugin
#ex-using-the-application-plugin
#ex-configure-the-application-main-class

You can run the application by executing the run task (type: JavaExec). This will compile the main
source set, and launch a new JVM with its classes (along with all runtime dependencies) as the
classpath and using the specified main class. You can launch the application in debug mode with
gradle run --debug-jvm (see JavaExec.setDebug(boolean)).

Since Gradle 4.9, the command line arguments can be passed with --args. For example, if you want
to launch the application with command line arguments foo --bar, you can use gradle run
--args="foo --bar" (see JavaExec.setArgsString(java.lang.String).

If your application requires a specific set of JVM settings or system properties, you can configure
the applicationDefaultJvmArgs property. These JVM arguments are applied to the run task and also
considered in the generated start scripts of your distribution.

Example 62. Configure default JVM settings

build.gradle.kts

application {
applicationDefaultJvmArgs = 1istOf("-Dgreeting.language=en")
}

build.gradle

application {
applicationDefaultJvmArgs = ['-Dgreeting.language=en']
}

If your application’s start scripts should be in a different directory than bin, you can configure the
executableDir property.

Example 63. Configure custom directory for start scripts

build.gradle.kts

application {
executableDir = "custom_bin_dir"

}

https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/JavaExec.html
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug-boolean-
https://docs.gradle.org/8.10/javadoc/org/gradle/api/tasks/JavaExec.html#setArgsString-java.lang.String-
#ex-configure-default-jvm-settings
#ex-configure-custom-directory-for-start-scripts

build.gradle

application {
executableDir = 'custom_bin_dir'

}

Building applications using the Java Module System

Gradle supports the building of Java Modules as described in the corresponding section of the Java
Library plugin documentation. Java modules can also be runnable and you can use the application
plugin to run and package such a modular application. For this, you need to do two things in
addition to what you do for a non-modular application.

First, you need to add a module-info.java file to describe your application module. Please refer to
the Java Library plugin documentation for more details on this topic.

Second, you need to tell Gradle the name of the module you want to run in addition to the main
class name like this:

Example 64. Configure the modular application’s main module

build.gradle.kts

application {
mainModule = "org.gradle.sample.app"” // name defined in module-info.java
mainClass = "org.gradle.sample.Main"

build.gradle

application {
mainModule = 'org.gradle.sample.app' // name defined in module-info.java
mainClass = 'org.gradle.sample.Main'

That’s all. If you run your application, by executing the run task or through a generated start script,
it will run as module and respect module boundaries at runtime. For example, reflective access to
an internal package from another module can fail.

The configured main class is also baked into the module-info.class file of your application Jar. If you
run the modular application directly using the java command, it is then sufficient to provide the
module name.

https://www.oracle.com/corporate/features/understanding-java-9-modules.html
#ex-configure-the-modular-applications-main-module

You can also look at a ready made example that includes a modular application as part of a multi-
project.

Building a distribution

A distribution of the application can be created, by way of the Distribution plugin (which is
automatically applied). A main distribution is created with the following content:

Table 8. Distribution content

Location Content

(root dir) src/dist

Lib All runtime dependencies and main source set class files.

bin Start scripts (generated by startScripts task).

Static files to be added to the distribution can be simply added to src/dist. More advanced
customization can be done by configuring the CopySpec exposed by the main distribution.

Example 65. Include output from other tasks in the application distribution

build.gradle.kts

val createDocs by tasks.registering {
val docs = layout.buildDirectory.dir("docs")
outputs.dir(docs)
dolLast {
docs.get().asFile.mkdirs()
docs.get().file("readme.txt").asFile.writeText("Read me!")

}

distributions {
main {
contents {
from(createDocs) {
into("docs")

}

build.gradle

tasks.register('createDocs') {
def docs = layout.buildDirectory.dir('docs")
outputs.dir docs
dolLast {

../samples/sample_java_modules_multi_project.html
distribution_plugin.pdf#distribution_plugin
https://docs.gradle.org/8.10/javadoc/org/gradle/api/file/CopySpec.html
#ex-include-output-from-other-tasks-in-the-application-distribution

docs.get().asFile.mkdirs()
docs.get().file('readme.txt").asFile.write('Read me!")

}
}
distributions {
main {
contents {
from(createDocs) {
into 'docs'
}
}
}

By specifying that the distribution should include the task’s output files (see incremental builds),
Gradle knows that the task that produces the files must be invoked before the distribution can be
assembled and will take care of this for you.

You can run gradle installDist to create an image of the application in build/install/projectName.
You can run gradle distZip to create a ZIP containing the distribution, gradle distTar to create an
application TAR or gradle assemble to build both.

Customizing start script generation

The application plugin can generate Unix (suitable for Linux, macOS etc.) and Windows start scripts
out of the box. The start scripts launch a JVM with the specified settings defined as part of the
original build and runtime environment (e.g. JAVA_OPTS env var). The default script templates are
based on the same scripts used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of
CreateStartScripts for more details and customization examples.

Tasks
The Application plugin adds the following tasks to the project.

run — JavaExec

Depends on: classes
Starts the application.

startScripts — CreateStartScripts

Depends on: jar

Creates OS specific scripts to run the project as a JVM application.

https://docs.gradle.org/8.10/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/8.10/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html

installDist — Sync

Depends on: jar, startScripts
Installs the application into a specified directory.

distZip — Zip

Depends on: jar, startScripts
Creates a full distribution ZIP archive including runtime libraries and OS specific scripts.

distTar — Tar

Depends on: jar, startScripts

Creates a full distribution TAR archive including runtime libraries and OS specific scripts.

Application extension

The Application Plugin adds an extension to the project, which you can use to configure its
behavior. See the JavaApplication DSL documentation for more information on the properties
available on the extension.

You can configure the extension via the application {} block shown earlier, for example using the
following in your build script:

build.gradle.kts

application {
executableDir = "custom_bin_dir"

}

build.gradle

application {
executableDir = 'custom_bin_dir'

}

License of start scripts

The start scripts generated for the application are licensed under the Apache 2.0 Software License.

Convention properties (deprecated)

This plugin also adds some convention properties to the project, which you can use to configure its
behavior. These are deprecated and superseded by the extension described above. See the Project

https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.Sync.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.10/dsl/org.gradle.api.plugins.JavaApplication.html
https://www.apache.org/licenses/LICENSE-2.0
https://docs.gradle.org/8.10/dsl/org.gradle.api.Project.html#N14FED

DSL documentation for information on them.

Unlike the extension properties, these properties appear as top-level project properties in the build
script. For example, to change the application name you can just add the following to your build
script:

build.gradle.kts
application.applicationName = "my-app"
build.gradle
application.applicationName = "my-app'

The Java Platform Plugin

The Java Platform plugin brings the ability to declare platforms for the Java ecosystem. A platform
can be used for different purposes:

* a description of modules which are published together (and for example, share the same
version)

* a set of recommended versions for heterogeneous libraries. A typical example includes the
Spring Boot BOM

» sharing a set of dependency versions between subprojects

A platform is a special kind of software component which doesn’t contain any sources: it is only
used to reference other libraries, so that they play well toge