
Gradle User Guide

Version 2.12-rc-1

Copyright © 2007-2015 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not

charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Table of Contents

I. ABOUT GRADLE
1. Introduction
2. Overview

II. WORKING WITH EXISTING BUILDS
3. Installing Gradle
4. Using the Gradle Command-Line
5. The Gradle Wrapper
6. The Gradle Daemon
7. Dependency Management Basics
8. Introduction to multi-project builds
9. Continuous build
10. Using the Gradle Graphical User Interface
11. The Build Environment
12. Troubleshooting
13. Embedding Gradle

III. WRITING GRADLE BUILD SCRIPTS
14. Build Script Basics
15. Build Init Plugin
16. Writing Build Scripts
17. More about Tasks
18. Working With Files
19. Using Ant from Gradle
20. The Build Lifecycle
21. Wrapper Plugin
22. Logging
23. Dependency Management
24. Multi-project Builds
25. Gradle Plugins
26. Standard Gradle plugins
27. The Project Report Plugin
28. The Build Dashboard Plugin
29. Comparing Builds
30. Publishing artifacts
31. The Maven Plugin
32. The Signing Plugin
33. Ivy Publishing (new)
34. Maven Publishing (new)
35. The Distribution Plugin
36. The Announce Plugin
37. The Build Announcements Plugin

IV. EXTENDING THE BUILD
38. Writing Custom Task Classes
39. Writing Custom Plugins
40. The Java Gradle Plugin Development Plugin
41. Organizing Build Logic
42. Initialization Scripts
43. The Gradle TestKit

V. BUILDING JVM PROJECTS
44. Java Quickstart
45. The Java Plugin
46. Web Application Quickstart
47. The War Plugin
48. The Ear Plugin
49. The Jetty Plugin
50. The Application Plugin
51. The Java Library Distribution Plugin
52. Groovy Quickstart
53. The Groovy Plugin
54. The Scala Plugin
55. The ANTLR Plugin
56. The Checkstyle Plugin
57. The CodeNarc Plugin
58. The FindBugs Plugin
59. The JDepend Plugin
60. The PMD Plugin
61. The JaCoCo Plugin
62. The Sonar Plugin
63. The SonarQube Runner Plugin
64. The OSGi Plugin
65. The Eclipse Plugins
66. The IDEA Plugin

VI. THE SOFTWARE MODEL - NEXT GENERATION GRADLE BUILDS
67. Rule based model configuration
68. Software model concepts
69. Implementing model rules in a plugin
70. Building Java Libraries
71. Building Play applications
72. Building native software
73. Extending the software model

VII. APPENDIX
A. Gradle Samples
B. Potential Traps
C. The Feature Lifecycle
D. Gradle Command Line
Glossary

List of Examples

4.1. Executing multiple tasks

4.2. Excluding tasks

4.3. Abbreviated task name

4.4. Abbreviated camel case task name

4.5. Selecting the project using a build file

4.6. Selecting the project using project directory

4.7. Obtaining information about projects

4.8. Providing a description for a project

4.9. Obtaining information about tasks

4.10. Changing the content of the task report

4.11. Obtaining more information about tasks

4.12. Obtaining detailed help for tasks

4.13. Obtaining information about dependencies

4.14. Filtering dependency report by configuration

4.15. Getting the insight into a particular dependency

4.16. Information about properties

5.1. Running the Wrapper task

5.2. Wrapper task

5.3. Wrapper generated files

5.4. Generating a SHA-256 hash

5.5. Configuring SHA-256 checksum verification

7.1. Declaring dependencies

7.2. Definition of an external dependency

7.3. Shortcut definition of an external dependency

7.4. Usage of Maven central repository

7.5. Usage of a remote Maven repository

7.6. Usage of a remote Ivy directory

7.7. Usage of a local Ivy directory

7.8. Publishing to an Ivy repository

7.9. Publishing to a Maven repository

8.1. Listing the projects in a build

10.1. Launching the GUI

11.1. Setting properties with a gradle.properties file

11.2. Configuring an HTTP proxy

11.3. Configuring an HTTPS proxy

14.1. Your first build script

14.2. Execution of a build script

14.3. A task definition shortcut

14.4. Using Groovy in Gradle's tasks

14.5. Using Groovy in Gradle's tasks

14.6. Declaration of task that depends on other task

14.7. Lazy dependsOn - the other task does not exist (yet)

14.8. Dynamic creation of a task

14.9. Accessing a task via API - adding a dependency

14.10. Accessing a task via API - adding behaviour

14.11. Accessing task as a property of the build script

14.12. Adding extra properties to a task

14.13. Using AntBuilder to execute ant.loadfile target

14.14. Using methods to organize your build logic

14.15. Defining a default task

14.16. Different outcomes of build depending on chosen tasks

16.1. Accessing property of the Project object

16.2. Using local variables

16.3. Using extra properties

16.4. Configuring arbitrary objects

16.5. Configuring arbitrary objects using a script

16.6. Groovy JDK methods

16.7. Property accessors

16.8. Method call without parentheses

16.9. List and map literals

16.10. Closure as method parameter

16.11. Closure delegates

17.1. Defining tasks

17.2. Defining tasks - using strings for task names

17.3. Defining tasks with alternative syntax

17.4. Accessing tasks as properties

17.5. Accessing tasks via tasks collection

17.6. Accessing tasks by path

17.7. Creating a copy task

17.8. Configuring a task - various ways

17.9. Configuring a task - with closure

17.10. Defining a task with closure

17.11. Adding dependency on task from another project

17.12. Adding dependency using task object

17.13. Adding dependency using closure

17.14. Adding a 'must run after' task ordering

17.15. Adding a 'should run after' task ordering

17.16. Task ordering does not imply task execution

17.17. A 'should run after' task ordering is ignored if it introduces an ordering cycle

17.18. Adding a description to a task

17.19. Overwriting a task

17.20. Skipping a task using a predicate

17.21. Skipping tasks with StopExecutionException

17.22. Enabling and disabling tasks

17.23. A generator task

17.24. Declaring the inputs and outputs of a task

17.25. Task rule

17.26. Dependency on rule based tasks

17.27. Adding a task finalizer

17.28. Task finalizer for a failing task

18.1. Locating files

18.2. Creating a file collection

18.3. Using a file collection

18.4. Implementing a file collection

18.5. Creating a file tree

18.6. Using a file tree

18.7. Using an archive as a file tree

18.8. Specifying a set of files

18.9. Copying files using the copy task

18.10. Specifying copy task source files and destination directory

18.11. Selecting the files to copy

18.12. Copying files using the copy() method without up-to-date check

18.13. Copying files using the copy() method with up-to-date check

18.14. Renaming files as they are copied

18.15. Filtering files as they are copied

18.16. Nested copy specs

18.17. Using the Sync task to copy dependencies

18.18. Creating a ZIP archive

18.19. Creation of ZIP archive

18.20. Configuration of archive task - custom archive name

18.21. Configuration of archive task - appendix & classifier

19.1. Using an Ant task

19.2. Passing nested text to an Ant task

19.3. Passing nested elements to an Ant task

19.4. Using an Ant type

19.5. Using a custom Ant task

19.6. Declaring the classpath for a custom Ant task

19.7. Using a custom Ant task and dependency management together

19.8. Importing an Ant build

19.9. Task that depends on Ant target

19.10. Adding behaviour to an Ant target

19.11. Ant target that depends on Gradle task

19.12. Renaming imported Ant targets

19.13. Setting an Ant property

19.14. Getting an Ant property

19.15. Setting an Ant reference

19.16. Getting an Ant reference

20.1. Single project build

20.2. Hierarchical layout

20.3. Flat layout

20.4. Modification of elements of the project tree

20.5. Adding of test task to each project which has certain property set

20.6. Notifications

20.7. Setting of certain property to all tasks

20.8. Logging of start and end of each task execution

22.1. Using stdout to write log messages

22.2. Writing your own log messages

22.3. Using SLF4J to write log messages

22.4. Configuring standard output capture

22.5. Configuring standard output capture for a task

22.6. Customizing what Gradle logs

23.1. Definition of a configuration

23.2. Accessing a configuration

23.3. Configuration of a configuration

23.4. Module dependencies

23.5. Artifact only notation

23.6. Dependency with classifier

23.7. Iterating over a configuration

23.8. Client module dependencies - transitive dependencies

23.9. Project dependencies

23.10. File dependencies

23.11. Generated file dependencies

23.12. Gradle API dependencies

23.13. Gradle's Groovy dependencies

23.14. Excluding transitive dependencies

23.15. Optional attributes of dependencies

23.16. Collections and arrays of dependencies

23.17. Dependency configurations

23.18. Dependency configurations for project

23.19. Configuration.copy

23.20. Accessing declared dependencies

23.21. Configuration.files

23.22. Configuration.files with spec

23.23. Configuration.copy

23.24. Configuration.copy vs. Configuration.files

23.25. Adding central Maven repository

23.26. Adding Bintray's JCenter Maven repository

23.27. Using Bintrays's JCenter with HTTP

23.28. Adding the local Maven cache as a repository

23.29. Adding custom Maven repository

23.30. Adding additional Maven repositories for JAR files

23.31. Accessing password protected Maven repository

23.32. Flat repository resolver

23.33. Ivy repository

23.34. Ivy repository with named layout

23.35. Ivy repository with pattern layout

23.36. Ivy repository with multiple custom patterns

23.37. Ivy repository with Maven compatible layout

23.38. Ivy repository

23.39. Declaring a Maven and Ivy repository

23.40. Providing credentials to a Maven and Ivy repository

23.41. Declaring a S3 backed Maven and Ivy repository

23.42. Configure repository to use only digest authentication

23.43. Configure repository to use preemptive authentication

23.44. Accessing a repository

23.45. Configuration of a repository

23.46. Definition of a custom repository

23.47. Forcing consistent version for a group of libraries

23.48. Using a custom versioning scheme

23.49. Blacklisting a version with a replacement

23.50. Changing dependency group and/or name at the resolution

23.51. Substituting a module with a project

23.52. Substituting a project with a module

23.53. Conditionally substituting a dependency

23.54. Specifying default dependencies on a configuration

23.55. Enabling dynamic resolve mode

23.56. 'Latest' version selector

23.57. Custom status scheme

23.58. Custom status scheme by module

23.59. Ivy component metadata rule

23.60. Rule source component metadata rule

23.61. Component selection rule

23.62. Component selection rule with module target

23.63. Component selection rule with metadata

23.64. Component selection rule using a rule source object

23.65. Declaring module replacement

23.66. Dynamic version cache control

23.67. Changing module cache control

24.1. Multi-project tree - water & bluewhale projects

24.2. Build script of water (parent) project

24.3. Multi-project tree - water, bluewhale & krill projects

24.4. Water project build script

24.5. Defining common behavior of all projects and subprojects

24.6. Defining specific behaviour for particular project

24.7. Defining specific behaviour for project krill

24.8. Adding custom behaviour to some projects (filtered by project name)

24.9. Adding custom behaviour to some projects (filtered by project properties)

24.10. Running build from subproject

24.11. Evaluation and execution of projects

24.12. Evaluation and execution of projects

24.13. Running tasks by their absolute path

24.14. Dependencies and execution order

24.15. Dependencies and execution order

24.16. Dependencies and execution order

24.17. Declaring dependencies

24.18. Declaring dependencies

24.19. Cross project task dependencies

24.20. Configuration time dependencies

24.21. Configuration time dependencies - evaluationDependsOn

24.22. Configuration time dependencies

24.23. Dependencies - real life example - crossproject configuration

24.24. Project lib dependencies

24.25. Project lib dependencies

24.26. Fine grained control over dependencies

24.27. Build and Test Single Project

24.28. Partial Build and Test Single Project

24.29. Build and Test Depended On Projects

24.30. Build and Test Dependent Projects

25.1. Applying a script plugin

25.2. Applying a binary plugin

25.3. Applying a binary plugin by type

25.4. Applying a plugin with the buildscript block

25.5. Applying a core plugin

25.6. Applying a community plugin

28.1. Using the Build Dashboard plugin

30.1. Defining an artifact using an archive task

30.2. Defining an artifact using a file

30.3. Customizing an artifact

30.4. Map syntax for defining an artifact using a file

30.5. Configuration of the upload task

31.1. Using the Maven plugin

31.2. Creating a stand alone pom.

31.3. Upload of file to remote Maven repository

31.4. Upload of file via SSH

31.5. Customization of pom

31.6. Builder style customization of pom

31.7. Modifying auto-generated content

31.8. Customization of Maven installer

31.9. Generation of multiple poms

31.10. Accessing a mapping configuration

32.1. Using the Signing plugin

32.2. Signing a configuration

32.3. Signing a configuration output

32.4. Signing a task

32.5. Signing a task output

32.6. Conditional signing

32.7. Signing a POM for deployment

33.1. Applying the “ivy-publish” plugin

33.2. Publishing a Java module to Ivy

33.3. Publishing additional artifact to Ivy

33.4. customizing the publication identity

33.5. Customizing the module descriptor file

33.6. Publishing multiple modules from a single project

33.7. Declaring repositories to publish to

33.8. Choosing a particular publication to publish

33.9. Publishing all publications via the “publish” lifecycle task

33.10. Generating the Ivy module descriptor file

33.11. Publishing a Java module

33.12. Example generated ivy.xml

34.1. Applying the 'maven-publish' plugin

34.2. Adding a MavenPublication for a Java component

34.3. Adding additional artifact to a MavenPublication

34.4. customizing the publication identity

34.5. Modifying the POM file

34.6. Publishing multiple modules from a single project

34.7. Declaring repositories to publish to

34.8. Publishing a project to a Maven repository

34.9. Publish a project to the Maven local repository

34.10. Generate a POM file without publishing

35.1. Using the distribution plugin

35.2. Adding extra distributions

35.3. Configuring the main distribution

35.4. publish main distribution

36.1. Using the announce plugin

36.2. Configure the announce plugin

36.3. Using the announce plugin

37.1. Using the build announcements plugin

37.2. Using the build announcements plugin from an init script

38.1. Defining a custom task

38.2. A hello world task

38.3. A customizable hello world task

38.4. A build for a custom task

38.5. A custom task

38.6. Using a custom task in another project

38.7. Testing a custom task

38.8. Defining an incremental task action

38.9. Running the incremental task for the first time

38.10. Running the incremental task with unchanged inputs

38.11. Running the incremental task with updated input files

38.12. Running the incremental task with an input file removed

38.13. Running the incremental task with an output file removed

38.14. Running the incremental task with an input property changed

39.1. A custom plugin

39.2. A custom plugin extension

39.3. A custom plugin with configuration closure

39.4. Evaluating file properties lazily

39.5. A build for a custom plugin

39.6. Wiring for a custom plugin

39.7. Using a custom plugin in another project

39.8. Applying a community plugin with the plugins DSL

39.9. Testing a custom plugin

39.10. Using the Java Gradle Plugin Development plugin

39.11. Managing domain objects

40.1. Using the Java Gradle Plugin Development plugin

41.1. Using inherited properties and methods

41.2. Using injected properties and methods

41.3. Configuring the project using an external build script

41.4. Custom buildSrc build script

41.5. Adding subprojects to the root buildSrc project

41.6. Running another build from a build

41.7. Declaring external dependencies for the build script

41.8. A build script with external dependencies

41.9. Ant optional dependencies

42.1. Using init script to perform extra configuration before projects are evaluated

42.2. Declaring external dependencies for an init script

42.3. An init script with external dependencies

42.4. Using plugins in init scripts

43.1. Declaring the TestKit dependency

43.2. Declaring the JUnit dependency

43.3. Using GradleRunner with JUnit

43.4. Using GradleRunner with Spock

43.5. Making the code under test classpath available to the tests

43.6. Injecting the code under test classes into test builds

43.7. Specifying a Gradle version for test execution

44.1. Using the Java plugin

44.2. Building a Java project

44.3. Adding Maven repository

44.4. Adding dependencies

44.5. Customization of MANIFEST.MF

44.6. Adding a test system property

44.7. Publishing the JAR file

44.8. Eclipse plugin

44.9. Java example - complete build file

44.10. Multi-project build - hierarchical layout

44.11. Multi-project build - settings.gradle file

44.12. Multi-project build - common configuration

44.13. Multi-project build - dependencies between projects

44.14. Multi-project build - distribution file

45.1. Using the Java plugin

45.2. Custom Java source layout

45.3. Accessing a source set

45.4. Configuring the source directories of a source set

45.5. Defining a source set

45.6. Defining source set dependencies

45.7. Compiling a source set

45.8. Assembling a JAR for a source set

45.9. Generating the Javadoc for a source set

45.10. Running tests in a source set

45.11. Filtering tests in the build script

45.12. JUnit Categories

45.13. Grouping TestNG tests

45.14. Preserving order of TestNG tests

45.15. Grouping TestNG tests by instances

45.16. Creating a unit test report for subprojects

45.17. Customization of MANIFEST.MF

45.18. Creating a manifest object.

45.19. Separate MANIFEST.MF for a particular archive

46.1. War plugin

46.2. Running web application with Jetty plugin

47.1. Using the War plugin

47.2. Customization of war plugin

48.1. Using the Ear plugin

48.2. Customization of ear plugin

49.1. Using the Jetty plugin

50.1. Using the application plugin

50.2. Configure the application main class

50.3. Configure default JVM settings

50.4. Include output from other tasks in the application distribution

50.5. Automatically creating files for distribution

51.1. Using the Java library distribution plugin

51.2. Configure the distribution name

51.3. Include files in the distribution

52.1. Groovy plugin

52.2. Dependency on Groovy

52.3. Groovy example - complete build file

53.1. Using the Groovy plugin

53.2. Custom Groovy source layout

53.3. Configuration of Groovy dependency

53.4. Configuration of Groovy test dependency

53.5. Configuration of bundled Groovy dependency

53.6. Configuration of Groovy file dependency

54.1. Using the Scala plugin

54.2. Custom Scala source layout

54.3. Declaring a Scala dependency for production code

54.4. Declaring a Scala dependency for test code

54.5. Adjusting memory settings

54.6. Forcing all code to be compiled

54.7. Explicitly specify a target IntelliJ IDEA version

55.1. Using the ANTLR plugin

55.2. Declare ANTLR version

55.3. setting custom max heap size and extra arguments for ANTLR

56.1. Using the Checkstyle plugin

57.1. Using the CodeNarc plugin

58.1. Using the FindBugs plugin

59.1. Using the JDepend plugin

60.1. Using the PMD plugin

61.1. Applying the JaCoCo plugin

61.2. Configuring JaCoCo plugin settings

61.3. Configuring test task

61.4. Configuring test task

61.5. Using application plugin to generate code coverage data

61.6. Coverage reports generated by applicationCodeCoverageReport

62.1. Applying the Sonar plugin

62.2. Configuring Sonar connection settings

62.3. Configuring Sonar project settings

62.4. Global configuration in a multi-project build

62.5. Common project configuration in a multi-project build

62.6. Individual project configuration in a multi-project build

62.7. Configuring the language to be analyzed

62.8. Using property syntax

62.9. Analyzing custom source sets

62.10. Analyzing languages other than Java

62.11. Setting custom global properties

62.12. Setting custom project properties

62.13. Implementing custom command line properties

63.1. Applying the SonarQube Runner plugin

63.2. Configuring SonarQube connection settings

63.3. Configuring SonarQube runner version

63.4. Global configuration settings

63.5. Shared configuration settings

63.6. Individual configuration settings

63.7. Skipping analysis of a project

63.8. Analyzing custom source sets

63.9. Analyzing languages other than Java

63.10. setting custom SonarQube Runner fork options

64.1. Using the OSGi plugin

64.2. Configuration of OSGi MANIFEST.MF file

65.1. Using the Eclipse plugin

65.2. Using the Eclipse WTP plugin

65.3. Partial Overwrite for Classpath

65.4. Partial Overwrite for Project

65.5. Export Dependencies

65.6. Customizing the XML

66.1. Using the IDEA plugin

66.2. Partial Rewrite for Module

66.3. Partial Rewrite for Project

66.4. Export Dependencies

66.5. Customizing the XML

67.1. an example of a simple rule based build

67.2. a managed type

67.3. a String property

67.4. a File property

67.5. a Long property

67.6. a boolean property

67.7. an int property

67.8. a managed property

67.9. an enumeration type property

67.10. a managed set

67.11. strongly modelling sources sets

67.12. a DSL example applying a rule to every element in a scope

67.13. applying a rule source plugin

67.14. a model creation rule

67.15. a model mutation rule

67.16. creating a task

67.17. DSL configuration rule

67.18. Configuration run when required

67.19. Configuration not run when not required

67.20. DSL creation rule

67.21. DSL creation rule without initialization

67.22. Initialization before configuration

67.23. Nested DSL creation rule

67.24. Nested DSL configuration rule

67.25. DSL configuration rule for each element in a map

67.26. Nested DSL property configuration

67.27. a DSL example showing type conversions

67.28. a DSL rule using inputs

67.29. model task output

70.1. Using the Java software plugins

70.2. Creating a java library

70.3. Configuring a source set

70.4. Creating a new source set

70.5. The components report

70.6. Declaring a dependency onto a library

70.7. Declaring a dependency onto a project with an explicit library

70.8. Declaring a dependency onto a project with an implicit library

70.9. Declaring a dependency onto a library published to a Maven repository

70.10. Declaring a module dependency using shorthand notation

70.11. Configuring repositories for dependency resolution

70.12. Specifying api packages

70.13. Specifying api dependencies

70.14. Main sources

70.15. Client component

70.16. Broken client component

70.17. Recompiling the client

70.18. Declaring target platforms

70.19. Declaring binary specific sources

70.20. Declaring target platforms

70.21. Using the JUnit plugin

70.22. Executing the test suite

70.23. Executing the test suite

70.24. Declaring a component under test

70.25. Declaring local Java installations

71.1. Using the Play plugin

71.2. The components report

71.3. Selecting a version of the Play Framework

71.4. Adding dependencies to a Play application

71.5. Adding extra source sets to a Play application

71.6. Configuring Scala compiler options

71.7. Configuring routes style

71.8. Configuring a custom asset pipeline

71.9. Configuring dependencies on Play subprojects

71.10. Add extra files to a Play application distribution

72.1. Defining a library component

72.2. Defining executable components

72.3. The components report

72.4. The 'cpp' plugin

72.5. C++ source set

72.6. The 'c' plugin

72.7. C source set

72.8. The 'assembler' plugin

72.9. The 'objective-c' plugin

72.10. The 'objective-cpp' plugin

72.11. Settings that apply to all binaries

72.12. Settings that apply to all shared libraries

72.13. Settings that apply to all binaries produced for the 'main' executable component

72.14. Settings that apply only to shared libraries produced for the 'main' library component

72.15. The 'windows-resources' plugin

72.16. Configuring the location of Windows resource sources

72.17. Building a resource-only dll

72.18. Providing a library dependency to the source set

72.19. Providing a library dependency to the binary

72.20. Declaring project dependencies

72.21. Creating a precompiled header file

72.22. Including a precompiled header file in a source file

72.23. Configuring a precompiled header

72.24. Defining build types

72.25. Configuring debug binaries

72.26. Defining platforms

72.27. Defining flavors

72.28. Targeting a component at particular platforms

72.29. Building all possible variants

72.30. Defining tool chains

72.31. Reconfigure tool arguments

72.32. Defining target platforms

72.33. Registering CUnit tests

72.34. Running CUnit tests

72.35. Registering GoogleTest tests

73.1. an example of using a custom software model

73.2. Declare a custom component

73.3. Register a custom component

73.4. Declare a custom binary

73.5. Register a custom binary

73.6. Declare a custom source set

73.7. Register a custom source set

73.8. Generates documentation binaries

73.9. Generates tasks for text source sets

73.10. Register a custom source set

73.11. an example of using a custom software model

73.12. foo bar

73.13. public type and internal view declaration

73.14. type registration

73.15. public and internal data mutation

73.16. example build script and model report output

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Part I. About Gradle

Table of Contents
1. Introduction
1.1. About this user guide

2. Overview
2.1. Features
2.2. Why Groovy?

Page 18 of 573

1
Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build

technology in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!

Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or pom.xml

and files.ivy.xml

Ant tasks and builds as first class citizens.

 build scripts.Groovy

A rich domain model for describing your build.

In you will find a detailed overview of Gradle. Otherwise, the are waiting,Chapter 2, Overview tutorials

have fun :)

1.1. About this user guide
This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't

documented as completely as they need to be. Some of the content presented won't be entirely clear or will

assume that you know more about Gradle than you do. We need your help to improve this user guide. You

can find out more about contributing to the documentation at the .Gradle web site

Throughout the user guide, you will find some diagrams that represent dependency relationships between

Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow

from one task to the task that the first task depends on.

http://www.gradle.org/contribute

Page 19 of 573

2
Overview

2.1. Features
Here is a list of some of Gradle's features.

Declarative builds and build-by-convention

At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle

pushes declarative builds to the next level by providing declarative language elements that you can

assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,

Web and Scala projects. Even more, this declarative language is extensible. Add your own new language

elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming

The declarative language lies on top of a general purpose task graph, which you can fully leverage in

your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build

The suppleness and richness of Gradle finally allows you to apply common design principles to your

build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff

where unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs

together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn

your build into a maintenance nightmare. At last you can create a well structured, easily maintained,

comprehensible build.

Deep API

From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build

execution, Gradle allows you to monitor and customize its configuration and execution behavior to its

very core.

Gradle scales

Gradle scales very well. It significantly increases your productivity, from simple single project builds up

to huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art

incremental build function, this is also true for tackling the performance pain many large enterprise

builds suffer from.

Multi-project builds

Gradle's support for multi-project build is outstanding. Project dependencies are first class citizens. We

allow you to model the project relationships in a multi-project build as they really are for your problem

domain. Gradle follows your layout not vice versa.

Page 20 of 573

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the

subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a

particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies

Different teams prefer different ways to manage their external dependencies. Gradle provides convenient

support for any strategy. From transitive dependency management with remote Maven and Ivy

repositories to jars or directories on the local file system.

Gradle is the first build integration tool

Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.

Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at

runtime. You can depend on them from Gradle, you can enhance them from Gradle, you can even

declare dependencies on Gradle tasks in your build.xml. The same integration is provided for properties,

paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving

dependencies. Gradle also provides a converter for turning a Maven into a Gradle script.pom.xml

Runtime imports of Maven projects will come soon.

Ease of migration

Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the

same branch where your production build lives and both can evolve in parallel. We usually recommend

to write tests that make sure that the produced artifacts are similar. That way migration is as less

disruptive and as reliable as possible. This is following the best-practices for refactoring by applying

baby steps.

Groovy

Gradle's build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply

exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to

maintain build. The whole design of Gradle is oriented towards being used as a language, not as a rigid

framework. And Groovy is our glue that allows you to tell your individual story with the abstractions

Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.

This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy

support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in

an enjoyable and productive experience.

The Gradle wrapper

The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.

This is useful for example for some continuous integration servers. It is also useful for an open source

project to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is

a zero administration approach for the client machines. It also enforces the usage of a particular Gradle

version thus minimizing support issues.

Free and open source

Gradle is an open source project, and is licensed under the .ASL

http://www.gradle.org/license

Page 21 of 573

2.2. Why Groovy?
We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when

used in . There are a couple of dynamic languages out there. Why Groovy? The answer lies inbuild scripts

the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus

are Java projects. In such projects the team members will be very familiar with Java. We think a build

should be as transparent as possible to team members.all

In that case, you might argue why we don't just use Java as the language for build scripts. We think this is a

valid question. It would have the highest transparency for your team and the lowest learning curve, but

because of the limitations of Java, such a build language would not be as nice, expressive and powerful as it

could be. Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as[]1

it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its

type system, its package structure and other things. Groovy provides much more on top of that, but with the

common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't

apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just

doesn't have the highest priority for us at the moment. We happily support any community effort to create

additional build script engines.

[] 1 At you find an interesting article comparing Ant, XML,http://www.defmacro.org/ramblings/lisp.html

Java and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

http://www.defmacro.org/ramblings/lisp.html

Part II. Working with
existing builds

Table of Contents
3. Installing Gradle
3.1. Prerequisites
3.2. Download
3.3. Unpacking
3.4. Environment variables
3.5. Running and testing your installation
3.6. JVM options

4. Using the Gradle Command-Line
4.1. Executing multiple tasks
4.2. Excluding tasks
4.3. Continuing the build when a failure occurs
4.4. Task name abbreviation
4.5. Selecting which build to execute
4.6. Obtaining information about your build
4.7. Dry Run
4.8. Summary

5. The Gradle Wrapper
5.1. Executing a build with the Wrapper
5.2. Adding the Wrapper to a project
5.3. Configuration
5.4. Verification of downloaded Gradle distributions
5.5. Unix file permissions

6. The Gradle Daemon
6.1. Enabling the Daemon
6.2. Stopping an existing Daemon
6.3. FAQ
6.4. When should I not use the Gradle Daemon?
6.5. Tools & IDEs
6.6. How does the Gradle Daemon make builds faster?

7. Dependency Management Basics
7.1. What is dependency management?
7.2. Declaring your dependencies
7.3. Dependency configurations
7.4. External dependencies
7.5. Repositories
7.6. Publishing artifacts
7.7. Where to next?

8. Introduction to multi-project builds
8.1. Structure of a multi-project build
8.2. Executing a multi-project build

9. Continuous build
9.1. How do I start and stop a continuous build?
9.2. What will cause a subsequent build?
9.3. Limitations and quirks

10. Using the Gradle Graphical User Interface
10.1. Task Tree
10.2. Favorites
10.3. Command Line
10.4. Setup

11. The Build Environment
11.1. Configuring the build environment via gradle.properties
11.2. Gradle properties and system properties

11.3. Accessing the web via a proxy

12. Troubleshooting
12.1. Working through problems
12.2. Getting help

13. Embedding Gradle
13.1. Introduction to the Tooling API
13.2. Tooling API and the Gradle Build Daemon
13.3. Quickstart

Page 25 of 573

3
Installing Gradle

3.1. Prerequisites
Gradle requires a Java JDK or JRE to be installed, version 6 or higher (to check, use).java -version

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing

Groovy installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the environmentJAVA_HOME

variable to point to the installation directory of the desired JDK.

3.2. Download
You can download one of the Gradle distributions from the .Gradle web site

3.3. Unpacking
The Gradle distribution comes packaged as a ZIP. The full distribution contains:

The Gradle binaries.

The user guide (HTML and PDF).

The DSL reference guide.

The API documentation (Javadoc and Groovydoc).

Extensive samples, including the examples referenced in the user guide, along with some complete and

more complex builds you can use as a starting point for your own build.

The binary sources. This is for reference only. If you want to build Gradle you need to download the

source distribution or checkout the sources from the source repository. See the forGradle web site

details.

3.4. Environment variables
For running Gradle, firstly add the environment variable . This should point to the unpackedGRADLE_HOME

files from the Gradle website. Next add to your environment variable. Usually,/binGRADLE_HOME PATH

this is sufficient to run Gradle.

http://www.gradle.org/downloads
http://www.gradle.org/development

Page 26 of 573

3.5. Running and testing your installation
You run Gradle via the command. To check if Gradle is properly installed just type . Thegradle gradle -v

output shows the Gradle version and also the local environment configuration (Groovy, JVM version, OS,

etc.). The displayed Gradle version should match the distribution you have downloaded.

3.6. JVM options
JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS

or , or both. is by convention an environment variable shared by many JavaJAVA_OPTS JAVA_OPTS

applications. A typical use case would be to set the HTTP proxy in and the memory options inJAVA_OPTS

. Those variables can also be set at the beginning of the or script.GRADLE_OPTS gradle gradlew

Note that it's not currently possible to set JVM options for Gradle on the command line.

Page 27 of 573

4
Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the command,gradle

which you have already seen in action in previous chapters.

4.1. Executing multiple tasks
You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For

example, the command will execute the and tasks. Gradlegradle compile test compile test

will execute the tasks in the order that they are listed on the command-line, and will also execute the

dependencies for each task. Each task is executed once only, regardless of how it came to be included in the

build: whether it was specified on the command-line, or as a dependency of another task, or both. Let's look

at an example.

Below four tasks are defined. Both and depend on the task. Running dist test compile gradle dist test

for this build script results in the task being executed only once.compile

Figure 4.1. Task dependencies

Page 28 of 573

Example 4.1. Executing multiple tasks

build.gradle

task compile << {
 println 'compiling source'
}

task compileTest(dependsOn: compile) << {
 println 'compiling unit tests'
}

task test(dependsOn: [compile, compileTest]) << {
 println 'running unit tests'
}

task dist(dependsOn: [compile, test]) << {
 println 'building the distribution'
}

Output of gradle dist test

> gradle dist test
:compile
compiling source
:compileTest
compiling unit tests
:test
running unit tests
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

Each task is executed only once, so is exactly the same as .gradle test test gradle test

4.2. Excluding tasks
You can exclude a task from being executed using the command-line option and providing the name of-x

the task to exclude. Let's try this with the sample build file above.

Example 4.2. Excluding tasks

Output of gradle dist -x test

> gradle dist -x test
:compile
compiling source
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

Page 29 of 573

You can see from the output of this example, that the task is not executed, even though it is atest

dependency of the task. You will also notice that the task's dependencies, such as dist test compileTest

are not executed either. Those dependencies of that are required by another task, such as ,test compile

are still executed.

4.3. Continuing the build when a failure occurs
By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to

complete sooner, but hides other failures that would have occurred. In order to discover as many failures as

possible in a single build execution, you can use the option.--continue

When executed with , Gradle will execute task to be executed where all of the--continue every

dependencies for that task completed without failure, instead of stopping as soon as the first failure is

encountered. Each of the encountered failures will be reported at the end of the build.

If a task fails, any subsequent tasks that were depending on it will not be executed, as it is not safe to do so.

For example, tests will not run if there is a compilation failure in the code under test; because the test task

will depend on the compilation task (either directly or indirectly).

4.4. Task name abbreviation
When you specify tasks on the command-line, you don't have to provide the full name of the task. You only

need to provide enough of the task name to uniquely identify the task. For example, in the sample build

above, you can execute task by running :dist gradle d

Example 4.3. Abbreviated task name

Output of gradle di

> gradle di
:compile
compiling source
:compileTest
compiling unit tests
:test
running unit tests
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

You can also abbreviate each word in a camel case task name. For example, you can execute task compileTest

by running or even gradle compTest gradle cT

Page 30 of 573

Example 4.4. Abbreviated camel case task name

Output of gradle cT

> gradle cT
:compile
compiling source
:compileTest
compiling unit tests

BUILD SUCCESSFUL

Total time: 1 secs

You can also use these abbreviations with the command-line option.-x

4.5. Selecting which build to execute
When you run the command, it looks for a build file in the current directory. You can use the gradle -b

option to select another build file. If you use option then file is not used.-b settings.gradle

Example:

Example 4.5. Selecting the project using a build file

subdir/myproject.gradle

task hello << {
 println "using build file '$buildFile.name' in '$buildFile.parentFile.name'."
}

Output of gradle -q -b subdir/myproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file 'myproject.gradle' in 'subdir'.

Alternatively, you can use the option to specify the project directory to use. For multi-project builds you-p

should use option instead of option.-p -b

Example 4.6. Selecting the project using project directory

Output of gradle -q -p subdir hello

> gradle -q -p subdir hello
using build file 'build.gradle' in 'subdir'.

4.6. Obtaining information about your build
Gradle provides several built-in tasks which show particular details of your build. This can be useful for

understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the to add tasks to yourproject report plugin

project which will generate these reports.

Page 31 of 573

4.6.1. Listing projects

Running gives you a list of the sub-projects of the selected project, displayed in agradle projects

hierarchy. Here is an example:

Example 4.7. Obtaining information about projects

Output of gradle -q projects

> gradle -q projects

--
Root project
--

Root project 'projectReports'
+--- Project ':api' - The shared API for the application
\--- Project ':webapp' - The Web application implementation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a project by

setting the property:description

Example 4.8. Providing a description for a project

build.gradle

description = 'The shared API for the application'

4.6.2. Listing tasks

Running gives you a list of the main tasks of the selected project. This report shows thegradle tasks

default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 32 of 573

Example 4.9. Obtaining information about tasks

Output of gradle -q tasks

> gradle -q tasks

--
All tasks runnable from root project
--

Default tasks: dists

Build tasks

clean - Deletes the build directory (build)
dists - Builds the distribution
libs - Builds the JAR

Build Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project 'projectReports'.
components - Displays the components produced by root project 'projectReports'. [incubating]
dependencies - Displays all dependencies declared in root project 'projectReports'.
dependencyInsight - Displays the insight into a specific dependency in root project 'projectReports'.
help - Displays a help message.
model - Displays the configuration model of root project 'projectReports'. [incubating]
projects - Displays the sub-projects of root project 'projectReports'.
properties - Displays the properties of root project 'projectReports'.
tasks - Displays the tasks runnable from root project 'projectReports' (some of the displayed tasks may belong to subprojects).

To see all tasks and more detail, run gradle tasks --all

To see more detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. You can do this by

setting the property for the task. You can also set the property, to provide agroup description

description to be included in the report.

Example 4.10. Changing the content of the task report

build.gradle

dists {
 description = 'Builds the distribution'
 group = 'build'
}

You can obtain more information in the task listing using the option. With this option, the task--all

report lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an

example:

Page 33 of 573

Example 4.11. Obtaining more information about tasks

Output of gradle -q tasks --all

> gradle -q tasks --all

--
All tasks runnable from root project
--

Default tasks: dists

Build tasks

clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp:clean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:libs]
 docs - Builds the documentation
api:libs - Builds the JAR
 api:compile - Compiles the source files
webapp:libs - Builds the JAR [api:libs]
 webapp:compile - Compiles the source files

Build Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project 'projectReports'.
api:buildEnvironment - Displays all buildscript dependencies declared in project ':api'.
webapp:buildEnvironment - Displays all buildscript dependencies declared in project ':webapp'.
components - Displays the components produced by root project 'projectReports'. [incubating]
api:components - Displays the components produced by project ':api'. [incubating]
webapp:components - Displays the components produced by project ':webapp'. [incubating]
dependencies - Displays all dependencies declared in root project 'projectReports'.
api:dependencies - Displays all dependencies declared in project ':api'.
webapp:dependencies - Displays all dependencies declared in project ':webapp'.
dependencyInsight - Displays the insight into a specific dependency in root project 'projectReports'.
api:dependencyInsight - Displays the insight into a specific dependency in project ':api'.
webapp:dependencyInsight - Displays the insight into a specific dependency in project ':webapp'.
help - Displays a help message.
api:help - Displays a help message.
webapp:help - Displays a help message.
model - Displays the configuration model of root project 'projectReports'. [incubating]
api:model - Displays the configuration model of project ':api'. [incubating]
webapp:model - Displays the configuration model of project ':webapp'. [incubating]
projects - Displays the sub-projects of root project 'projectReports'.
api:projects - Displays the sub-projects of project ':api'.
webapp:projects - Displays the sub-projects of project ':webapp'.
properties - Displays the properties of root project 'projectReports'.
api:properties - Displays the properties of project ':api'.
webapp:properties - Displays the properties of project ':webapp'.
tasks - Displays the tasks runnable from root project 'projectReports' (some of the displayed tasks may belong to subprojects).
api:tasks - Displays the tasks runnable from project ':api'.
webapp:tasks - Displays the tasks runnable from project ':webapp'.

Page 34 of 573

4.6.3. Show task usage details

Running gives you detailed information about a specific task orgradle help --task someTask

multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed

information:

Example 4.12. Obtaining detailed help for tasks

Output of gradle -q help --task libs

> gradle -q help --task libs
Detailed task information for libs

Paths
 :api:libs
 :webapp:libs

Type
 Task (org.gradle.api.Task)

Description
 Builds the JAR

Group
 build

This information includes the full task path, the task type, possible commandline options and the description

of the given task.

4.6.4. Listing project dependencies

Running gives you a list of the dependencies of the selected project, brokengradle dependencies

down by configuration. For each configuration, the direct and transitive dependencies of that configuration

are shown in a tree. Below is an example of this report:

Page 35 of 573

Example 4.13. Obtaining information about dependencies

Output of gradle -q dependencies api:dependencies webapp:dependencies

> gradle -q dependencies api:dependencies webapp:dependencies

--
Root project
--

No configurations

--
Project :api - The shared API for the application
--

compile
\--- org.codehaus.groovy:groovy-all:2.4.4

testCompile
\--- junit:junit:4.12
 \--- org.hamcrest:hamcrest-core:1.3

--
Project :webapp - The Web application implementation
--

compile
+--- project :api
| \--- org.codehaus.groovy:groovy-all:2.4.4
\--- commons-io:commons-io:1.2

testCompile
No dependencies

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.

This is achieved with the optional parameter:--configuration

Example 4.14. Filtering dependency report by configuration

Output of gradle -q api:dependencies --configuration testCompile

> gradle -q api:dependencies --configuration testCompile

--
Project :api - The shared API for the application
--

testCompile
\--- junit:junit:4.12
 \--- org.hamcrest:hamcrest-core:1.3

4.6.5. Listing project buildscript dependencies

Running visualises the buildscript dependencies of the selected project,gradle buildEnvironment

similarly to how visualises the dependencies of the software being built.gradle dependencies

Page 36 of 573

4.6.6. Getting the insight into a particular dependency

Running gives you an insight into a particular dependency (orgradle dependencyInsight

dependencies) that match specified input. Below is an example of this report:

Example 4.15. Getting the insight into a particular dependency

Output of gradle -q webapp:dependencyInsight --dependency groovy --configuration compile

> gradle -q webapp:dependencyInsight --dependency groovy --configuration compile
org.codehaus.groovy:groovy-all:2.4.4
\--- project :api
 \--- compile

This task is extremely useful for investigating the dependency resolution, finding out where certain

dependencies are coming from and why certain versions are selected. For more information please see the

 class in the API documentation.DependencyInsightReportTask

The built-in dependencyInsight task is a part of the 'Help' tasks group. The task needs to configured with the

dependency and the configuration. The report looks for the dependencies that match the specified

dependency spec in the specified configuration. If Java related plugin is applied, the dependencyInsight task

is pre-configured with 'compile' configuration because typically it's the compile dependencies we are

interested in. You should specify the dependency you are interested in via the command line '--dependency'

option. If you don't like the defaults you may select the configuration via '--configuration' option. For more

information see the class in the API documentation.DependencyInsightReportTask

4.6.7. Listing project properties

Running gives you a list of the properties of the selected project. This is a snippetgradle properties

from the output:

Example 4.16. Information about properties

Output of gradle -q api:properties

> gradle -q api:properties

--
Project :api - The shared API for the application
--

allprojects: [project ':api']
ant: org.gradle.api.internal.project.DefaultAntBuilder@12345
antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345
asDynamicObject: org.gradle.api.internal.ExtensibleDynamicObject@12345
baseClassLoaderScope: org.gradle.api.internal.initialization.DefaultClassLoaderScope@12345
buildDir: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build
buildFile: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build.gradle

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

Page 37 of 573

4.6.8. Profiling a build

The command line option will record some useful timing information while your build is--profile

running and write a report to the directory. The report will be named usingbuild/reports/profile

the time when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times

for configuration and task execution are sorted with the most expensive operations first. The task execution

results also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the buildSrc/build

directory.

4.7. Dry Run
Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified on

the command line, but you don't want the tasks to be executed. You can use the option for this. For-m

example, if you run “ ”, you'll see all the tasks that would be executed asgradle -m clean compile

part of the and tasks. This is complementary to the task, which shows you theclean compile tasks

tasks which are available for execution.

Page 38 of 573

4.8. Summary
In this chapter, you have seen some of the things you can do with Gradle from the command-line. You can

find out more about the command in .gradle Appendix D, Gradle Command Line

Page 39 of 573

IDEs

When importing a Gradle

project via its wrapper, your

IDE may ask to use the Gradle

'all' distribution. This is

perfectly fine and helps the IDE

provide code completion for the

build files.

5
The Gradle Wrapper

Most tools require installation on your computer before you can use them. If the installation is easy, you

may think that’s fine. But it can be an unnecessary burden on the users of the build. Equally importantly,

will the user install the right version of the tool for the build? What if they’re building an old version of the

software?

The Gradle Wrapper (henceforth referred to as the “Wrapper”) solves both these problems and is the

preferred way of starting a Gradle build.

5.1. Executing a build with the Wrapper
If a Gradle project has set up the Wrapper (and we recommend all projects do so), you can execute the build

using one of the following commands from the root of the project:

./gradlew <task> (on Unix-like platforms such as Linux and Mac OS X)

gradlew <task> (on Windows using the gradlew.bat batch file)

Each Wrapper is tied to a specific version of Gradle, so when you first run one of the commands above for a

given Gradle version, it will download the corresponding Gradle distribution and use it to execute the build.

Not only does this mean that you don’t have to manually install

Gradle yourself, but you are also sure to use the version of

Gradle that the build is designed for. This makes your historical

builds more reliable. Just use the appropriate syntax from above

whenever you see a command line starting with gradle ...

in the user guide, on Stack Overflow, in articles or wherever.

For completeness sake, and to ensure you don’t delete any

important files, here are the files and directories in a Gradle

project that make up the Wrapper:

gradlew (Unix Shell script)

gradlew.bat (Windows batch file)

gradle/wrapper/gradle-wrapper.jar (Wrapper JAR)

gradle/wrapper/gradle-wrapper.properties (Wrapper properties)

If you’re wondering where the Gradle distributions are stored, you’ll find them in your user home directory

under .$USER_HOME/.gradle/wrapper/dists

Page 40 of 573

5.2. Adding the Wrapper to a project
The Wrapper is something you check into version control. By distributing the Wrapper with yourshould

project, anyone can work with it without needing to install Gradle beforehand. Even better, users of the

build are guaranteed to use the version of Gradle that the build was designed to work with. Of course, this is

also great for servers (i.e. servers that regularly build your project) as it requires nocontinuous integration

configuration on the server.

You install the Wrapper into your project by running the task. (This task is always available,wrapper

even if you don't add it to your build). To specify a Gradle version use on the--gradle-version

command-line. You can also set the URL to download Gradle from directly via --gradle-distribution-url

. If no version or distribution URL is specified, the Wrapper will be configured to use the gradle version the wrapper

task is executed with. So if you run the task with Gradle 2.4, then the Wrapper configuration willwrapper

default to version 2.4.

Example 5.1. Running the Wrapper task

Output of gradle wrapper --gradle-version 2.0

> gradle wrapper --gradle-version 2.0
:wrapper

BUILD SUCCESSFUL

Total time: 1 secs

The Wrapper can be further customized by adding and configuring a task in your build script, andWrapper

then executing it.

Example 5.2. Wrapper task

build.gradle

task wrapper(type: Wrapper) {
 gradleVersion = '2.0'
}

After such an execution you find the following new or updated files in your project directory (in case the

default configuration of the Wrapper task is used).

Example 5.3. Wrapper generated files

Build layout

simple/
 gradlew
 gradlew.bat
 gradle/wrapper/
 gradle-wrapper.jar
 gradle-wrapper.properties

All of these files be submitted to your version control system. This only needs to be done once. Aftershould

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 41 of 573

these files have been added to the project, the project should then be built with the added gradlew

command. The command can be used the same way as the command.gradlew exactly gradle

If you want to switch to a new version of Gradle you don't need to rerun the task. It is goodwrapper

enough to change the respective entry in the file, but if you want togradle-wrapper.properties

take advantage of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper

files.

5.3. Configuration
If you run Gradle with , the Wrapper checks if a Gradle distribution for the Wrapper is available. Ifgradlew

so, it delegates to the command of this distribution with all the arguments passed originally to the gradle

 command. If it didn't find a Gradle distribution, it will download it first.gradlew

When you configure the task, you can specify the Gradle version you wish to use. The Wrapper gradlew

command will download the appropriate distribution from the Gradle repository. Alternatively, you can

specify the download URL of the Gradle distribution. The command will use this URL togradlew

download the distribution. If you specified neither a Gradle version nor download URL, the gradlew

command will download whichever version of Gradle was used to generate the Wrapper files.

For the details on how to configure the Wrapper, see the class in the API documentation.Wrapper

If you don't want any download to happen when your project is built via , simply add the Gradlegradlew

distribution zip to your version control at the location specified by your Wrapper configuration. A relative

URL is supported - you can specify a distribution file relative to the location of gradle-wrapper.properties

file.

If you build via the Wrapper, any existing Gradle distribution installed on the machine is ignored.

5.4. Verification of downloaded Gradle
distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256 hash sum

comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker

from tampering with the downloaded Gradle distribution.

To enable this feature you'll want to first calculate the SHA-256 hash of a known Gradle distribution. You

can generate a SHA-256 hash from Linux and OSX or Windows (via) with the command.Cygwin shasum

Example 5.4. Generating a SHA-256 hash

> shasum -a 256 gradle-2.4-all.zip
371cb9fbebbe9880d147f59bab36d61eee122854ef8c9ee1ecf12b82368bcf10 gradle-2.4-all.zip

Add the returned hash sum to the using the gradle-wrapper.properties distributionSha256Sum

property.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
https://www.cygwin.com/

Page 42 of 573

Example 5.5. Configuring SHA-256 checksum verification

gradle-wrapper.properties

distributionSha256Sum=371cb9fbebbe9880d147f59bab36d61eee122854ef8c9ee1ecf12b82368bcf10

5.5. Unix file permissions
The Wrapper task adds appropriate file permissions to allow the execution of the *NIXgradlew

command. Subversion preserves this file permission. We are not sure how other version control systems deal

with this. What should always work is to execute “ ”.sh gradlew

Page 43 of 573

6
The Gradle Daemon

From Wikipedia…

A daemon is a computer program that runs as a background process, rather than being under the

direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a

non-trivial initialization time. As a result, it can sometimes seem a little slow to start. The solution to this

problem is the Gradle : a long-lived background process that executes your builds much moreDaemon

quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping

process as well as leveraging caching, by keeping data about your project in memory. Running Gradle

builds with the Daemon is no different than without. Simply configure whether you want to use it or not -

everything else is handled transparently by Gradle.

6.1. Enabling the Daemon
The Gradle Daemon is not enabled by default, but we do recommend always enabling it for developers’

machines (but leaving it disabled for continuous integration servers). There are several ways to enable the

Daemon, but the most common one is to add the line

org.gradle.daemon=true

to the file , where is your home«USER_HOME»/.gradle/gradle.properties «USER_HOME»

directory. That’s typically one of the following, depending on your platform:

C:\Users\<username> (Windows Vista & 7+)

/Users/<username> (Mac OS X)

/home/<username> (Linux)

If that file doesn’t exist, just create it using a text editor. You can find details of other ways to enable (and

disable) the Daemon in the FAQ further down. That section also contains more detailed information on how

the Daemon works.

Once you have globally enabled the Daemon in this way, all your builds will take advantage of the speed

boost, regardless of the version of Gradle a particular build uses.

Page 44 of 573

Continuous
integration

At the moment, we recommend

that you leave the Daemon

disabled for continuous

integration servers as using a

fresh runtime for each build is

more reliable since the runtime

is isolated fromcompletely

previously builds. Additionally,

since the Daemon primarily acts

to reduce build startup times,

this isn't as critical in CI as it is

on a developer's machine.

6.2. Stopping an existing
Daemon

As mentioned, the Daemon is a background process. You

needn’t worry about a build up of Gradle processes on your

machine, though: every Daemon stops after 3 hours of

inactivity. If you want to explicitly stop a Daemon process for

any reason, just use the command .gradle --stop

This will terminate all Daemon processes that were started with

the same version of Gradle used to execute the command. If you

have the Java Development Kit (JDK) installed, you can easily

verify that a Daemon has stopped by running the command.jps

You’ll see any running Daemons listed with the name

GradleDaemon.

Page 45 of 573

6.3. FAQ

6.3.1. What ways are there to enable the Gradle Daemon?

There are two recommended ways to enable the Daemon persistently for an environment:

Via environment variables - add the flag to the -Dorg.gradle.daemon=true GRADLE_OPTS

environment variable

Via properties file - add to the org.gradle.daemon=true «GRADLE_USER_HOME»/gradle.properties

file

Note, defaults to , where is«GRADLE_USER_HOME» «USER_HOME»/.gradle «USER_HOME»

the home directory of the current user. This location can be configured via the and -g --gradle-user-home

command line switches, as well as by the environment variable and GRADLE_USER_HOME org.gradle.user.home

JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users

choose the second option and add the entry to the user file.gradle.properties

On Windows, this command will enable the Daemon for the current user:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo org.gradle.daemon=true >> "%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command will enable the Daemon for the current

user:

touch ~/.gradle/gradle.properties && echo "org.gradle.daemon=true" >> ~/.gradle/gradle.properties

Once the Daemon is enabled for a build environment in this way, all builds will implicitly use a Daemon.

The and command line switches enable and disable usage of the Daemon for--daemon --no-daemon

individual build invocations when using the Gradle command line interface. Typically, it is more convenient

to enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without

requiring to remember to supply the switch.--daemon

6.3.2. How do I disable the Gradle Daemon?

The Gradle Daemon is not enabled by default. However, once it is enabled it is sometimes desirable to

disable for some projects or for some build invocations.

The command line switch can be used to force that a Daemon not be used for that build.--no-daemon

This is rarely used, but can sometimes be useful when debugging issues with certain builds or Gradle

Page 46 of 573

plugins. This command line switch has the precedence when considering the build environment.highest

6.3.3. How do I suppress the “please consider using the Gradle Daemon”
message?

Gradle may emit a warning at the end of the build suggesting that you use the Gradle Daemon. To avoid this

warning you can enable the Daemon via the methods above, or explicitly disable the Daemon. You can

explicitly disable the Daemon by using the command line switch as described above, or use--no-daemon

one of the methods for enabling the Daemon mentioned above but using a value of for the false org.gradle.daemon

property instead of .true

As it is not recommend to use the Daemon for Continuous Integration builds, Gradle will not emit the

message if the environment variable is present.CI

6.3.4. Why is there more than one Daemon process on my machine?

There are several reasons why Gradle will create a new Daemon, instead of using one that is already

running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible

Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don't have to

worry about cleaning them up manually.

idle

An idle Daemon is one that is not currently executing a build or doing other useful work.

compatible

A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build

environment. The Java runtime used to execute the build is an example aspect of the build environment.

Another example is the set of JVM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running

with a Java 7 runtime, but the requested environment calls for Java 8 then the Daemon is not compatible and

another must be started. Moreover, certain properties of a Java runtime cannot be changed once the JVM has

started. It is not possible to change the memory allocation (e.g.), default text encoding, default-Xmx1024m

locale, etc of a running JVM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.

Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.

See for details on how to specify and control the build environment.Chapter 11, The Build Environment

The following JVM system properties are effectively immutable. If the requested build environment requires

any of these properties, with a different value than a Daemon’s JVM has for this property, the Daemon is not

compatible.

file.encoding

user.language

user.country

user.variant

com.sun.management.jmxremote

Page 47 of 573

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The

corresponding attributes of the requested build environment and the Daemon’s environment must match

exactly in order for a Daemon to be compatible.

The maximum heap size (i.e. the -Xmx JVM argument)

The minimum heap size (i.e. the -Xms JVM argument)

The boot classpath (i.e. the -Xbootclasspath argument)

The “assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are

coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different

Gradle versions is a common reason for having more than one running Daemon process.

6.3.5. How much memory does the Daemon use and can I give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB

of heap. It will use your the JVM's default minimum heap size. 1GB is more than enough for most builds.

Larger builds with hundreds of subprojects, lots of configuration, and source code may require, or perform

better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the

requested build environment. Please see for details.Chapter 11, The Build Environment

6.3.6. How can I stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity. If you wish to stop a

Daemon process before this, you can either kill the process via your operating system or run the gradle --stop

command. The switch causes Gradle to request that running Daemon processes, --stop all of the same

, terminate themselves.Gradle version used to run the command

6.3.7. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive

during day to day development. However, Daemon processes can occasionally be corrupted or exhausted. A

Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily

tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process

through defects such as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do

not release resources correctly. This is a particularly poignant problem when using Microsoft Windows as it

is less forgiving of programs that fail to close files after reading or writing.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the --no-daemon

switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or

not the Daemon is actually the culprit of a problem.

Page 48 of 573

6.4. When should I not use the Gradle Daemon?
It is recommended that the Daemon is used in all developer environments. It is recommend to thenot enable

Daemon for Continuous Integration and build server environments.

The Daemon enables faster builds, which is particularly important when a human is sitting in front of the

build. For CI builds, stability and predictability is of utmost importance. Using a fresh runtime (i.e. process)

for each build is more reliable as the runtime is isolated from previous builds.completely

6.5. Tools & IDEs
The Gradle Tooling API (see), that is used by IDEs and other tools toChapter 13, Embedding Gradle

integrate with Gradle, use the Gradle Daemon to execute builds. If you are executing Gradle buildsalways

from within you're IDE you are using the Gradle Daemon and do not need to enable it for your environment.

However, unless you have explicitly enabled the Gradle Daemon for you environment your builds from the

command line will not use the Gradle Daemon.

6.6. How does the Gradle Daemon make builds
faster?

The Gradle Daemon is a build process. In between builds it waits idly for the next build. This haslong lived

the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed

to once for each build. This in itself is a significant performance optimization, but that's not where it stops.

A significant part of the story for modern JVM performance is runtime code optimization. For example,

HotSpot (the JVM implementation provided by Oracle and used as the basis of OpenJDK) applies

optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the

code is progressively optimized during execution which means that subsequent builds can be faster purely

due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5

and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and

the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed

by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can

maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for incremental

building.

Page 49 of 573

6.6.1. Potential future enhancements

Currently, the Daemon makes builds faster by effectively supporting in memory caching and by the JVM

optimizer making the code faster. In future Gradle versions, the Daemon will become even smarter and

perform work . It could, for example, start downloading dependencies immediately after thepreemptively

build script has been edited under the assumption that the build is about to be run and the newly changed or

added dependencies will be required.

There are many other ways in that the Gradle Daemon will enable even faster builds in future Gradle

versions.

Page 50 of 573

7
Dependency Management Basics

This chapter introduces some of the basics of dependency management in Gradle.

7.1. What is dependency management?
Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the

things that your project needs to build or run, in order to find them. We call these incoming files the

 of the project. Secondly, Gradle needs to build and upload the things that your projectdependencies

produces. We call these outgoing files the of the project. Let's look at these two pieces in morepublications

detail:

Most projects are not completely self-contained. They need files built by other projects in order to be

compiled or tested and so on. For example, in order to use Hibernate in my project, I need to include some

Hibernate jars in the classpath when I compile my source. To run my tests, I might also need to include

some additional jars in the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the

dependencies of your project are, so that it can take care of finding these dependencies, and making them

available in your build. The dependencies might need to be downloaded from a remote Maven or Ivy

repository, or located in a local directory, or may need to be built by another project in the same

multi-project build. We call this process .dependency resolution

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify

absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names” of your

dependencies, and other layers determine where to get those dependencies from. You can get similar

behavior from Ant by adding Apache Ivy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core

requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for

your project, it also needs to find these dependencies and make them available. We call these transitive

.dependencies

The main purpose of most projects is to build some files that are to be used outside the project. For example,

if your project produces a Java library, you need to build a jar, and maybe a source jar and some

documentation, and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for

you. You declare the publications of your project, and Gradle take care of building them and publishing

them somewhere. Exactly what “publishing” means depends on what you want to do. You might want to

Page 51 of 573

copy the files to a local directory, or upload them to a remote Maven or Ivy repository. Or you might use the

files in another project in the same multi-project build. We call this process .publication

7.2. Declaring your dependencies
Let's look at some dependency declarations. Here's a basic build script:

Example 7.1. Declaring dependencies

build.gradle

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile group: , name: , version: 'org.hibernate' 'hibernate-core' '3.6.7.Final'
 testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate

core 3.6.7.Final is required to compile the project's production source. By implication, Hibernate core and its

dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to

compile the project's tests. It also tells Gradle to look in the Maven central repository for any dependencies

that are required. The following sections go into the details.

7.3. Dependency configurations
In Gradle dependencies are grouped into . A configuration is simply a named set ofconfigurations

dependencies. We will refer to them as . You can use them to declare the externaldependency configurations

dependencies of your project. As we will see later, they are also used to declare the publications of your

project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths

that the Java plugin uses. Some are listed below, and you can find more details in Table 45.5, “Java plugin -

.dependency configurations”

compile

The dependencies required to compile the production source of the project.

runtime

The dependencies required by the production classes at runtime. By default, also includes the compile

time dependencies.

testCompile

The dependencies required to compile the test source of the project. By default, also includes the

compiled production classes and the compile time dependencies.

Page 52 of 573

testRuntime

The dependencies required to run the tests. By default, also includes the compile, runtime and test

compile dependencies.

Various plugins add further standard configurations. You can also define your own custom configurations to

use in your build. Please see for the details of defining andSection 23.3, “Dependency configurations”

customizing dependency configurations.

7.4. External dependencies
There are various types of dependencies that you can declare. One such type is an .external dependency

This is a dependency on some files built outside the current build, and stored in a repository of some kind,

such as Maven central, or a corporate Maven or Ivy repository, or a directory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 7.2. Definition of an external dependency

build.gradle

dependencies {
 compile group: , name: , version: 'org.hibernate' 'hibernate-core' '3.6.7.Final'
}

An external dependency is identified using , and attributes. Depending on whichgroup name version

kind of repository you are using, and may be optional.group version

The shortcut form for declaring external dependencies looks like “ ”.: :group name version

Example 7.3. Shortcut definition of an external dependency

build.gradle

dependencies {
 compile 'org.hibernate:hibernate-core:3.6.7.Final'
}

To find out more about defining and working with dependencies, have a look at Section 23.4, “How to

.declare your dependencies”

7.5. Repositories
How does Gradle find the files for external dependencies? Gradle looks for them in a . Arepository

repository is really just a collection of files, organized by , and . Gradle understandsgroup name version

several different repository formats, such as Maven and Ivy, and several different ways of accessing the

repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use

external dependencies. One option is use the Maven central repository:

Page 53 of 573

Example 7.4. Usage of Maven central repository

build.gradle

repositories {
 mavenCentral()
}

Or a remote Maven repository:

Example 7.5. Usage of a remote Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }
}

Or a remote Ivy repository:

Example 7.6. Usage of a remote Ivy directory

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 }
}

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 7.7. Usage of a local Ivy directory

build.gradle

repositories {
 ivy {
 // URL can refer to a local directory
 url "../local-repo"
 }
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order

they are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have a look at .Section 23.6, “Repositories”

Page 54 of 573

7.6. Publishing artifacts
Dependency configurations are also used to publish files. We call these files , or[]2 publication artifacts

usually just .artifacts

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do

anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to

publish the artifacts. You do this by attaching repositories to the task. Here's anuploadArchives

example of publishing to a remote Ivy repository:

Example 7.8. Publishing to an Ivy repository

build.gradle

uploadArchives {
 repositories {
 ivy {
 credentials {
 username "username"
 password "pw"
 }
 url "http://repo.mycompany.com"
 }
 }
}

Now, when you run , Gradle will build and upload your Jar. Gradle will alsogradle uploadArchives

generate and upload an as well.ivy.xml

You can also publish to Maven repositories. The syntax is slightly different. Note that you also need to[]3

apply the Maven plugin in order to publish to a Maven repository. when this is in place, Gradle will generate

and upload a .pom.xml

Example 7.9. Publishing to a Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 }
 }
}

To find out more about publication, have a look at .Chapter 30, Publishing artifacts

Page 55 of 573

7.7. Where to next?
For all the details of dependency resolution, see , and for artifactChapter 23, Dependency Management

publication see .Chapter 30, Publishing artifacts

If you are interested in the DSL elements mentioned here, have a look at

, and .Project.configurations{} Project.repositories{} Project.dependencies{}

Otherwise, continue on to some of the other .tutorials

[] 2 We think this is confusing, and we are gradually teasing apart the two concepts in the Gradle DSL.

[] 3 We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

Page 56 of 573

8
Introduction to multi-project builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,

monolithic application. It’s often much easier to digest and understand a project that has been split into

smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you

typically want to link the modules together through a single build.

Gradle supports this scenario through builds.multi-project

8.1. Structure of a multi-project build
Such builds come in all shapes and sizes, but they do have some common characteristics:

A file in the root or directory of the projectsettings.gradle master

A file in the root or directorybuild.gradle master

Child directories that have their own build files (some multi-project builds may omit child*.gradle

project build scripts)

The file tells Gradle how the project and subprojects are structured. Fortunately, yousettings.gradle

don’t have to read this file simply to learn what the project structure is as you can run the command gradle projects

. Here's the output from using that command on the Java build in the Gradle samples:multiproject

Example 8.1. Listing the projects in a build

Output of gradle -q projects

> gradle -q projects

--
Root project
--

Root project 'multiproject'
+--- Project ':api'
+--- Project ':services'
| +--- Project ':services:shared'
| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

This tells you that has three immediate child projects: , and . The multiproject api services shared services

Page 57 of 573

project then has its own children, and . These map to the directory structure, so it’s easyshared webservice

to find them. For example, you can find in .webservice <root>/services/webservice

Each project will usually have its own build file, but that's not necessarily the case. In the above example,

the project is just a container or grouping of other subprojects. There is no build file in theservices

corresponding directory. However, does have one for the root project.multiproject

The root is often used to share common configuration between the child projects, forbuild.gradle

example by applying the same sets of plugins and dependencies to all the child projects. It can also be used

to configure individual subprojects when it is preferable to have all the configuration in one place. This

means you should always check the root build file when discovering how a particular subproject is being

configured.

Another thing to bear in mind is that the build files might not be called . Many projectsbuild.gradle

will name the build files after the subproject names, such as and fromapi.gradle services.gradle

the previous example. Such an approach helps a lot in IDEs because it’s tough to work out which build.gradle

file out of twenty possibilities is the one you want to open. This little piece of magic is handled by the settings.gradle

file, but as a build user you don’t need to know the details of how it’s done. Just have a look through the

child project directories to find the files with the suffix..gradle

Once you know what subprojects are available, the key question for a build user is how to execute the tasks

within the project.

8.2. Executing a multi-project build
From a user's perspective, multi-project builds are still collections of tasks you can run. The difference is

that you may want to control project's tasks get executed. You have two options here:which

Change to the directory corresponding to the subproject you’re interested in and just execute gradle <task>

as normal.

Use a qualified task name from any directory, although this is usually done from the root. For example: gradle :services:webservice:build

will build the subproject and any subprojects it depends on.webservice

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case

of a multi-project build. The command will execute the task in any subprojects,gradle test test

relative to the current working directory, that have that task. So if you run the command from the root

project directory, you’ll run in , , and . If you run thetest api shared services:shared services:webservice

command from the services project directory, you’ll only execute the task in and services:shared

.services:webservice

For more control over what gets executed, use qualified names (the second approach mentioned). These are

paths just like directory paths, but use ‘:’ instead of ‘/’ or ‘\’. If the path begins with a ‘:’, then the path is

resolved relative to the root project. In other words, the leading ‘:’ represents the root project itself. All other

colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use

the task, e.g. .tasks gradle :services:webservice:tasks

Page 58 of 573

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects

that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you’re

interested in how this is configured, you can read about writing multi-project builds .later in the user guide

There’s one last thing to note. When you’re using the Gradle wrapper, the first approach doesn’t work well

because you have to specify the path to the wrapper script if you’re not in the project root. For example, if

you’re in the subproject directory, you would have to run .webservice ../../gradlew build

That’s all you really need to know about multi-project builds as a build user. You can now identify whether

a build is a multi-project one and you can discover its structure. And finally, you can execute tasks within

specific subprojects.

Page 59 of 573

Task file inputs

Task implementations declare

their file system inputs by

annotating their properties with

 and other similarInputFiles

9
Continuous build

Continuous build is an feature. This means that it is incomplete and not yet at regularincubating

Gradle production quality. This also means that this Gradle User Guide chapter is a work in progress.

Typically, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.

Gradle will determine the the actual set of tasks that need to be executed to satisfy the request, execute them

all, and then stop doing work until the next request. A continuous build differs in that Gradle will keep

satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the

result of the previous build is now out of date. For example, if your build compiles Java source files to Java

class files, a continuous build would automatically initiate a compile when the source files change.

Continuous build is useful for many scenarios.

9.1. How do I start and stop a continuous build?
A continuous build can be started by supplying either the or switches to Gradle, along--continuous -t

with the list of tasks, switches and arguments that define the work to do. For example, gradle build --continuous

. This will have the same effect as running , but instead of Gradle exiting when done, itgradle build

will wait for changes to the build inputs. When a change occurs, will be automaticallygradle build

executed again and the process repeats.

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be exited by

pressing (On Microsoft Windows, it is required to also press or after).CTRL-D ENTER RETURN CTRL-D

If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process

must be terminated (e.g. using the command or similar). If the build is being executed via the Toolingkill

API, the build can be cancelled using the Tooling API's cancellation mechanism.

9.2. What will cause a subsequent build?
At this time, only changes to task inputs are noticed. Gradle will

start watching for changes just before the task starts to execute.

No other changes will initiate a build. For example, changes to

build scripts and build logic will not initiate build. Likewise,

changes to files that are read during the configuration of the

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/InputFiles.html

Page 60 of 573

annotations. Please see

Example 17.24, “Declaring the

 forinputs and outputs of a task”

more information.

build, not the execution, will not initiate a build. In order to

incorporate such changes, the continuous build must be restarted

manually.

Consider a typical build using the , using theJava plugin

conventional filesystem layout. The following diagram

visualizes the task graph for :gradle build

Figure 9.1. Java plugin task graph

The following key tasks of the graph use files in the corresponding directories as inputs:

compileJava

src/main/java

processResources

src/main/resources

compileTestJava

src/test/java

processTestResources

src/test/resources

Assuming that the initial build is successful (i.e. the task and its dependencies complete withoutbuild

error), changes to files in, or the addition/remove of files from, the locations listed above will initiate a new

build. If a change is made to a Java source file in , the build will fire and all tasks will besrc/main/java

scheduled. Gradle's incremental build support ensures that only the tasks that are actually affected by the

change are executed.

If the change to the main Java source causes compilation to fail, subsequent changes to the test source in src/test/java

will not initiate a new build. As the test source depends on the main source, there is no point building until

the main source has changed, potentially fixing the compilation error. After each build, only the inputs of

the tasks that actually executed will be monitored for changes.

Continuous build is in no way coupled to compilation. It works for all types of tasks. For example, the processResources

task copies and processes the files from for inclusion in the built JAR. As such, asrc/main/resources

change to any file in this directory will also initiate a build.

Page 61 of 573

9.3. Limitations and quirks
There are several issues to be aware with the current implementation of continuous build. These are likely to

be addressed in future Gradle releases.

9.3.1. Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while

executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs

are modified again, the build will be triggered again. This isn't unique to continuous build. A task that

modifies its own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files reported

changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a

task that has that file as an input. In some cases, it may be obvious (e.g., a Java file is compiled with compileJava

). In other cases, you can use logging to find the task that is out-of-date due to the identified files.--info

9.3.2. Requires Java 7 or later

Gradle uses the JDK's to receive notification of changes to files between builds. This APIWatchService

was introduced in Java 7. As such, Gradle's continuous build is not currently supported when building with

Java 6.

9.3.3. Performance and stability

The JDK file watching facility relies on inefficient file system polling on Mac OS X (see:).JDK-7133447

This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under load on Mac OS X (see:).heavy JDK-8079620

This will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit

continuous build and start again.

On Linux, OpenJDK's implementation of the file watch service can sometimes miss file system events (see:

).JDK-8145981

9.3.4. Changes to symbolic links

Creating or removing symbolic link to files will initiate a build.

Modifying the target of a symbolic link will not cause a rebuild.

Creating or removing symbolic links to directories will not cause rebuilds.

Creating new files in the target directory of a symbolic link will not cause a rebuild.

Deleting the target directory will not cause a rebuild.

http://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html
https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

Page 62 of 573

9.3.5. Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that

changes to task configuration, or any other change to the build model, are effectively ignored.

Page 63 of 573

10
Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. This

is a stand alone user interface that can be launched with the option.--gui

Example 10.1. Launching the GUI

gradle --gui

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run

this as a background task ()gradle --gui&

If you run this from your Gradle project working directory, you should see a tree of tasks.

Page 64 of 573

Figure 10.1. GUI Task Tree

It is preferable to run this command from your Gradle project directory so that the settings of the UI will be

stored in your project directory. However, you can run it then change the working directory via the Setup tab

in the UI.

The UI displays 4 tabs along the top and an output window along the bottom.

10.1. Task Tree
The Task Tree shows a hierarchical display of all projects and their tasks. Double clicking a task executes it.

There is also a filter so that uncommon tasks can be hidden. You can toggle the filter via the Filter button.

Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.

Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 65 of 573

Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a

option).

Add tasks to the favorites (see Favorites tab)

Hide the selected tasks. This adds them to the filter.

Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files

associated in your OS.

10.2. Favorites
The Favorites tab is a good place to store commonly-executed commands. These can be complex commands

(anything that's legal to Gradle) and you can provide them with a display name. This is useful for creating,

say, a custom build command that explicitly skips tests, documentation, and samples that you could call

“fast build”.

You can reorder favorites to your liking and even export them to disk so they can imported by others. If you

edit them, you are given options to “Always Show Live Output”. This only applies if you have “Only Show

Output When Errors Occur”. This override always forces the output to be shown.

10.3. Command Line
The Command Line tab is where you can execute a single Gradle command directly. Just enter whatever

you would normally enter after 'gradle' on the command line. This also provides a place to try out

commands before adding them to favorites.

10.4. Setup
The Setup tab allows configuration of some general settings.

Page 66 of 573

Figure 10.2. GUI Setup

Current Directory

Defines the root directory of your Gradle project (typically where build.gradle is located).

Stack Trace Output

This determines how much information to write out in stack traces when errors occur. Note: if you

specify a stack trace level on either the Command Line or Favorites tab, it will override this stack trace

level.

Only Show Output When Errors Occur

Enabling this option hides any output when a task is executed unless the build fails.

Use Custom Gradle Executor - Advanced feature

This provides you with an alternate way to launch Gradle commands. This is useful if your project

requires some extra setup that is done inside another batch file or shell script (such as specifying an init

script).

Page 67 of 573

11
The Build Environment

11.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute

your build. While it's possible to configure these in your local environment via GRADLE_OPTS or

JAVA_OPTS, certain settings like JVM memory settings, Java home, daemon on/off can be more useful if

they can be versioned with the project in your VCS so that the entire team can work with a consistent

environment. Setting up a consistent environment for your build is as simple as placing these settings into a gradle.properties

file. The configuration is applied in following order (if an option is configured in multiple locations the last

one wins):

from in project build dir.gradle.properties

from in .gradle.properties gradle user home

from system properties, e.g. when is set on the command line.-Dsome.property

The following properties can be used to configure the Gradle build environment:

org.gradle.daemon

When set to the Gradle daemon is used to run the build. For local developer builds this is ourtrue

favorite property. The developer environment is optimized for speed and feedback so we nearly always

run Gradle jobs with the daemon. We don't run CI builds with the daemon (i.e. a long running process)

as the CI environment is optimized for consistency and reliability.

org.gradle.java.home

Specifies the Java home for the Gradle build process. The value can be set to either a or jdk jre

location, however, depending on what your build does, is safer. A reasonable default is used if thejdk

setting is unspecified.

org.gradle.jvmargs

Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking

memory settings. At the moment the default settings are pretty generous with regards to memory.

org.gradle.configureondemand

Enables new incubating mode that makes Gradle selective when configuring projects. Only relevant

projects are configured which results in faster builds for large multi-projects. See Section 24.1.1.1,

.“Configuration on demand”

org.gradle.parallel

Page 68 of 573

When configured, Gradle will run in incubating parallel mode.

org.gradle.workers.max

When configured, Gradle will use a maximum of the given number of workers. See --max-workers

for details.

org.gradle.debug

When set to true, Gradle will run the build with remote debugging enabled, listening on port 5005. Note

that this is the equivalent of adding -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005

to the JVM command line and will suspend the virtual machine until a debugger is attached.

11.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new

JVM for the build process. This means that Gradle must launch a separate JVM process to execute the build

after parsing the various files. When running with the daemon, a JVM with thegradle.properties

correct parameters is started once and reused for each daemon build execution. When Gradle is executed

without the daemon, then a new JVM must be launched for every build execution, unless the JVM launched

by the Gradle start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why if you are setting

either or we highly recommend that you use theorg.gradle.java.home org.gradle.jvmargs

Gradle Daemon. See for more details.Chapter 6, The Gradle Daemon

11.2. Gradle properties and system properties
Gradle offers a variety of ways to add properties to your build. With the command line option you can-D

pass a system property to the JVM which runs Gradle. The option of the command has the same-D gradle

effect as the option of the command.-D java

You can also add properties to your project objects using properties files. You can place a gradle.properties

file in the Gradle user home directory (defined by the “ ” environment variable,GRADLE_USER_HOME

which if not set defaults to) or in your project directory. For multi-project builds/.gradleUSER_HOME

you can place files in any subproject directory. The properties set in a gradle.properties gradle.properties

file can be accessed via the project object. The properties file in the user's home directory has precedence

over property files in the project directories.

You can also add properties directly to your project object via the command line option.-P

Gradle can also set project properties when it sees specially-named system properties or environment

variables. This feature is very useful when you don't have admin rights to a continuous integration server

and you need to set property values that should not be easily visible, typically for security reasons. In that

situation, you can't use the option, and you can't change the system-level configuration files. The correct-P

strategy is to change the configuration of your continuous integration build job, adding an environment

variable setting that matches an expected pattern. This won't be visible to normal users on the system. []4

If the environment variable name looks like , then GradleORG_GRADLE_PROJECT_ =somevalueprop

will set a property on your project object, with the value of . Gradle also supports thisprop somevalue

Page 69 of 573

for system properties, but with a different naming pattern, which looks like org.gradle.project.prop

.

You can also set system properties in the file. If a property name in such a file hasgradle.properties

the prefix “ ”, like “ ”, then the property and its value will be setsystemProp. systemProp.propName

as a system property, without the prefix. In a multi project build, “ ” properties set in anysystemProp.

project except the root will be ignored. That is, only the root project's file will begradle.properties

checked for properties that begin with the “ ” prefix.systemProp.

Example 11.1. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
sysProp=shouldBeOverWrittenBySysProp
envProjectProp=shouldBeOverWrittenByEnvProp
systemProp.system=systemValue

build.gradle

task printProps << {
 println commandLineProjectProp
 println gradlePropertiesProp
 println systemProjectProp
 println envProjectProp
 println System.properties[]'system'
}

Output of gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

> gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue
gradlePropertiesValue
systemPropertyValue
envPropertyValue
systemValue

11.2.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a variable.

If this property does not exist, an exception will be thrown and the build will fail. If your build script relies

on optional properties the user might set, perhaps in a file, you need to check forgradle.properties

existence before you access them. You can do this by using the method hasProperty('propertyName')

which returns or .true false

11.3. Accessing the web via a proxy
Configuring an HTTP proxy (for downloading dependencies, for example) is done via standard JVM system

properties. These properties can be set directly in the build script; for example, setting the proxy host would

be done with .System.setProperty('http.proxyHost', 'www.somehost.org')

Alternatively, the properties can be specified in a gradle.properties file, either in the build's root directory or

in the Gradle home directory.

Page 70 of 573

Example 11.2. Configuring an HTTP proxy

gradle.properties

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

There are separate settings for HTTPS.

Example 11.3. Configuring an HTTPS proxy

gradle.properties

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=8080
systemProp.https.proxyUser=userid
systemProp.https.proxyPassword=password
systemProp.https.nonProxyHosts=*.nonproxyrepos.com|localhost

We could not find a good overview for all possible proxy settings. One place to look are the constants in a

file from the Ant project. Here's a to the Subversion view. The other is a link Networking Properties page

from the JDK docs. If anyone knows of a better overview, please let us know via the mailing list.

11.3.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as

the username and password. There are 2 ways that you can provide the domain for authenticating to a

NTLM proxy:

Set the system property to a value like .http.proxyUser /domain username

Provide the authentication domain via the system property.http.auth.ntlm.domain

[] 4 , , or are some CI servers which offer this functionality.Jenkins Teamcity Bamboo

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

Page 71 of 573

12
Troubleshooting

This chapter is currently a work in progress.

When using Gradle (or any software package), you can run into problems. You may not understand how to

use a particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your

problems.

12.1. Working through problems
If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New

versions of Gradle are released frequently with bug fixes and new features. The problem you are having may

have been fixed in a new release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line

switch). More information about troubleshooting the daemon process is located in --no-daemon

.Chapter 6, The Gradle Daemon

12.2. Getting help
The place to go for help with Gradle is . The Gradle Forums is the place where youhttp://forums.gradle.org

can report problems and ask questions of the Gradle developers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to

get help. It's also the place to post improvement suggestions or new ideas. The development team frequently

posts news items and announces releases via the forum, making it a great way to stay up to date with the

latest Gradle developments.

http://forums.gradle.org

Page 72 of 573

13
Embedding Gradle

13.1. Introduction to the Tooling API
The 1.0 milestone 3 release brought a new API called the tooling API, which you can use for embedding

Gradle into your own custom software. This API allows you to execute and monitor builds, and to query

Gradle about the details of a build. The main audience for this API will be IDEs, CI servers, other UI

authors, or integration testing of your Gradle plugins. However, it is open for anyone who needs to embed

Gradle in their application.

A fundamental characteristic of the tooling API is that it operates in a version independent way. This means

that you can use the same API to work with different target versions of Gradle. The tooling API is Gradle

wrapper aware and, by default, uses the same target Gradle version as that used by the wrapper-powered

project.

Some features that the tooling API provides today:

You can query Gradle for the details of a build, including the project hierarchy and the project

dependencies, external dependencies (including source and Javadoc jars), source directories and tasks of

each project.

You can execute a build and listen to stdout and stderr logging and progress (e.g. the stuff shown in the

'status bar' when you run on the command line).

Tooling API can download and install the appropriate Gradle version, similar to the wrapper. Bear in

mind that the tooling API is wrapper aware so you should not need to configure a Gradle distribution

directly.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved

library, and makes no assumptions about your classloader structure or logging configuration. This makes

the API easy to bundle in your application.

In the future we may support other interesting features:

Performance. The API gives us the opportunity to do lots of caching, static analysis and preemptive

work, to make things faster for the user.

Better progress monitoring and build cancellation. For example, allowing test execution to be monitored.

Notifications when things in the build change, so that UIs and models can be updated. For example, your

Eclipse or IDEA project will update immediately, in the background.

Validating and prompting for user supplied configuration.

Prompting for and managing user credentials.

Page 73 of 573

13.2. Tooling API and the Gradle Build Daemon
Please take a look at . The Tooling API uses the daemon all the time. In fact,Chapter 6, The Gradle Daemon

you cannot officially use the Tooling API without the daemon. This means that subsequent calls to the

Tooling API, be it model building requests or task executing requests can be executed in the same

long-living process. contains more details about the daemon, specificallyChapter 6, The Gradle Daemon

information on situations when new daemons are forked.

13.3. Quickstart
As the tooling API is an interface for developers, the Javadoc is the main documentation for it. This is

exactly our intention - we don't expect this chapter to grow very much. Instead we will add more code

samples and improve the Javadoc documentation. The main entry point to the tooling API is the

. You can navigate from there to find code samples and other instructions. AnotherGradleConnector

very important set of resources are the that live in “ ”.samples $gradleHome/samples/toolingApi

These samples also specify all of the required dependencies for the Tooling API, along with the suggested

repositories to obtain the jars from.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/tooling/GradleConnector.html

Part III. Writing Gradle
build scripts

Table of Contents
14. Build Script Basics
14.1. Projects and tasks
14.2. Hello world
14.3. A shortcut task definition
14.4. Build scripts are code
14.5. Task dependencies
14.6. Dynamic tasks
14.7. Manipulating existing tasks
14.8. Shortcut notations
14.9. Extra task properties
14.10. Using Ant Tasks
14.11. Using methods
14.12. Default tasks
14.13. Configure by DAG
14.14. Where to next?

15. Build Init Plugin
15.1. Tasks
15.2. What to set up
15.3. Build init types

16. Writing Build Scripts
16.1. The Gradle build language
16.2. The Project API
16.3. The Script API
16.4. Declaring variables
16.5. Configuring arbitrary objects
16.6. Configuring arbitrary objects using an external script
16.7. Some Groovy basics
16.8. Default imports

17. More about Tasks
17.1. Defining tasks
17.2. Locating tasks
17.3. Configuring tasks
17.4. Adding dependencies to a task
17.5. Ordering tasks
17.6. Adding a description to a task
17.7. Replacing tasks
17.8. Skipping tasks
17.9. Skipping tasks that are up-to-date
17.10. Task rules
17.11. Finalizer tasks
17.12. Summary

18. Working With Files
18.1. Locating files
18.2. File collections
18.3. File trees
18.4. Using the contents of an archive as a file tree
18.5. Specifying a set of input files
18.6. Copying files
18.7. Using the taskSync
18.8. Creating archives

19. Using Ant from Gradle
19.1. Using Ant tasks and types in your build
19.2. Importing an Ant build

19.3. Ant properties and references
19.4. API

20. The Build Lifecycle
20.1. Build phases
20.2. Settings file
20.3. Multi-project builds
20.4. Initialization
20.5. Configuration and execution of a single project build
20.6. Responding to the lifecycle in the build script

21. Wrapper Plugin
21.1. Usage
21.2. Tasks

22. Logging
22.1. Choosing a log level
22.2. Writing your own log messages
22.3. Logging from external tools and libraries
22.4. Changing what Gradle logs

23. Dependency Management
23.1. Introduction
23.2. Dependency Management Best Practices
23.3. Dependency configurations
23.4. How to declare your dependencies
23.5. Working with dependencies
23.6. Repositories
23.7. How dependency resolution works
23.8. Fine-tuning the dependency resolution process
23.9. The dependency cache
23.10. Strategies for transitive dependency management

24. Multi-project Builds
24.1. Cross project configuration
24.2. Subproject configuration
24.3. Execution rules for multi-project builds
24.4. Running tasks by their absolute path
24.5. Project and task paths
24.6. Dependencies - Which dependencies?
24.7. Project lib dependencies
24.8. Parallel project execution
24.9. Decoupled Projects
24.10. Multi-Project Building and Testing
24.11. Multi Project and buildSrc
24.12. Property and method inheritance
24.13. Summary

25. Gradle Plugins
25.1. What plugins do
25.2. Types of plugins
25.3. Applying plugins
25.4. Applying plugins with the buildscript block
25.5. Applying plugins with the plugins DSL
25.6. Finding community plugins
25.7. More on plugins

26. Standard Gradle plugins
26.1. Language plugins
26.2. Incubating language plugins
26.3. Integration plugins
26.4. Incubating integration plugins
26.5. Software development plugins
26.6. Incubating software development plugins

26.7. Base plugins
26.8. Third party plugins

27. The Project Report Plugin
27.1. Usage
27.2. Tasks
27.3. Project layout
27.4. Dependency management
27.5. Convention properties

28. The Build Dashboard Plugin
28.1. Usage
28.2. Tasks
28.3. Project layout
28.4. Dependency management
28.5. Configuration

29. Comparing Builds
29.1. Definition of terms
29.2. Current Capabilities
29.3. Comparing Gradle Builds

30. Publishing artifacts
30.1. Introduction
30.2. Artifacts and configurations
30.3. Declaring artifacts
30.4. Publishing artifacts
30.5. More about project libraries

31. The Maven Plugin
31.1. Usage
31.2. Tasks
31.3. Dependency management
31.4. Convention properties
31.5. Convention methods
31.6. Interacting with Maven repositories

32. The Signing Plugin
32.1. Usage
32.2. Signatory credentials
32.3. Specifying what to sign
32.4. Publishing the signatures
32.5. Signing POM files

33. Ivy Publishing (new)
33.1. The “ ” Pluginivy-publish
33.2. Publications
33.3. Repositories
33.4. Performing a publish
33.5. Generating the Ivy module descriptor file without publishing
33.6. Complete example
33.7. Future features

34. Maven Publishing (new)
34.1. The “ ” Pluginmaven-publish
34.2. Publications
34.3. Repositories
34.4. Performing a publish
34.5. Publishing to Maven Local
34.6. Generating the POM file without publishing

35. The Distribution Plugin
35.1. Usage
35.2. Tasks
35.3. Distribution contents

35.4. Publishing distributions

36. The Announce Plugin
36.1. Usage
36.2. Configuration

37. The Build Announcements Plugin
37.1. Usage

Page 79 of 573

14
Build Script Basics

14.1. Projects and tasks
Everything in Gradle sits on top of two basic concepts: and .projects tasks

Every Gradle build is made up of one or more . What a project represents depends on what it is thatprojects

you are doing with Gradle. For example, a project might represent a library JAR or a web application. It

might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not

necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your

application to staging or production environments. Don't worry if this seems a little vague for now. Gradle's

build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more . A task represents some atomic piece of work which a buildtasks

performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some

archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at

working with multiple projects and more about working with projects and tasks.

14.2. Hello world
You run a Gradle build using the command. The command looks for a file called gradle gradle build.gradle

in the current directory. We call this file a , although strictly speaking it is[]5 build.gradle build script

a build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named .build.gradle

Example 14.1. Your first build script

build.gradle

task hello {
 doLast {
 println 'Hello world!'
 }
}

In a command-line shell, move to the containing directory and execute the build script with gradle -q hello

:

Page 80 of 573

What does do?-q

Most of the examples in this

user guide are run with the -q

command-line option. This

suppresses Gradle's log

messages, so that only the

output of the tasks is shown.

This keeps the example output

in this user guide a little clearer.

You don't need to use this

option if you don't want to. See

 for moreChapter 22, Logging

details about the command-line

options which affect Gradle's

output.

Example 14.2. Execution of a build script

Output of gradle -q hello

> gradle -q hello
Hello world!

What's going on here? This build script defines a single task,

called , and adds an action to it. When you run hello gradle hello

, Gradle executes the task, which in turn executes thehello

action you've provided. The action is simply a closure

containing some Groovy code to execute.

If you think this looks similar to Ant's targets, you would be

right. Gradle tasks are the equivalent to Ant targets, but as you

will see, they are much more powerful. We have used a different

terminology than Ant as we think the word is moretask

expressive than the word . Unfortunately this introduces atarget

terminology clash with Ant, as Ant calls its commands, such as javac

or , tasks. So when we talk about tasks, we meancopy always

Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant commands), we

explicitly say .Ant task

14.3. A shortcut task definition
There is a shorthand way to define a task like our task above, which is more concise.hello

Example 14.3. A task definition shortcut

build.gradle

task hello << {
 println 'Hello world!'
}

Again, this defines a task called with a single closure to execute. We will use this task definitionhello

style throughout the user guide.

14.4. Build scripts are code
Gradle's build scripts give you the full power of Groovy. As an appetizer, have a look at this:

Page 81 of 573

Example 14.4. Using Groovy in Gradle's tasks

build.gradle

task upper << {
 String someString = 'mY_nAmE'
 println + someString"Original: "
 println + someString.toUpperCase()"Upper case: "
}

Output of gradle -q upper

> gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

or

Example 14.5. Using Groovy in Gradle's tasks

build.gradle

task count << {
 4.times { print }"$it "
}

Output of gradle -q count

> gradle -q count
0 1 2 3

14.5. Task dependencies
As you probably have guessed, you can declare tasks that depend on other tasks.

Example 14.6. Declaration of task that depends on other task

build.gradle

task hello << {
 println 'Hello world!'
}
task intro(dependsOn: hello) << {
 println "I'm Gradle"
}

Output of gradle -q intro

> gradle -q intro
Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Page 82 of 573

Example 14.7. Lazy dependsOn - the other task does not exist (yet)

build.gradle

task taskX(dependsOn:) << {'taskY'
 println 'taskX'
}
task taskY << {
 println 'taskY'
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

The dependency of to is declared before is defined. This is very important fortaskX taskY taskY

multi-project builds. Task dependencies are discussed in more detail in Section 17.4, “Adding dependencies

.to a task”

Please notice that you can't use shortcut notation (see) when referring to aSection 14.8, “Shortcut notations”

task that is not yet defined.

14.6. Dynamic tasks
The power of Groovy can be used for more than defining what a task does. For example, you can also use it

to dynamically create tasks.

Example 14.8. Dynamic creation of a task

build.gradle

4.times { counter ->
 task << {"task$counter"
 println "I'm task number $counter"
 }
}

Output of gradle -q task1

> gradle -q task1
I'm task number 1

14.7. Manipulating existing tasks
Once tasks are created they can be accessed via an . For instance, you could use this to dynamically addAPI

dependencies to a task, at runtime. Ant doesn't allow anything like this.

Page 83 of 573

Example 14.9. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
 task << {"task$counter"
 println "I'm task number $counter"
 }
}
task0.dependsOn task2, task3

Output of gradle -q task0

> gradle -q task0
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Example 14.10. Accessing a task via API - adding behaviour

build.gradle

task hello << {
 println 'Hello Earth'
}
hello.doFirst {
 println 'Hello Venus'
}
hello.doLast {
 println 'Hello Mars'
}
hello << {
 println 'Hello Jupiter'
}

Output of gradle -q hello

> gradle -q hello
Hello Venus
Hello Earth
Hello Mars
Hello Jupiter

The calls and can be executed multiple times. They add an action to the beginning ordoFirst doLast

the end of the task's actions list. When the task executes, the actions in the action list are executed in order.

The operator is simply an alias for .<< doLast

14.8. Shortcut notations
As you might have noticed in the previous examples, there is a convenient notation for accessing an existing

task. Each task is available as a property of the build script:

Page 84 of 573

Example 14.11. Accessing task as a property of the build script

build.gradle

task hello << {
 println 'Hello world!'
}
hello.doLast {
 println "Greetings from the $hello.name task."
}

Output of gradle -q hello

> gradle -q hello
Hello world!
Greetings from the hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the compile

task.

14.9. Extra task properties
You can add your own properties to a task. To add a property named , set myProperty ext.myProperty

to an initial value. From that point on, the property can be read and set like a predefined task property.

Example 14.12. Adding extra properties to a task

build.gradle

task myTask {
 ext.myProperty = "myValue"
}

task printTaskProperties << {
 println myTask.myProperty
}

Output of gradle -q printTaskProperties

> gradle -q printTaskProperties
myValue

Extra properties aren't limited to tasks. You can read more about them in .Section 16.4.2, “Extra properties”

14.10. Using Ant Tasks
Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply

relying on Groovy. Groovy is shipped with the fantastic . Using Ant tasks from Gradle is asAntBuilder

convenient and more powerful than using Ant tasks from a file. From the example below, youbuild.xml

can learn how to execute Ant tasks and how to access Ant properties:

Page 85 of 573

Example 14.13. Using AntBuilder to execute ant.loadfile target

build.gradle

task loadfile << {
 def files = file().listFiles().sort()'../antLoadfileResources'
 files.each { File file ->
 (file.isFile()) {if
 ant.loadfile(srcFile: file, property: file.name)
 println " *** $file.name ***"
 println "${ant.properties[file.name]}"
 }
 }
}

Output of gradle -q loadfile

> gradle -q loadfile
 *** agile.manifesto.txt ***
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
 *** gradle.manifesto.txt ***
Make the impossible possible, make the possible easy and make the easy elegant.
(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 19, Using

.Ant from Gradle

14.11. Using methods
Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.

Page 86 of 573

Example 14.14. Using methods to organize your build logic

build.gradle

task checksum << {
 fileList().each {File file ->'../antLoadfileResources'
 ant.checksum(file: file, property:)"cs_$file.name"
 println cs_$file.name"$file.name Checksum: ${ant.properties[" "]}"
 }
}

task loadfile << {
 fileList().each {File file ->'../antLoadfileResources'
 ant.loadfile(srcFile: file, property: file.name)
 println "I'm fond of $file.name"
 }
}

File[] fileList(String dir) {
 file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

Output of gradle -q loadfile

> gradle -q loadfile
I'm fond of agile.manifesto.txt
I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build

logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted

a whole chapter to this. See .Chapter 41, Organizing Build Logic

14.12. Default tasks
Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 87 of 573

Example 14.15. Defining a default task

build.gradle

defaultTasks , 'clean' 'run'

task clean << {
 println 'Default Cleaning!'
}

task run << {
 println 'Default Running!'
}

task other << {
 println "I'm not a default task!"
}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running . In a multi-project build every subproject can have itsgradle clean run

own specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent

project are used (if defined).

14.13. Configure by DAG
As we later describe in full detail (see), Gradle has a configuration phaseChapter 20, The Build Lifecycle

and an execution phase. After the configuration phase, Gradle knows all tasks that should be executed.

Gradle offers you a hook to make use of this information. A use-case for this would be to check if the

release task is among the tasks to be executed. Depending on this, you can assign different values to some

variables.

In the following example, execution of the and tasks results in different valuedistribution release

of the variable.version

Page 88 of 573

Example 14.16. Different outcomes of build depending on chosen tasks

build.gradle

task distribution << {
 println "We build the zip with version=$version"
}

task release(dependsOn:) << {'distribution'
 println 'We release now'
}

gradle.taskGraph.whenReady {taskGraph ->
 (taskGraph.hasTask(release)) {if
 version = '1.0'
 } {else
 version = '1.0-SNAPSHOT'
 }
}

Output of gradle -q distribution

> gradle -q distribution
We build the zip with version=1.0-SNAPSHOT

Output of gradle -q release

> gradle -q release
We build the zip with version=1.0
We release now

The important thing is that affects the release task the release task is executed. ThiswhenReady before

works even when the release task is not the task (i.e., the task passed to the command).primary gradle

14.14. Where to next?
In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to

jump into more of the details, have a look at .Chapter 17, More about Tasks

Otherwise, continue on to the tutorials in and Chapter 44, Java Quickstart Chapter 7, Dependency

.Management Basics

[] 5 There are command line switches to change this behavior. See)Appendix D, Gradle Command Line

Page 89 of 573

15
Build Init Plugin

The Build Init plugin is currently . Please be aware that the DSL and other configurationincubating

may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports

creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven

build) to be Gradle builds.

Gradle plugins typically need to be to a project before they can be used (see applied Section 25.3,

). The Build Init plugin is an automatically applied plugin, which means you do not need“Applying plugins”

to apply it explicitly. To use the plugin, simply execute the task named where you would like toinit

create the Gradle build. There is no need to create a “stub” file in order to apply thebuild.gradle

plugin.

It also leverages the task from the Wrapper plugin (see), whichwrapper Chapter 21, Wrapper Plugin

means that the Gradle Wrapper will also be installed into the project.

15.1. Tasks
The plugin adds the following tasks to the project:

Table 15.1. Build Init plugin - tasks

Task name Depends on Type Description

init wrapper InitBuild Generates a Gradle project.

wrapper - Wrapper Generates Gradle wrapper files.

15.2. What to set up
The supports different build setup . The type is specified by supplying a argumentinit types --type

value. For example, to create a Java library project simply execute: gradle init --type java-library

.

If a parameter is not supplied, Gradle will attempt to infer the type from the environment. For--type

example, it will infer a type value of “ ” if it finds a to convert to a Gradle build.pom pom.xml

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 90 of 573

If the type could not be inferred, the type “ ” will be used.basic

All build setup types include the setup of the Gradle Wrapper.

15.3. Build init types

As this plugin is currently , only a few build init types are currently supported. More typesincubating

will be added in future Gradle releases.

15.3.1. “ ” (Maven conversion)pom

The “ ” type can be used to convert an Apache Maven build to a Gradle build. This works by convertingpom

the POM to one or more Gradle files. It is only able to be used if there is a valid “ ” file in thepom.xml

directory that the task is invoked in. This type will be automatically inferred if such a file exists.init

The Maven conversion implementation was inspired by the that was originally developedmaven2gradle tool

by Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,

properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)

Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)

Generates download repositories (inc. local Maven repository)

Adjusts Java compiler settings

Supports packaging of sources and tests

Supports TestNG runner

Generates global exclusions from Maven enforcer plugin settings

15.3.2. “ ”java-library

The “ ” build init type is not inferable. It must be explicitly specified.java-library

It has the following features:

Uses the “ ” pluginjava

Uses the “ ” dependency repositoryjcenter

Uses for testingJUnit

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

https://github.com/jbaruch/maven2gradle
http://junit.org

Page 91 of 573

Alternative test framework can be specified by supplying a argument value. To use--test-framework

a different test framework, execute one of the following commands:

gradle init --type java-library --test-framework spock: Uses for testingSpock

instead of JUnit

gradle init --type java-library --test-framework testng: Uses forTestNG

testing instead of JUnit

15.3.3. “ ”scala-library

The “ ” build init type is not inferable. It must be explicitly specified.scala-library

It has the following features:

Uses the “ ” pluginscala

Uses the “ ” dependency repositoryjcenter

Uses Scala 2.10

Uses for testingScalaTest

Has directories in the conventional locations for source code

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test

files

Uses the Zinc Scala compiler by default

15.3.4. “ ”groovy-library

The “ ” build init type is not inferable. It must be explicitly specified.groovy-library

It has the following features:

Uses the “ ” plugingroovy

Uses the “ ” dependency repositoryjcenter

Uses Groovy 2.x

Uses for testingSpock testing framework

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or

test files

15.3.5. “basic”

The “ ” build init type is useful for creating a fresh new Gradle project. It creates a sample basic build.gradle

file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

Page 92 of 573

Getting help writing
build scripts

Don't forget that your build

script is simply Groovy code

that drives the Gradle API. And

the interface is yourProject

starting point for accessing

everything in the Gradle API.

So, if you're wondering what

'tags' are available in your build

script, you can start with the

documentation for the

 interface.Project

16
Writing Build Scripts

This chapter looks at some of the details of writing a build script.

16.1. The Gradle build language
Gradle provides a , or DSL, for describing builds. This build language is based ondomain specific language

Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. Gradle assumes that each build script is[]6

encoded using UTF-8.

16.2. The Project API
In the tutorial in we used, for example, the method. Where does thisChapter 44, Java Quickstart apply()

method come from? We said earlier that the build script defines a project in Gradle. For each project in the

build, Gradle creates an object of type and associates this object with the build script.Project Project

As the build script executes, it configures this object:Project

Any method you call in your build script which is not

 in the build script, is delegated to the defined Project

object.

Any property you access in your build script, which is not

 in the build script, is delegated to the defined Project

object.

Let's try this out and try to access the property of the name

 object.Project

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html

Page 93 of 573

Example 16.1. Accessing property of the Project object

build.gradle

println name
println project.name

Output of gradle -q check

> gradle -q check
projectApi
projectApi

Both statements print out the same property. The first uses auto-delegation to the println Project

object, for properties not defined in the build script. The other statement uses the propertyproject

available to any build script, which returns the associated object. Only if you define a property orProject

a method which has the same name as a member of the object, would you need to use the Project project

property.

16.2.1. Standard project properties

The object provides some standard properties, which are available in your build script. TheProject

following table lists a few of the commonly used ones.

Table 16.1. Project Properties

Name Type Default Value

project Project The instanceProject

name String The name of the project directory.

path String The absolute path of the project.

description String A description for the project.

projectDir File The directory containing the build script.

buildDir File /buildprojectDir

group Object unspecified

version Object unspecified

ant AntBuilder An instanceAntBuilder

16.3. The Script API
When Gradle executes a script, it compiles the script into a class which implements . This meansScript

that all of the properties and methods declared by the interface are available in your script.Script

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Script.html

Page 94 of 573

16.4. Declaring variables
There are two kinds of variables that can be declared in a build script: local variables and extra properties.

16.4.1. Local variables

Local variables are declared with the keyword. They are only visible in the scope where they have beendef

declared. Local variables are a feature of the underlying Groovy language.

Example 16.2. Using local variables

build.gradle

def dest = "dest"

task copy(type: Copy) {
 from "source"
 into dest
}

16.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is

not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning

object's property. Alternatively, an block can be used to add multiple properties at once.ext ext

Page 95 of 573

Example 16.3. Using extra properties

build.gradle

apply plugin: "java"

ext {
 springVersion = "3.1.0.RELEASE"
 emailNotification = "build@master.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {
 main {
 purpose = "production"
 }
 test {
 purpose = "test"
 }
 plugin {
 purpose = "production"
 }
}

task printProperties << {
 println springVersion
 println emailNotification
 sourceSets.matching { it.purpose == }.each { println it.name }"production"
}

Output of gradle -q printProperties

> gradle -q printProperties
3.1.0.RELEASE
build@master.org
main
plugin

In this example, an block adds two extra properties to the object. Additionally, a propertyext project

named is added to each source set by setting to (is a permissiblepurpose ext.purpose null null

value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a

(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be

accessed from anywhere their owning object can be accessed, giving them a wider scope than local

variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the class in theExtraPropertiesExtension

API documentation.

16.5. Configuring arbitrary objects
You can configure arbitrary objects in the following very readable way.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Page 96 of 573

Example 16.4. Configuring arbitrary objects

build.gradle

task configure << {
 def pos = configure(java.text.FieldPosition()) {new 10
 beginIndex = 1
 endIndex = 5
 }
 println pos.beginIndex
 println pos.endIndex
}

Output of gradle -q configure

> gradle -q configure
1
5

16.6. Configuring arbitrary objects using an
external script

You can also configure arbitrary objects using an external script.

Example 16.5. Configuring arbitrary objects using a script

build.gradle

task configure << {
 def pos = java.text.FieldPosition()new 10
 // Apply the script
 apply from: , to: pos'other.gradle'
 println pos.beginIndex
 println pos.endIndex
}

other.gradle

// Set properties.
beginIndex = 1
endIndex = 5

Output of gradle -q configure

> gradle -q configure
1
5

Page 97 of 573

16.7. Some Groovy basics
The provides plenty of features for creating DSLs, and the Gradle build language takesGroovy language

advantage of these. Understanding how the build language works will help you when you write your build

script, and in particular, when you start to write custom plugins and tasks.

16.7.1. Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, gets an Iterable each

method, which iterates over the elements of the :Iterable

Example 16.6. Groovy JDK methods

build.gradle

// Iterable gets an each() method
configurations.runtime.each { File f -> println f }

Have a look at for more details.http://groovy-lang.org/gdk.html

16.7.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 16.7. Property accessors

build.gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir()'target'

16.7.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 16.8. Method call without parentheses

build.gradle

test.systemProperty , 'some.prop' 'value'
test.systemProperty(,)'some.prop' 'value'

16.7.4. List and map literals

Groovy provides some shortcuts for defining and instances. Both kinds of literals areList Map

straightforward, but map literals have some interesting twists.

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

Page 98 of 573

For instance, the “ ” method (where you typically apply plugins) actually takes a map parameter.apply

However, when you have a line like “ ”, you aren't actually using a map literal,apply plugin:'java'

you're actually using “named parameters”, which have almost exactly the same syntax as a map literal

(without the wrapping brackets). That named parameter list gets converted to a map when the method is

called, but it doesn't start out as a map.

Example 16.9. List and map literals

build.gradle

// List literal
test.includes = [,]'org/gradle/api/**' 'org/gradle/internal/**'

List<String> list = ArrayList<String>()new
list.add()'org/gradle/api/**'
list.add()'org/gradle/internal/**'
test.includes = list

// Map literal.
Map<String, String> map = [key1: , key2:]'value1' 'value2'

// Groovy will coerce named arguments
// into a single map argument
apply plugin: 'java'

16.7.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures . When the lasthere

parameter of a method is a closure, you can place the closure after the method call:

Example 16.10. Closure as method parameter

build.gradle

repositories {
 println "in a closure"
}
repositories() { println }"in a closure"
repositories({ println })"in a closure"

16.7.6. Closure delegate

Each closure has a object, which Groovy uses to look up variable and method references whichdelegate

are not local variables or parameters of the closure. Gradle uses this for , where the configuration closures delegate

object is set to the object to be configured.

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Page 99 of 573

Example 16.11. Closure delegates

build.gradle

dependencies {
 assert delegate == project.dependencies
 testCompile()'junit:junit:4.12'
 delegate.testCompile()'junit:junit:4.12'
}

16.8. Default imports
To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle

scripts. This means that instead of using throw new org.gradle.api.tasks.StopExecutionException()

you can just type instead.throw new StopExecutionException()

Listed below are the imports added to each script:

Figure 16.1. gradle-imports

import org.gradle.*
import org.gradle.api.*
import org.gradle.api.artifacts.*
import org.gradle.api.artifacts.cache.*
import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.query.*
import org.gradle.api.artifacts.repositories.*
import org.gradle.api.artifacts.result.*
import org.gradle.api.component.*
import org.gradle.api.credentials.*
import org.gradle.api.distribution.*
import org.gradle.api.distribution.plugins.*
import org.gradle.api.dsl.*
import org.gradle.api.execution.*
import org.gradle.api.file.*
import org.gradle.api.initialization.*
import org.gradle.api.initialization.dsl.*
import org.gradle.api.invocation.*
import org.gradle.api.java.archives.*
import org.gradle.api.logging.*
import org.gradle.api.plugins.*
import org.gradle.api.plugins.announce.*
import org.gradle.api.plugins.antlr.*
import org.gradle.api.plugins.buildcomparison.gradle.*
import org.gradle.api.plugins.jetty.*
import org.gradle.api.plugins.osgi.*
import org.gradle.api.plugins.quality.*
import org.gradle.api.plugins.scala.*
import org.gradle.api.plugins.sonar.*
import org.gradle.api.plugins.sonar.model.*
import org.gradle.api.publish.*
import org.gradle.api.publish.ivy.*
import org.gradle.api.publish.ivy.plugins.*

Page 100 of 573

import org.gradle.api.publish.ivy.tasks.*
import org.gradle.api.publish.maven.*
import org.gradle.api.publish.maven.plugins.*
import org.gradle.api.publish.maven.tasks.*
import org.gradle.api.publish.plugins.*
import org.gradle.api.reporting.*
import org.gradle.api.reporting.components.*
import org.gradle.api.reporting.dependencies.*
import org.gradle.api.reporting.model.*
import org.gradle.api.reporting.plugins.*
import org.gradle.api.resources.*
import org.gradle.api.specs.*
import org.gradle.api.tasks.*
import org.gradle.api.tasks.ant.*
import org.gradle.api.tasks.application.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.compile.*
import org.gradle.api.tasks.diagnostics.*
import org.gradle.api.tasks.incremental.*
import org.gradle.api.tasks.javadoc.*
import org.gradle.api.tasks.scala.*
import org.gradle.api.tasks.testing.*
import org.gradle.api.tasks.testing.junit.*
import org.gradle.api.tasks.testing.testng.*
import org.gradle.api.tasks.util.*
import org.gradle.api.tasks.wrapper.*
import org.gradle.authentication.*
import org.gradle.authentication.http.*
import org.gradle.buildinit.plugins.*
import org.gradle.buildinit.tasks.*
import org.gradle.external.javadoc.*
import org.gradle.ide.cdt.*
import org.gradle.ide.cdt.tasks.*
import org.gradle.ide.visualstudio.*
import org.gradle.ide.visualstudio.plugins.*
import org.gradle.ide.visualstudio.tasks.*
import org.gradle.ivy.*
import org.gradle.jvm.*
import org.gradle.jvm.application.scripts.*
import org.gradle.jvm.application.tasks.*
import org.gradle.jvm.platform.*
import org.gradle.jvm.plugins.*
import org.gradle.jvm.tasks.*
import org.gradle.jvm.tasks.api.*
import org.gradle.jvm.test.*
import org.gradle.jvm.toolchain.*
import org.gradle.language.assembler.*
import org.gradle.language.assembler.plugins.*
import org.gradle.language.assembler.tasks.*
import org.gradle.language.base.*
import org.gradle.language.base.artifact.*
import org.gradle.language.base.plugins.*
import org.gradle.language.base.sources.*
import org.gradle.language.c.*
import org.gradle.language.c.plugins.*
import org.gradle.language.c.tasks.*
import org.gradle.language.coffeescript.*
import org.gradle.language.cpp.*
import org.gradle.language.cpp.plugins.*
import org.gradle.language.cpp.tasks.*
import org.gradle.language.java.*

Page 101 of 573

import org.gradle.language.java.artifact.*
import org.gradle.language.java.plugins.*
import org.gradle.language.java.tasks.*
import org.gradle.language.javascript.*
import org.gradle.language.jvm.*
import org.gradle.language.jvm.plugins.*
import org.gradle.language.jvm.tasks.*
import org.gradle.language.nativeplatform.*
import org.gradle.language.nativeplatform.tasks.*
import org.gradle.language.objectivec.*
import org.gradle.language.objectivec.plugins.*
import org.gradle.language.objectivec.tasks.*
import org.gradle.language.objectivecpp.*
import org.gradle.language.objectivecpp.plugins.*
import org.gradle.language.objectivecpp.tasks.*
import org.gradle.language.rc.*
import org.gradle.language.rc.plugins.*
import org.gradle.language.rc.tasks.*
import org.gradle.language.routes.*
import org.gradle.language.scala.*
import org.gradle.language.scala.plugins.*
import org.gradle.language.scala.tasks.*
import org.gradle.language.scala.toolchain.*
import org.gradle.language.twirl.*
import org.gradle.maven.*
import org.gradle.model.*
import org.gradle.nativeplatform.*
import org.gradle.nativeplatform.platform.*
import org.gradle.nativeplatform.plugins.*
import org.gradle.nativeplatform.tasks.*
import org.gradle.nativeplatform.test.*
import org.gradle.nativeplatform.test.cunit.*
import org.gradle.nativeplatform.test.cunit.plugins.*
import org.gradle.nativeplatform.test.cunit.tasks.*
import org.gradle.nativeplatform.test.googletest.*
import org.gradle.nativeplatform.test.googletest.plugins.*
import org.gradle.nativeplatform.test.plugins.*
import org.gradle.nativeplatform.test.tasks.*
import org.gradle.nativeplatform.toolchain.*
import org.gradle.nativeplatform.toolchain.plugins.*
import org.gradle.platform.base.*
import org.gradle.platform.base.binary.*
import org.gradle.platform.base.component.*
import org.gradle.platform.base.plugins.*
import org.gradle.play.*
import org.gradle.play.distribution.*
import org.gradle.play.platform.*
import org.gradle.play.plugins.*
import org.gradle.play.tasks.*
import org.gradle.play.toolchain.*
import org.gradle.plugin.use.*
import org.gradle.plugins.ear.*
import org.gradle.plugins.ear.descriptor.*
import org.gradle.plugins.ide.api.*
import org.gradle.plugins.ide.eclipse.*
import org.gradle.plugins.ide.idea.*
import org.gradle.plugins.javascript.base.*
import org.gradle.plugins.javascript.coffeescript.*
import org.gradle.plugins.javascript.envjs.*
import org.gradle.plugins.javascript.envjs.browser.*
import org.gradle.plugins.javascript.envjs.http.*

Page 102 of 573

import org.gradle.plugins.javascript.envjs.http.simple.*
import org.gradle.plugins.javascript.jshint.*
import org.gradle.plugins.javascript.rhino.*
import org.gradle.plugins.javascript.rhino.worker.*
import org.gradle.plugins.signing.*
import org.gradle.plugins.signing.signatory.*
import org.gradle.plugins.signing.signatory.pgp.*
import org.gradle.plugins.signing.type.*
import org.gradle.plugins.signing.type.pgp.*
import org.gradle.process.*
import org.gradle.sonar.runner.*
import org.gradle.sonar.runner.plugins.*
import org.gradle.sonar.runner.tasks.*
import org.gradle.testing.base.*
import org.gradle.testing.base.plugins.*
import org.gradle.testing.jacoco.plugins.*
import org.gradle.testing.jacoco.tasks.*

Page 103 of 573

import org.gradle.testkit.runner.*
import org.gradle.util.*

[] 6 Any language element except for statement labels.

Page 104 of 573

17
More about Tasks

In the introductory tutorial () you learned how to create simple tasks. YouChapter 14, Build Script Basics

also learned how to add additional behavior to these tasks later on, and you learned how to create

dependencies between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further.

Gradle supports , which are tasks that have their own properties and methods. This is reallyenhanced tasks

different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or

built into Gradle.

17.1. Defining tasks
We have already seen how to define tasks using a keyword style in . ThereChapter 14, Build Script Basics

are a few variations on this style, which you may need to use in certain situations. For example, the keyword

style does not work in expressions.

Example 17.1. Defining tasks

build.gradle

task(hello) << {
 println "hello"
}

task(copy, type: Copy) {
 from(file())'srcDir'
 into(buildDir)
}

You can also use strings for the task names:

Example 17.2. Defining tasks - using strings for task names

build.gradle

task() <<'hello'
{
 println "hello"
}

task(, type: Copy) {'copy'
 from(file())'srcDir'
 into(buildDir)
}

Page 105 of 573

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 17.3. Defining tasks with alternative syntax

build.gradle

tasks.create(name:) << {'hello'
 println "hello"
}

tasks.create(name: , type: Copy) {'copy'
 from(file())'srcDir'
 into(buildDir)
}

Here we add tasks to the collection. Have a look at for more variations of the tasks TaskContainer create()

method.

17.2. Locating tasks
You often need to locate the tasks that you have defined in the build file, for example, to configure them or

use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a

property of the project, using the task name as the property name:

Example 17.4. Accessing tasks as properties

build.gradle

task hello

println hello.name
println project.hello.name

Tasks are also available through the collection.tasks

Example 17.5. Accessing tasks via tasks collection

build.gradle

task hello

println tasks.hello.name
println tasks[].name'hello'

You can access tasks from any project using the task's path using the method. Youtasks.getByPath()

can call the method with a task name, or a relative path, or an absolute path.getByPath()

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html

Page 106 of 573

Example 17.6. Accessing tasks by path

build.gradle

project() {':projectA'
 task hello
}

task hello

println tasks.getByPath().path'hello'
println tasks.getByPath().path':hello'
println tasks.getByPath().path'projectA:hello'
println tasks.getByPath().path':projectA:hello'

Output of gradle -q hello

> gradle -q hello
:hello
:hello
:projectA:hello
:projectA:hello

Have a look at for more options for locating tasks.TaskContainer

17.3. Configuring tasks
As an example, let's look at the task provided by Gradle. To create a task for your build, youCopy Copy

can declare in your build script:

Example 17.7. Creating a copy task

build.gradle

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see). TheCopy

following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “ ”, but it is of “ ”. You can havemyCopy type Copy

multiple tasks of the same , but with different names. You'll find this gives you a lot of power totype

implement cross-cutting concerns across all tasks of a particular type.

Example 17.8. Configuring a task - various ways

build.gradle

Copy myCopy = task(myCopy, type: Copy)
myCopy.from 'resources'
myCopy.into 'target'
myCopy.include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

This is similar to the way we would configure objects in Java. You have to repeat the context () inmyCopy

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html

Page 107 of 573

Don't forget about
the build phases

A task has both configuration

and actions. When using the ,<<

you are simply using a shortcut

to define an action. Code

defined in the configuration

section of your task will get

executed during the

configuration phase of the build

regardless of what task was

targeted. See Chapter 20, The

 for more detailsBuild Lifecycle

about the build lifecycle.

the configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable.

It is usually our favorite.

Example 17.9. Configuring a task - with closure

build.gradle

task myCopy(type: Copy)

myCopy {
 from 'resources'
 into 'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

This works for task. Line 3 of the example is just a shortcut for the method. Itany tasks.getByName()

is important to note that if you pass a closure to the method, this closure is applied to getByName()

 the task, not when the task executes.configure

You can also use a configuration closure when you define a task.

Example 17.10. Defining a task with closure

build.gradle

task copy(type: Copy) {
 from 'resources'
 into 'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

17.4. Adding dependencies to
a task

There are several ways you can define the dependencies of a

task. In you were introducedSection 14.5, “Task dependencies”

to defining dependencies using task names. Task names can

refer to tasks in the same project as the task, or to tasks in other

projects. To refer to a task in another project, you prefix the

name of the task with the path of the project it belongs to. The

following is an example which adds a dependency from projectA:taskX

to :projectB:taskY

Page 108 of 573

Example 17.11. Adding dependency on task from another project

build.gradle

project() {'projectA'
 task taskX(dependsOn:) << {':projectB:taskY'
 println 'taskX'
 }
}

project() {'projectB'
 task taskY << {
 println 'taskY'
 }
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a object, as shown in this example:Task

Example 17.12. Adding dependency using task object

build.gradle

task taskX << {
 println 'taskX'
}

task taskY << {
 println 'taskY'
}

taskX.dependsOn taskY

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

passed the task whose dependencies are being calculated. The closure should return a single orTask

collection of objects, which are then treated as dependencies of the task. The following example addsTask

a dependency from to all the tasks in the project whose name starts with :taskX lib

Page 109 of 573

Example 17.13. Adding dependency using closure

build.gradle

task taskX << {
 println 'taskX'
}

taskX.dependsOn {
 tasks.findAll { task -> task.name.startsWith() }'lib'
}

task lib1 << {
 println 'lib1'
}

task lib2 << {
 println 'lib2'
}

task notALib << {
 println 'notALib'
}

Output of gradle -q taskX

> gradle -q taskX
lib1
lib2
taskX

For more information about task dependencies, see the API.Task

17.5. Ordering tasks

Task ordering is an feature. Please be aware that this feature may change in later Gradleincubating

versions.

In some cases it is useful to control the in which 2 tasks will execute, without introducing an explicitorder

dependency between those tasks. The primary difference between a task and a task isordering dependency

that an ordering rule does not influence which tasks will be executed, only the order in which they will be

executed.

Task ordering can be useful in a number of scenarios:

Enforce sequential ordering of tasks: eg. 'build' never runs before 'clean'.

Run build validations early in the build: eg. validate I have the correct credentials before starting the

work for a release build.

Get feedback faster by running quick verification tasks before long verification tasks: eg. unit tests

should run before integration tests.

A task that aggregates the results of all tasks of a particular type: eg. test report task combines the

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html

Page 110 of 573

outputs of all executed test tasks.

There are two ordering rules available: “ ” and “ ”.must run after should run after

When you use the “must run after” ordering rule you specify that must always run after ,taskB taskA

whenever both and will be run. This is expressed as .taskA taskB taskB.mustRunAfter(taskA)

The “should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if

using that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of

a task have been satisfied apart from the “should run after” task, then this task will be run regardless of

whether its “should run after” dependencies have been run or not. You should use “should run after” where

the ordering is helpful but not strictly required.

With these rules present it is still possible to execute without and vice-versa.taskA taskB

Example 17.14. Adding a 'must run after' task ordering

build.gradle

task taskX << {
 println 'taskX'
}
task taskY << {
 println 'taskY'
}
taskY.mustRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

Example 17.15. Adding a 'should run after' task ordering

build.gradle

task taskX << {
 println 'taskX'
}
task taskY << {
 println 'taskY'
}
taskY.shouldRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute without causing to run:taskY taskX

Page 111 of 573

Example 17.16. Task ordering does not imply task execution

Output of gradle -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the

 and methods. These methods accept a taskTask.mustRunAfter() Task.shouldRunAfter()

instance, a task name or any other input accepted by .Task.dependsOn()

Note that “ ” or “ ” does not imply any executionB.mustRunAfter(A) B.shouldRunAfter(A)

dependency between the tasks:

It is possible to execute tasks and independently. The ordering rule only has an effect when bothA B

tasks are scheduled for execution.

When run with , it is possible for to execute in the event that fails.--continue B A

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Example 17.17. A 'should run after' task ordering is ignored if it introduces an ordering cycle

build.gradle

task taskX << {
 println 'taskX'
}
task taskY << {
 println 'taskY'
}
task taskZ << {
 println 'taskZ'
}
taskX.dependsOn taskY
taskY.dependsOn taskZ
taskZ.shouldRunAfter taskX

Output of gradle -q taskX

> gradle -q taskX
taskZ
taskY
taskX

17.6. Adding a description to a task
You can add a description to your task. This description is displayed when executing .gradle tasks

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Page 112 of 573

Example 17.18. Adding a description to a task

build.gradle

task copy(type: Copy) {
 description 'Copies the resource directory to the target directory.'
 from 'resources'
 into 'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

17.7. Replacing tasks
Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java plugin

with a custom task of a different type. You can achieve this with:

Example 17.19. Overwriting a task

build.gradle

task copy(type: Copy)

task copy(overwrite: true) << {
 println()'I am the new one.'
}

Output of gradle -q copy

> gradle -q copy
I am the new one.

This will replace a task of type with the task you've defined, because it uses the same name. WhenCopy

you define the new task, you have to set the property to true. Otherwise Gradle throws anoverwrite

exception, saying that a task with that name already exists.

17.8. Skipping tasks
Gradle offers multiple ways to skip the execution of a task.

17.8.1. Using a predicate

You can use the method to attach a predicate to a task. The task's actions are only executed ifonlyIf()

the predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as a

parameter, and should return true if the task should execute and false if the task should be skipped. The

predicate is evaluated just before the task is due to be executed.

Page 113 of 573

Example 17.20. Skipping a task using a predicate

build.gradle

task hello << {
 println 'hello world'
}

hello.onlyIf { !project.hasProperty() }'skipHello'

Output of gradle hello -PskipHello

> gradle hello -PskipHello
:hello SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

17.8.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the

. If this exception is thrown by an action, the further execution of thisStopExecutionException

action as well as the execution of any following action of this task is skipped. The build continues with

executing the next task.

Example 17.21. Skipping tasks with StopExecutionException

build.gradle

task compile << {
 println 'We are doing the compile.'
}

compile.doFirst {
 // Here you would put arbitrary conditions in real life.
 // But this is used in an integration test so we want defined behavior.
 (true) { StopExecutionException() }if throw new
}
task myTask(dependsOn:) << {'compile'
 println 'I am not affected'
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add executionconditional

of the built-in actions of such a task. []7

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/StopExecutionException.html

Page 114 of 573

17.8.3. Enabling and disabling tasks

Every task has an flag which defaults to . Setting it to prevents the execution of anyenabled true false

of the task's actions.

Example 17.22. Enabling and disabling tasks

build.gradle

task disableMe << {
 println 'This should not be printed if the task is disabled.'
}
disableMe.enabled = false

Output of gradle disableMe

> gradle disableMe
:disableMe SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

17.9. Skipping tasks that are up-to-date
If you are using one of the tasks that come with Gradle, such as a task added by the Java plugin, you might

have noticed that Gradle will skip tasks that are up-to-date. This behaviour is also available for your tasks,

not just for built-in tasks.

17.9.1. Declaring a task's inputs and outputs

Let's have a look at an example. Here our task generates several output files from a source XML file. Let's

run it a couple of times.

Page 115 of 573

Example 17.23. A generator task

build.gradle

task transform {
 ext.srcFile = file()'mountains.xml'
 ext.destDir = File(buildDir,)new 'generated'
 doLast {
 println "Transforming source file."
 destDir.mkdirs()
 def mountains = XmlParser().parse(srcFile)new
 mountains.mountain.each { mountain ->
 def name = mountain.name[].text()0
 def height = mountain.height[].text()0
 def destFile = File(destDir,)new "${name}.txt"
 destFile.text = "$name -> ${height}\n"
 }
 }
}

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Notice that Gradle executes this task a second time, and does not skip the task even though nothing has

changed. Our example task was defined using an action closure. Gradle has no idea what the closure does

and cannot automatically figure out whether the task is up-to-date or not. To use Gradle's up-to-date

checking, you need to declare the inputs and outputs of the task.

Each task has an and property, which you use to declare the inputs and outputs of theinputs outputs

task. Below, we have changed our example to declare that it takes the source XML file as an input and

produces output to a destination directory. Let's run it a couple of times.

Page 116 of 573

Example 17.24. Declaring the inputs and outputs of a task

build.gradle

task transform {
 ext.srcFile = file()'mountains.xml'
 ext.destDir = File(buildDir,)new 'generated'
 inputs.file srcFile
 outputs.dir destDir
 doLast {
 println "Transforming source file."
 destDir.mkdirs()
 def mountains = XmlParser().parse(srcFile)new
 mountains.mountain.each { mountain ->
 def name = mountain.name[].text()0
 def height = mountain.height[].text()0
 def destFile = File(destDir,)new "${name}.txt"
 destFile.text = "$name -> ${height}\n"
 }
 }
}

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Output of gradle transform

> gradle transform
:transform UP-TO-DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

The task's property is of type . The task's property is of type inputs TaskInputs outputs

.TaskOutputs

A task with no defined outputs will be considered up-to-date. For scenarios where the outputs of anever

task are not files, or for more complex scenarios, the method allowsTaskOutputs.upToDateWhen()

you to calculate programmatically if the tasks outputs should be considered up to date.

A task with only outputs defined will be considered up-to-date if those outputs are unchanged since the

previous build.

17.9.2. How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the

set of input files and a hash of the contents of each file. Gradle then executes the task. If the task completes

successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files and a hash

of the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If

the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and

skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Page 117 of 573

time the task is executed.

Note that if a task has an output directory specified, any files added to that directory since the last time it

was executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share

an output directory without interfering with each other. If this is not the behaviour you want for some

reason, consider using TaskOutputs.upToDateWhen()

17.10. Task rules
Sometimes you want to have a task whose behavior depends on a large or infinite number value range of

parameters. A very nice and expressive way to provide such tasks are task rules:

Example 17.25. Task rule

build.gradle

tasks.addRule() { String taskName ->"Pattern: ping<ID>"
 (taskName.startsWith()) {if "ping"
 task(taskName) << {
 println + (taskName -)"Pinging: " 'ping'
 }
 }
}

Output of gradle -q pingServer1

> gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule, which is shown with .gradle tasks

Rules are not only used when calling tasks from the command line. You can also create dependsOn relations

on rule based tasks:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Page 118 of 573

Example 17.26. Dependency on rule based tasks

build.gradle

tasks.addRule() { String taskName ->"Pattern: ping<ID>"
 (taskName.startsWith()) {if "ping"
 task(taskName) << {
 println + (taskName -)"Pinging: " 'ping'
 }
 }
}

task groupPing {
 dependsOn pingServer1, pingServer2
}

Output of gradle -q groupPing

> gradle -q groupPing
Pinging: Server1
Pinging: Server2

If you run “ ” you won't find a task named “ ” or “ ”,gradle -q tasks pingServer1 pingServer2

but this script is executing logic based on the request to run those tasks.

17.11. Finalizer tasks

Finalizers tasks are an feature (see).incubating Section C.1.2, “Incubating”

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 17.27. Adding a task finalizer

build.gradle

task taskX << {
 println 'taskX'
}
task taskY << {
 println 'taskY'
}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Page 119 of 573

Example 17.28. Task finalizer for a failing task

build.gradle

task taskX << {
 println 'taskX'
 RuntimeException()throw new
}
task taskY << {
 println 'taskY'
}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

On the other hand, finalizer tasks are not executed if the finalized task didn't do any work, for example if it

is considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless

of the build failing or succeeding. An example of such a resource is a web container that is started before an

integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the method. This method accepts a taskTask.finalizedBy()

instance, a task name, or any other input accepted by .Task.dependsOn()

17.12. Summary
If you are coming from Ant, an enhanced Gradle task like seems like a cross between an Ant targetCopy

and an Ant task. Although Ant's tasks and targets are really different entities, Gradle combines these notions

into a single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include

aspects of Ant tasks. All of Gradle's tasks share a common API and you can create dependencies between

them. These tasks are much easier to configure than an Ant task. They make full use of the type system, and

are more expressive and easier to maintain.

[] 7 You might be wondering why there is neither an import for the nor doStopExecutionException

we access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your

script (see).Section 16.8, “Default imports”

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Page 120 of 573

18
Working With Files

Most builds work with files. Gradle adds some concepts and APIs to help you achieve this.

18.1. Locating files
You can locate a file relative to the project directory using the method.Project.file()

Example 18.1. Locating files

build.gradle

// Using a relative path
File configFile = file()'src/config.xml'

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(File())new 'src/config.xml'

You can pass any object to the method, and it will attempt to convert the value to an absolute file()

 object. Usually, you would pass it a or instance. If this path is an absolute path, it isFile String File

used to construct a instance. Otherwise, a instance is constructed by prepending the projectFile File

directory path to the supplied path. The method also understands URLs, such as file() file:/some/path.xml

.

Using this method is a useful way to convert some user provided value into an absolute . It isFile

preferable to using , as always evaluates the supplied path relative to thenew File(somePath) file()

project directory, which is fixed, rather than the current working directory, which can change depending on

how the user runs Gradle.

18.2. File collections
A is simply a set of files. It is represented by the interface. Many objectsfile collection FileCollection

in the Gradle API implement this interface. For example, implement dependency configurations FileCollection

.

One way to obtain a instance is to use the method. You can passFileCollection Project.files()

this method any number of objects, which are then converted into a set of objects. The File files()

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Page 121 of 573

method accepts any type of object as its parameters. These are evaluated relative to the project directory, as

per the method, described in . You can also pass collections,file() Section 18.1, “Locating files”

iterables, maps and arrays to the method. These are flattened and the contents converted to files() File

instances.

Example 18.2. Creating a file collection

build.gradle

FileCollection collection = files(,'src/file1.txt'
 File(),new 'src/file2.txt'
 [,])'src/file3.txt' 'src/file4.txt'

A file collection is iterable, and can be converted to a number of other types using the operator. You canas

also add 2 file collections together using the operator, or subtract one file collection from another using+

the operator. Here are some examples of what you can do with a file collection.-

Example 18.3. Using a file collection

build.gradle

// Iterate over the files in the collection
collection.each {File file ->
 println file.name
}

// Convert the collection to various types
Set set = collection.files
Set set2 = collection as Set
List list = collection as List
String path = collection.asPath
File file = collection.singleFile
File file2 = collection as File

// Add and subtract collections
def union = collection + files()'src/file3.txt'
def different = collection - files()'src/file3.txt'

You can also pass the method a closure or a instance. This is called when thefiles() Callable

contents of the collection are queried, and its return value is converted to a set of instances. The returnFile

value can be an object of any of the types supported by the method. This is a simple way tofiles()

'implement' the interface.FileCollection

Page 122 of 573

Example 18.4. Implementing a file collection

build.gradle

task list << {
 File srcDir

 // Create a file collection using a closure
 collection = files { srcDir.listFiles() }

 srcDir = file()'src'
 println "Contents of $srcDir.name"
 collection.collect { relativePath(it) }.sort().each { println it }

 srcDir = file()'src2'
 println "Contents of $srcDir.name"
 collection.collect { relativePath(it) }.sort().each { println it }
}

Output of gradle -q list

> gradle -q list
Contents of src
src/dir1
src/file1.txt
Contents of src2
src2/dir1
src2/dir2

Some other types of things you can pass to :files()

FileCollection

These are flattened and the contents included in the file collection.

Task

The output files of the task are included in the file collection.

TaskOutputs

The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of a file collection is evaluated lazily, when it is needed. This means

you can, for example, create a that represents files which will be created in the futureFileCollection

by, say, some task.

18.3. File trees
A is a collection of files arranged in a hierarchy. For example, a file tree might represent a directoryfile tree

tree or the contents of a ZIP file. It is represented by the interface. The interfaceFileTree FileTree

extends , so you can treat a file tree exactly the same way as you would a fileFileCollection

collection. Several objects in Gradle implement the interface, such as .FileTree source sets

One way to obtain a instance is to use the method. This creates a FileTree Project.fileTree() FileTree

defined with a base directory, and optionally some Ant-style include and exclude patterns.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Page 123 of 573

Example 18.5. Creating a file tree

build.gradle

// Create a file tree with a base directory
FileTree tree = fileTree(dir:)'src/main'

// Add include and exclude patterns to the tree
tree.include '**/*.java'
tree.exclude '**/Abstract*'

// Create a tree using path
tree = fileTree().include()'src' '**/*.java'

// Create a tree using closure
tree = fileTree() {'src'
 include '**/*.java'
}

// Create a tree using a map
tree = fileTree(dir: , include:)'src' '**/*.java'
tree = fileTree(dir: , includes: [,])'src' '**/*.java' '**/*.xml'
tree = fileTree(dir: , include: , exclude:)'src' '**/*.java' '**/*test*/**'

You use a file tree in the same way you use a file collection. You can also visit the contents of the tree, and

select a sub-tree using Ant-style patterns:

Example 18.6. Using a file tree

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->
 println file
}

// Filter a tree
FileTree filtered = tree.matching {
 include 'org/gradle/api/**'
}

// Add trees together
FileTree sum = tree + fileTree(dir:)'src/test'

// Visit the elements of the tree
tree.visit {element ->
 println "$element.relativePath => $element.file"
}

Page 124 of 573

18.4. Using the contents of an archive as a file
tree

You can use the contents of an archive, such as a ZIP or TAR file, as a file tree. You do this using the

 and methods. These methods return a Project.zipTree() Project.tarTree() FileTree

instance which you can use like any other file tree or file collection. For example, you can use it to expand

the archive by copying the contents, or to merge some archives into another.

Example 18.7. Using an archive as a file tree

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree()'someFile.zip'

// Create a TAR file tree using path
FileTree tar = tarTree()'someFile.tar'

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip())'someTar.ext'

18.5. Specifying a set of input files
Many objects in Gradle have properties which accept a set of input files. For example, the JavaCompile

task has a property, which defines the source files to compile. You can set the value of thissource

property using any of the types supported by the method, which was shown above. This means youfiles()

can set the property using, for example, a , , collection, or even aFile String FileCollection

closure. Here are some examples:

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this

method accepts any of the types supported by the method.files()

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Page 125 of 573

Example 18.8. Specifying a set of files

build.gradle

task compile(type: JavaCompile)

// Use a File object to specify the source directory
compile {
 source = file()'src/main/java'
}

// Use a String path to specify the source directory
compile {
 source = 'src/main/java'
}

// Use a collection to specify multiple source directories
compile {
 source = [,]'src/main/java' '../shared/java'
}

// Use a FileCollection (or FileTree in this case) to specify the source files
compile {
 source = fileTree(dir:).matching { include }'src/main/java' 'org/gradle/api/**'
}

// Using a closure to specify the source files.
compile {
 source = {
 // Use the contents of each zip file in the src dir
 file().listFiles().findAll {it.name.endsWith()}.collect { zipTree(it) }'src' '.zip'
 }
}

build.gradle

compile {
 // Add some source directories use String paths
 source , 'src/main/java' 'src/main/groovy'

 // Add a source directory using a File object
 source file()'../shared/java'

 // Add some source directories using a closure
 source { file().listFiles() }'src/test/'
}

18.6. Copying files
You can use the task to copy files. The copy task is very flexible, and allows you to, for example,Copy

filter the contents of the files as they are copied, and map to the file names.

To use the task, you must provide a set of source files to copy, and a destination directory to copy theCopy

files to. You may also specify how to transform the files as they are copied. You do all this using a copy

. A copy spec is represented by the interface. The task implements this interface.spec CopySpec Copy

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/CopySpec.html

Page 126 of 573

You specify the source files using the method. To specify the destination directory,CopySpec.from()

use the method.CopySpec.into()

Example 18.9. Copying files using the copy task

build.gradle

task copyTask(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
}

The method accepts any of the arguments that the method does. When an argument resolvesfrom() files()

to a directory, everything under that directory (but not the directory itself) is recursively copied into the

destination directory. When an argument resolves to a file, that file is copied into the destination directory.

When an argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the

output files (i.e. the files the task creates) of the task are copied and the task is automatically added as a

dependency of the task. The accepts any of the arguments that the method does. HereCopy into() file()

is another example:

Example 18.10. Specifying copy task source files and destination directory

build.gradle

task anotherCopyTask(type: Copy) {
 // Copy everything under src/main/webapp
 from 'src/main/webapp'
 // Copy a single file
 from 'src/staging/index.html'
 // Copy the output of a task
 from copyTask
 // Copy the output of a task using Task outputs explicitly.
 from copyTaskWithPatterns.outputs
 // Copy the contents of a Zip file
 from zipTree()'src/main/assets.zip'
 // Determine the destination directory later
 into { getDestDir() }
}

You can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 18.11. Selecting the files to copy

build.gradle

task copyTaskWithPatterns(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
 include '**/*.html'
 include '**/*.jsp'
 exclude { details -> details.file.name.endsWith() &&'.html'
 details.file.text.contains() }'staging'
}

You can also use the method to copy files. It works the same way as the task withProject.copy()

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

Page 127 of 573

some major limitations though. First, the is not incremental (see copy() Section 17.9, “Skipping tasks that

).are up-to-date”

Example 18.12. Copying files using the copy() method without up-to-date check

build.gradle

task copyMethod << {
 copy {
 from 'src/main/webapp'
 into 'build/explodedWar'
 include '**/*.html'
 include '**/*.jsp'
 }
}

Secondly, the method can not honor task dependencies when a task is used as a copy source (i.e. ascopy()

an argument to) because it's a method and not a task. As such, if you are using the from() copy()

method as part of a task action, you must explicitly declare all inputs and outputs in order to get the correct

behavior.

Example 18.13. Copying files using the copy() method with up-to-date check

build.gradle

task copyMethodWithExplicitDependencies{
 // up-to-date check for inputs, plus add copyTask as dependency
 inputs.file copyTask
 outputs.dir 'some-dir' // up-to-date check for outputs
 doLast{
 copy {
 // Copy the output of copyTask
 from copyTask
 into 'some-dir'
 }
 }
}

It is preferable to use the task wherever possible, as it supports incremental building and taskCopy

dependency inference without any extra effort on your part. The method can be used to copy filescopy()

as of a task's implementation. That is, the copy method is intended to be used by custom tasks (see part

) that need to copy files as part of their function. In such aChapter 38, Writing Custom Task Classes

scenario, the custom task should sufficiently declare the inputs/outputs relevant to the copy action.

Page 128 of 573

18.6.1. Renaming files

Example 18.14. Renaming files as they are copied

build.gradle

task rename(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
 // Use a closure to map the file name
 rename { String fileName ->
 fileName.replace(,)'-staging-' ''
 }
 // Use a regular expression to map the file name
 rename , '(.+)-staging-(.+)' '$1$2'
 rename(/(.+)-staging-(.+)/,)'$1$2'
}

18.6.2. Filtering files

Example 18.15. Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
 org.apache.tools.ant.filters.ReplaceTokensimport

task filter(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
 // Substitute property tokens in files
 expand(copyright: , version:)'2009' '2.3.1'
 expand(project.properties)
 // Use some of the filters provided by Ant
 filter(FixCrLfFilter)
 filter(ReplaceTokens, tokens: [copyright: , version:])'2009' '2.3.1'
 // Use a closure to filter each line
 filter { String line ->
 "[$line]"
 }
 // Use a closure to remove lines
 filter { String line ->
 line.startsWith() ? null : line'-'
 }
}

When you use the class with the “filter” operation, the result is a template engine thatReplaceTokens

replaces tokens of the form “@tokenName@” (the Apache Ant-style token) with a set of given values. The

“expand” operation does the same thing except it treats the source files as in which tokensGroovy templates

take the form “${tokenName}”. Be aware that you may need to escape parts of your source files when using

this option, for example if it contains literal “$” or “<%” strings.

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

Page 129 of 573

18.6.3. Using the classCopySpec

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns,

copy actions, name mappings and filters.

Example 18.16. Nested copy specs

build.gradle

task nestedSpecs(type: Copy) {
 into 'build/explodedWar'
 exclude '**/*staging*'
 from() {'src/dist'
 include '**/*.html'
 }
 into() {'libs'
 from configurations.runtime
 }
}

18.7. Using the taskSync
The task extends the task. When it executes, it copies the source files into the destinationSync Copy

directory, and then removes any files from the destination directory which it did not copy. This can be useful

for doing things such as installing your application, creating an exploded copy of your archives, or

maintaining a copy of the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the build/libs

directory.

Example 18.17. Using the Sync task to copy dependencies

build.gradle

task libs(type: Sync) {
 from configurations.runtime
 into "$buildDir/libs"
}

18.8. Creating archives
A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to

your project. Archives are created using the various archive tasks: , , , , and . They allZip Tar Jar War Ear

work the same way, so let's look at how you create a ZIP file.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 130 of 573

Why are you using
the Java plugin?

The Java plugin adds a number

of default values for the archive

tasks. You can use the archive

tasks without using the Java

plugin, if you like. You will

need to provide values for some

additional properties.

Example 18.18. Creating a ZIP archive

build.gradle

apply plugin: 'java'

task zip(type: Zip) {
 from 'src/dist'
 into() {'libs'
 from configurations.runtime
 }
}

The archive tasks all work exactly the same way as the Copy

task, and implement the same interface. As with theCopySpec

 task, you specify the input files using the Copy from()

method, and can optionally specify where they end up in the

archive using the method. You can filter the contentsinto()

of file, rename files, and all the other things you can do with a

copy spec.

18.8.1. Archive naming

The format of is used for- .projectName version type

generated archive file names. For example:

Example 18.19. Creation of ZIP archive

build.gradle

apply plugin: 'java'

version = 1.0

task myZip(type: Zip) {
 from 'somedir'
}

println myZip.archiveName
println relativePath(myZip.destinationDir)
println relativePath(myZip.archivePath)

Output of gradle -q myZip

> gradle -q myZip
zipProject-1.0.zip
build/distributions
build/distributions/zipProject-1.0.zip

This adds a archive task with the name which produces ZIP file . ItZip myZip zipProject-1.0.zip

is important to distinguish between the name of the archive task and the name of the archive generated by

the archive task. The default name for archives can be changed with the projectarchivesBaseName

property. The name of the archive can also be changed at any time later on.

Page 131 of 573

There are a number of properties which you can set on an archive task. These are listed below in Table 18.1,

. You can, for example, change the name of the archive:“Archive tasks - naming properties”

Example 18.20. Configuration of archive task - custom archive name

build.gradle

apply plugin: 'java'
version = 1.0

task myZip(type: Zip) {
 from 'somedir'
 baseName = 'customName'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
customName-1.0.zip

You can further customize the archive names:

Example 18.21. Configuration of archive task - appendix & classifier

build.gradle

apply plugin: 'java'
archivesBaseName = 'gradle'
version = 1.0

task myZip(type: Zip) {
 appendix = 'wrapper'
 classifier = 'src'
 from 'somedir'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
gradle-wrapper-1.0-src.zip

Page 132 of 573

Table 18.1. Archive tasks - naming properties

Property name Type Default value Description

archiveName String - - - .baseName appendix version classifier extension

If any of these properties is empty the trailing is-

not added to the name.

The base

file name of

the

generated

archive

archivePath File /destinationDir archiveName The

absolute

path of the

generated

archive.

destinationDir File Depends on the archive type. JARs and WARs go

into . ZIPs/librariesproject.buildDir

and TARs go into /distributionsproject.buildDir

.

The

directory to

generate the

archive into

baseName String project.name The base

name

portion of

the archive

file name.

appendix String null The

appendix

portion of

the archive

file name.

version String project.version The version

portion of

the archive

file name.

classifier String null The

classifier

portion of

the archive

file name,

extension String Depends on the archive type, and for TAR files,

the compression type as well: , , , zip jar war tar

, or .tgz tbz2

The

extension of

the archive

file name.

Page 133 of 573

18.8.2. Sharing content between multiple archives

You can use the method to share content between archives.Project.copySpec()

Often you will want to publish an archive, so that it is usable from another project. This process is described

in Chapter 30, Publishing artifacts

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)

Page 134 of 573

19
Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your

Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build

script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task

scripting tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the build.xml

file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything

except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant build.xml

directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like , or . For this layerjavac copy jar

Gradle provides integration simply by relying on Groovy, and the fantastic .AntBuilder

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.

Your build script may contain statements like: . "ant clean compile".execute() []8

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example,

you could start by importing your existing Ant build. Then you could move your dependency declarations

from the Ant script to your build file. Finally, you could move your tasks across to your build file, or replace

them with some of Gradle's plugins. This process can be done in parts over time, and you can have a

working Gradle build during the entire process.

19.1. Using Ant tasks and types in your build
In your build script, a property called is provided by Gradle. This is a reference to an ant AntBuilder

instance. This is used to access Ant tasks, types and properties from your build script. ThereAntBuilder

is a very simple mapping from Ant's format to Groovy, which is explained below.build.xml

You execute an Ant task by calling a method on the instance. You use the task name as theAntBuilder

method name. For example, you execute the Ant task by calling the method. Theecho ant.echo()

attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo

task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/AntBuilder.html

Page 135 of 573

Example 19.1. Using an Ant task

build.gradle

task hello << {
 String greeting = 'hello from Ant'
 ant.echo(message: greeting)
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we

pass the message for the task as nested text:echo

Example 19.2. Passing nested text to an Ant task

build.gradle

task hello << {
 ant.echo()'hello from Ant'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as

tasks, by calling a method with the same name as the element we want to define.

Example 19.3. Passing nested elements to an Ant task

build.gradle

task zip << {
 ant.zip(destfile:) {'archive.zip'
 fileset(dir:) {'src'
 include(name:)'**.xml'
 exclude(name:)'**.java'
 }
 }
}

Page 136 of 573

You can access Ant types in the same way that you access tasks, using the name of the type as the method

name. The method call returns the Ant data type, which you can then use directly in your build script. In the

following example, we create an Ant object, then iterate over the contents of it.path

Example 19.4. Using an Ant type

build.gradle

task list << {
 def path = ant.path {
 fileset(dir: , includes:)'libs' '*.jar'
 }
 path.list().each {
 println it
 }
}

More information about can be found in 'Groovy in Action' 8.4 or at the AntBuilder Groovy Wiki

19.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the (usually easier) or Anttaskdef typedef

task, just as you would in a file. You can then refer to the custom Ant task as you would abuild.xml

built-in Ant task.

Example 19.5. Using a custom Ant task

build.gradle

task check << {
 ant.taskdef(resource:) {'checkstyletask.properties'
 classpath {
 fileset(dir: , includes:)'libs' '*.jar'
 }
 }
 ant.checkstyle(config:) {'checkstyle.xml'
 fileset(dir:)'src'
 }
}

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To do

this, you need to define a custom configuration for the classpath, then add some dependencies to the

configuration. This is described in more detail in .Section 23.4, “How to declare your dependencies”

Example 19.6. Declaring the classpath for a custom Ant task

build.gradle

configurations {
 pmd
}

dependencies {
 pmd group: , name: , version: 'pmd' 'pmd' '4.2.5'
}

http://groovy.codehaus.org/Using+Ant+from+Groovy

Page 137 of 573

To use the classpath configuration, use the property of the custom configuration.asPath

Example 19.7. Using a custom Ant task and dependency management together

build.gradle

task check << {
 ant.taskdef(name: ,'pmd'
 classname: ,'net.sourceforge.pmd.ant.PMDTask'
 classpath: configurations.pmd.asPath)
 ant.pmd(shortFilenames: ,'true'
 failonruleviolation: ,'true'
 rulesetfiles: file().toURI().toString()) {'pmd-rules.xml'
 formatter(type: , toConsole:)'text' 'true'
 fileset(dir:)'src'
 }
}

19.2. Importing an Ant build
You can use the method to import an Ant build into your Gradle project. Whenant.importBuild()

you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and

execute the Ant targets in exactly the same way as Gradle tasks.

Example 19.8. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>
 =<target name "hello">
 Hello, from Ant<echo> </echo>
 </target>
</project>

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You can add a task which depends on an Ant target:

Page 138 of 573

Example 19.9. Task that depends on Ant target

build.gradle

ant.importBuild 'build.xml'

task intro(dependsOn: hello) << {
 println 'Hello, from Gradle'
}

Output of gradle intro

> gradle intro
:hello
[ant:echo] Hello, from Ant
:intro
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

Or, you can add behaviour to an Ant target:

Example 19.10. Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello << {
 println 'Hello, from Gradle'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

It is also possible for an Ant target to depend on a Gradle task:

Page 139 of 573

Example 19.11. Ant target that depends on Gradle task

build.gradle

ant.importBuild 'build.xml'

task intro << {
 println 'Hello, from Gradle'
}

build.xml

<project>
 = =<target name "hello" depends "intro">
 Hello, from Ant<echo> </echo>
 </target>
</project>

Output of gradle hello

> gradle hello
:intro
Hello, from Gradle
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

with existing Gradle tasks. To do this, use the method.AntBuilder.importBuild()

Example 19.12. Renaming imported Ant targets

build.gradle

ant.importBuild() { antTargetName ->'build.xml'
 + antTargetName'a-'
}

build.xml

<project>
 =<target name "hello">
 Hello, from Ant<echo> </echo>
 </target>
</project>

Output of gradle a-hello

> gradle a-hello
:a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)

Page 140 of 573

Note that while the second argument to this method should be a , when programming inTransformer

Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's

.support for automatically coercing closures to single-abstract-method types

19.3. Ant properties and references
There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set the

property directly on the instance. The Ant properties are also available as a Map which youAntBuilder

can change. You can also use the Ant task. Below are some examples of how to do this.property

Example 19.13. Setting an Ant property

build.gradle

ant.buildDir = buildDir
ant.properties.buildDir = buildDir
ant.properties[] = buildDir'buildDir'
ant.property(name: , location: buildDir)'buildDir'

build.xml

<echo>buildDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these

properties. You can get the property directly from the instance. The Ant properties are alsoAntBuilder

available as a Map. Below are some examples.

Example 19.14. Getting an Ant property

build.xml

<property = =name "antProp" value "a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties[]'antProp'

There are several ways to set an Ant reference:

Example 19.15. Setting an Ant reference

build.gradle

ant.path(id: , location:)'classpath' 'libs'
ant.references.classpath = ant.path(location:)'libs'
ant.references[] = ant.path(location:)'classpath' 'libs'

build.xml

<path =refid "classpath"/>

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Page 141 of 573

There are several ways to get an Ant reference:

Example 19.16. Getting an Ant reference

build.xml

<path = =id "antPath" location "libs"/>

build.gradle

println ant.references.antPath
println ant.references[]'antPath'

19.4. API
The Ant integration is provided by .AntBuilder

[] 8 In Groovy you can execute Strings. To learn more about executing external processes with Groovy have

a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/AntBuilder.html

Page 142 of 573

20
The Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms

this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are

executed in the order of their dependencies, and that each task is executed only once. These tasks form a

. There are build tools that build up such a dependency graph as they execute theirDirected Acyclic Graph

tasks. Gradle builds the complete dependency graph any task is executed. This lies at the heart ofbefore

Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration

.scripts

20.1. Build phases
A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which

projects are going to take part in the build, and creates a instance for each of these projects.Project

Configuration

During this phase the project objects are configured. The build scripts of projects which are part ofall

the build are executed. Gradle 1.4 introduced an opt-in feature called incubating configuration on

. In this mode, Gradle configures only relevant projects (see demand Section 24.1.1.1, “Configuration on

).demand”

Execution

Gradle determines the subset of the tasks, created and configured during the configuration phase, to be

executed. The subset is determined by the task name arguments passed to the command and thegradle

current directory. Gradle then executes each of the selected tasks.

20.2. Settings file
Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a

naming convention. The default name for this file is . Later in this chapter we explainsettings.gradle

how Gradle looks for a settings file.

The settings file is executed during the initialization phase. A multiproject build must have a settings.gradle

file in the root project of the multiproject hierarchy. It is required because the settings file defines which

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html

Page 143 of 573

projects are taking part in the multi-project build (see). For a single-projectChapter 24, Multi-project Builds

build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to

your build script classpath (see). Let's first do some introspection with aChapter 41, Organizing Build Logic

single project build:

Example 20.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

task configured {
 println 'This is also executed during the configuration phase.'
}

task test << {
 println 'This is executed during the execution phase.'
}

task testBoth {
 doFirst {
 println 'This is executed first during the execution phase.'
 }
 doLast {
 println 'This is executed last during the execution phase.'
 }
 println 'This is executed during the configuration phase as well.'
}

Output of gradle test testBoth

> gradle test testBoth
This is executed during the initialization phase.
This is executed during the configuration phase.
This is also executed during the configuration phase.
This is executed during the configuration phase as well.
:test
This is executed during the execution phase.
:testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL

Total time: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property

access and method calls within the settings file is delegated to a settings object. Look at the Settings

class in the API documentation for more information.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.initialization.Settings.html

Page 144 of 573

20.3. Multi-project builds
A multi-project build is a build where you build more than one project during a single execution of Gradle.

You have to declare the projects taking part in the multiproject build in the settings file. There is much more

to say about multi-project builds in the chapter dedicated to this topic (see).Chapter 24, Multi-project Builds

20.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents a

project. A project has a path which denotes the position of the project in the multi-project build tree. In most

cases the project path is consistent with the physical location of the project in the file system. However, this

behavior is configurable. The project tree is created in the file. By default it issettings.gradle

assumed that the location of the settings file is also the location of the root project. But you can redefine the

location of the root project in the settings file.

20.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical

layouts get special support.

20.3.2.1. Hierarchical layouts

Example 20.2. Hierarchical layout

settings.gradle

include , , 'project1' 'project2:child' 'project3:child1'

The method takes project paths as arguments. The project path is assumed to be equal to theinclude

relative physical file system path. For example, a path 'services:api' is mapped by default to a folder

'services/api' (relative from the project root). You only need to specify the leaves of the tree. This means that

the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and

'services:hotels:api'.

20.3.2.2. Flat layouts

Example 20.3. Flat layout

settings.gradle

includeFlat , 'project3' 'project4'

The method takes directory names as an argument. These directories need to exist asincludeFlat

siblings of the root project directory. The location of these directories are considered as child projects of the

root project in the multi-project tree.

Page 145 of 573

20.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called . You canproject descriptors

modify these descriptors in the settings file at any time. To access a descriptor you can do:

Using this descriptor you can change the name, project directory and build file of a project.

Example 20.4. Modification of elements of the project tree

settings.gradle

println rootProject.name
println project().name':projectA'

settings.gradle

rootProject.name = 'main'
project().projectDir = File(settingsDir,)':projectA' new '../my-project-a'
project().buildFileName = ':projectA' 'projectA.gradle'

Look at the class in the API documentation for more information.ProjectDescriptor

20.4. Initialization
How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from

a directory with a settings file, things are easy. But Gradle also allows you to execute the build from within

any subproject taking part in the build. If you execute Gradle from within a project with no []9 settings.gradle

file, Gradle looks for a file in the following way:settings.gradle

It looks in a directory called which has the same nesting level as the current dir.master

If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

If a file is found, Gradle checks if the current project is part of the multiprojectsettings.gradle

hierarchy defined in the found file. If not, the build is executed as a single projectsettings.gradle

build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a

subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its

dependent projects are built, but Gradle needs to create the build configuration for the whole multiproject

build (see). You can use the command line option to tell Gradle not toChapter 24, Multi-project Builds -u

look in the parent hierarchy for a file. The current project is then always built as asettings.gradle

single project build. If the current project contains a file, the option has nosettings.gradle -u

meaning. Such a build is always executed as:

a single project build, if the file does not define a multiproject hierarchysettings.gradle

a multiproject build, if the file does define a multiproject hierarchy.settings.gradle

The automatic search for a file only works for multi-project builds with a physicalsettings.gradle

hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

Page 146 of 573

above (“ ”). Gradle supports arbitrary physical layouts for a multiproject build, but for suchmaster

arbitrary layouts you need to execute the build from the directory where the settings file is located. For

information on how to run partial builds from the root see Section 24.4, “Running tasks by their absolute

.path”

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are

the projects specified in the Settings object (plus the root project). Each project object has by default a name

equal to the name of its top level directory, and every project except the root project has a parent project.

Any project may have child projects.

20.5. Configuration and execution of a single
project build

For a single project build, the workflow of the phases are pretty simple. The build scriptafter initialization

is executed against the project object that was created during the initialization phase. Then Gradle looks for

tasks with names equal to those passed as command line arguments. If these task names exist, they are

executed as a separate build in the order you have passed them. The configuration and execution for

multi-project builds is discussed in .Chapter 24, Multi-project Builds

20.6. Responding to the lifecycle in the build
script

Your build script can receive notifications as the build progresses through its lifecycle. These notifications

generally take two forms: You can either implement a particular listener interface, or you can provide a

closure to execute when the notification is fired. The examples below use closures. For details on how to use

the listener interfaces, refer to the API documentation.

20.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do

things like performing additional configuration once all the definitions in a build script have been applied, or

for some custom logging or profiling.

Below is an example which adds a task to each project which has a property value oftest hasTests

true.

Page 147 of 573

Example 20.5. Adding of test task to each project which has certain property set

build.gradle

allprojects {
 afterEvaluate { project ->
 (project.hasTests) {if
 println "Adding test task to $project"
 project.task() << {'test'
 println "Running tests for $project"
 }
 }
 }
}

projectA.gradle

hasTests = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':projectA'
Running tests for project ':projectA'

This example uses method to add a closure which is executed after theProject.afterEvaluate()

project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some

custom logging of project evaluation. Notice that the notification is received regardless ofafterProject

whether the project evaluates successfully or fails with an exception.

Example 20.6. Notifications

build.gradle

gradle.afterProject {project, projectState ->
 (projectState.failure) {if
 println "Evaluation of $project FAILED"
 } {else
 println "Evaluation of $project succeeded"
 }
}

Output of gradle -q test

> gradle -q test
Evaluation of root project 'buildProjectEvaluateEvents' succeeded
Evaluation of project ':projectA' succeeded
Evaluation of project ':projectB' FAILED

You can also add a to the to receive these events.ProjectEvaluationListener Gradle

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.invocation.Gradle.html

Page 148 of 573

20.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some

default values or add behaviour before the task is made available in the build file.

The following example sets the property of each task as it is created.srcDir

Example 20.7. Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->
 task.ext.srcDir = 'src/main/java'
}

task a

println "source dir is $a.srcDir"

Output of gradle -q a

> gradle -q a
source dir is src/main/java

You can also add an to a to receive these events.Action TaskContainer

20.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have seen

this already in .Section 14.13, “Configure by DAG”

You can also add a to the to receive theseTaskExecutionGraphListener TaskExecutionGraph

events.

20.6.4. Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the afterTask

notification is received regardless of whether the task completes successfully or fails with an exception.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 149 of 573

Example 20.8. Logging of start and end of each task execution

build.gradle

task ok

task broken(dependsOn: ok) << {
 RuntimeException()throw new 'broken'
}

gradle.taskGraph.beforeTask { Task task ->
 println "executing $task ..."
}

gradle.taskGraph.afterTask { Task task, TaskState state ->
 (state.failure) {if
 println "FAILED"
 }
 {else
 println "done"
 }
}

Output of gradle -q broken

> gradle -q broken
executing task ':ok' ...
done
executing task ':broken' ...
FAILED

You can also use a to the to receive these events.TaskExecutionListener TaskExecutionGraph

[] 9 Gradle supports partial multiproject builds (see).Chapter 24, Multi-project Builds

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 150 of 573

21
Wrapper Plugin

The wrapper plugin is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The Gradle wrapper plugin allows the generation of Gradle wrapper files by adding a task, thatWrapper

generates all files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can

be found in .Chapter 5, The Gradle Wrapper

21.1. Usage
Without modifying the file, the wrapper plugin can be auto-applied to the root project ofbuild.gradle

the current build by running “ ” from the command line. This applies the plugin if nogradle wrapper

task named is already defined in the build.wrapper

21.2. Tasks
The wrapper plugin adds the following tasks to the project:

Table 21.1. Wrapper plugin - tasks

Task name Depends on Type Description

wrapper - Wrapper Generates Gradle wrapper files.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 151 of 573

22
Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by

this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle

defines 6 log levels, as shown in . There are two Gradle-specific log levels, inTable 22.1, “Log levels”

addition to the ones you might normally see. Those levels are and . The latter is theQUIET LIFECYCLE

default, and is used to report build progress.

Table 22.1. Log levels

Level Used for

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

22.1. Choosing a log level
You can use the command line switches shown in to chooseTable 22.2, “Log level command-line options”

different log levels. In you find the command line switchesTable 22.3, “Stacktrace command-line options”

which affect stacktrace logging.

Table 22.2. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

 or -q --quiet QUIET and higher

 or -i --info INFO and higher

 or -d --debug DEBUG and higher (that is, all log messages)

Page 152 of 573

Table 22.3. Stacktrace command-line options

Option Meaning

No stacktrace options No stacktraces are printed to the console in case of a build error (e.g. a

compile error). Only in case of internal exceptions will stacktraces be

printed. If the log level is chosen, truncated stacktraces are alwaysDEBUG

printed.

 or -s --stacktrace Truncated stacktraces are printed. We recommend this over full

stacktraces. Groovy full stacktraces are extremely verbose (Due to the

underlying dynamic invocation mechanisms. Yet they usually do not

contain relevant information for what has gone wrong in code.)your

 or -S --full-stacktraceThe full stacktraces are printed out.

22.2. Writing your own log messages
A simple option for logging in your build file is to write messages to standard output. Gradle redirects

anything written to standard output to it's logging system at the log level.QUIET

Example 22.1. Using stdout to write log messages

build.gradle

println 'A message which is logged at QUIET level'

Gradle also provides a property to a build script, which is an instance of . This interfacelogger Logger

extends the SLF4J interface and adds a few Gradle specific methods to it. Below is an example ofLogger

how this is used in the build script:

Example 22.2. Writing your own log messages

build.gradle

logger.quiet()'An info log message which is always logged.'
logger.error()'An error log message.'
logger.warn()'A warning log message.'
logger.lifecycle()'A lifecycle info log message.'
logger.info()'An info log message.'
logger.debug()'A debug log message.'
logger.trace()'A trace log message.'

You can also hook into Gradle's logging system from within other classes used in the build (classes from the

 directory for example). Simply use an SLF4J logger. You can use this logger the same way asbuildSrc

you use the provided logger in the build script.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/logging/Logger.html

Page 153 of 573

Example 22.3. Using SLF4J to write log messages

build.gradle

import org.slf4j.Logger
 org.slf4j.LoggerFactoryimport

Logger slf4jLogger = LoggerFactory.getLogger()'some-logger'
slf4jLogger.info()'An info log message logged using SLF4j'

22.3. Logging from external tools and libraries
Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging

output into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to the Gradle log

levels, except the Ant/Ivy log level, which is mapped to Gradle log level. This means theTRACE DEBUG

default Gradle log level will not show any Ant/Ivy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects

standard output to the log level and standard error to the level. This behavior isQUIET ERROR

configurable. The project object provides a , which allows you to change the log levelsLoggingManager

that standard out or error are redirected to when your build script is evaluated.

Example 22.4. Configuring standard output capture

build.gradle

logging.captureStandardOutput LogLevel.INFO
println 'A message which is logged at INFO level'

To change the log level for standard out or error during task execution, tasks also provide a

.LoggingManager

Example 22.5. Configuring standard output capture for a task

build.gradle

task logInfo {
 logging.captureStandardOutput LogLevel.INFO
 doFirst {
 println 'A task message which is logged at INFO level'
 }
}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging

toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to

Gradle's logging system.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/logging/LoggingManager.html

Page 154 of 573

22.4. Changing what Gradle logs
You can replace much of Gradle's logging UI with your own. You might do this, for example, if you want to

customize the UI in some way - to log more or less information, or to change the formatting. You replace

the logging using the method. This is accessible from a build script, or an initGradle.useLogger()

script, or via the embedding API. Note that this completely disables Gradle's default output. Below is an

example init script which changes how task execution and build completion is logged.

Example 22.6. Customizing what Gradle logs

init.gradle

useLogger(CustomEventLogger())new

 CustomEventLogger BuildAdapter TaskExecutionListener {class extends implements

 beforeExecute(Task task) {public void
 println "[$task.name]"
 }

 afterExecute(Task task, TaskState state) {public void
 println()
 }

 buildFinished(BuildResult result) {public void
 println 'build completed'
 (result.failure != null) {if
 result.failure.printStackTrace()
 }
 }
}

Output of gradle -I init.gradle build

> gradle -I init.gradle build
[compile]
compiling source

[testCompile]
compiling test source

[test]
running unit tests

[build]

build completed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the

logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.

You can find out more about the listener interfaces in Section 20.6, “Responding to the lifecycle in the build

.script”

BuildListener

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/BuildListener.html

Page 155 of 573

ProjectEvaluationListener

TaskExecutionGraphListener

TaskExecutionListener

TaskActionListener

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/execution/TaskActionListener.html

Page 156 of 573

23
Dependency Management

23.1. Introduction
Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering

first-class dependency management that is both easy to understand and compatible with a wide variety of

approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn

that Gradle is fully compatible with both approaches in addition to being flexible enough to support

fully-customized approaches.

Here are the major highlights of Gradle's support for dependency management:

Transitive dependency management: Gradle gives you full control of your project's dependency tree.

Support for non-managed dependencies : If your dependencies are simply files in version control or a

shared drive, Gradle provides powerful functionality to support this.

Support for custom dependency definitions. : Gradle's Module Dependencies give you the ability to

describe the dependency hierarchy in the build script.

A fully customizable approach to Dependency Resolution : Gradle provides you with the ability to

customize resolution rules making dependency substitution easy.

Full Compatibility with Maven and Ivy : If you have defined dependencies in a Maven POM or an Ivy

file, Gradle provides seamless integration with a range of popular build tools.

Integration with existing dependency management infrastructure : Gradle is compatible with both Maven

and Ivy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all

repository formats.

With hundreds of thousands of interdependent open source components each with a range of versions and

incompatibilities, dependency management has a habit of causing problems as builds grow in complexity.

When a build's dependency tree becomes unwieldy, your build tool shouldn't force you to adopt a single,

inflexible approach to dependency management. A proper build system has to be designed to be flexible,

and Gradle can handle any situation.

Page 157 of 573

23.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to

another. If you are migrating from a tool like Ant or Maven to Gradle, you may be faced with some difficult

situations. For example, one common pattern is an Ant project with version-less jar files stored in the

filesystem. Other build systems require a wholesale replacement of this approach before migrating. With

Gradle, you can adapt your new build to any existing source of dependencies or dependency metadata. This

makes incremental migration to Gradle much easier than the alternative. On most large projects, build

migrations and any change to development process is incremental because most organizations can't afford to

stop everything and migrate to a build tool's idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse

.classpath file as master data for dependency management, it is very easy to write a Gradle plugin to use this

data in Gradle. For migration purposes this is a common technique with Gradle. (But, once you've migrated,

it might be a good idea to move away from a .classpath file and use Gradle's dependency management

features directly.)

23.1.2. Dependency management and Java

It is ironic that in a language known for its rich library of open source components that Java has no concept

of libraries or versions. In Java, there is no standard way to tell the JVM that you are using version 3.0.5 of

Hibernate, and there is no standard way to say that depends on . This hasfoo-1.0.jar bar-2.0.jar

led to external solutions often based on build tools. The most popular ones at the moment are Maven and

Ivy. While Maven provides a complete build system, Ivy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular

jar. Both also use repositories where the actual jars are placed together with their descriptor files, and both

offer resolution for conflicting jar versions in one form or the other. Both have emerged as standards for

solving dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency

management. Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution

engine which supports a range of approaches to dependency resolution including both POM and Ivy

descriptor files.

23.2. Dependency Management Best Practices
While Gradle has strong opinions on dependency management, the tool gives you a choice between two

options: follow recommended best practices or support any kind of pattern you can think of. This section

outlines the Gradle project's recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a

complex enterprise application written in Java depending on hundreds of open source libraries to the

simplest Clojure application depending on a handful of libraries, approaches to dependency management

vary widely and can depend on the target technology, the method of application deployment, and the nature

of the project. Projects bundled as reusable libraries may have different requirements than enterprise

applications integrated into much larger systems of software and infrastructure. Despite this wide variation

of requirements, the Gradle project recommends that all projects follow this set of core rules:

Page 158 of 573

23.2.1. Put the Version in the Filename (Version the jar)

The version of a library must be part of the filename. While the version of a jar is usually in the Manifest

file, it isn't readily apparent when you are inspecting a project. If someone asks you to look at a collection of

20 jar files, which would you prefer? A collection of files with names like commons-beanutils-1.3.jar

or a collection of files with names like ? If dependencies have file names with versionspring.jar

numbers you can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might

be a project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of

Hibernate on her machine to fix a critical security bug but forgets to notify others in the team of this change.

She may address the security bug successfully, but she also may have introduced subtle bugs into a codebase

that was using a now-deprecated feature from Hibernate. Weeks later there is an exception on the integration

machine which can't be reproduced on anyone's machine. Multiple developers then spend days on this issue

only finally realising that the error would have easy to uncover if they knew that Hibernate had been

upgraded from 2.5 to 3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This

practice also reduces the potential for error.

23.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in

turn, depend on other libraries. This recursive pattern of transitive dependencies results in a tree of

dependencies including your project's first-level dependencies, second-level dependencies, and so on. If you

don't model your dependencies as a hierarchical tree of first-level and second-level dependencies it is very

easy to quickly lose control over an assembled mess of unstructured dependencies. Consider the Gradle

project itself, while Gradle only has a few direct, first-level dependencies, when Gradle is compiled it needs

more than one hundred dependencies on the classpath. On a far larger scale, Enterprise projects using

Spring, Hibernate, and other libraries, alongside hundreds or thousands of internal projects, can result in

very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version

conflicts. Say one open source library needs one version of a logging library and a another uses an

alternative version. Gradle and other build tools all have the ability to resolve conflicts, but what

differentiates Gradle is the control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn't scale.

If you want to get rid of a first level dependency you really can't be sure which other jars you should

remove. A dependency of a first level dependency might also be a first level dependency itself, or it might

be a transitive dependency of yet another first level dependency. If you try to manage transitive

dependencies yourself, the end of the story is that your build becomes brittle: no one dares to change your

dependencies because the risk of breaking the build is too high. The project classpath becomes a complete

mess, and, if a classpath problem arises, hell on earth invites you for a ride.

NOTE:In one project, we found a mystery LDAP related jar in the classpath. No code referenced this

jar and there was no connection to the project. No one could figure out what the jar was for, until it

was removed from the build and the application suffered massive performance problems whenever it

Page 159 of 573

attempted to authenticate to LDAP. This mystery jar was a necessary transitive, fourth-level

dependency that was easy to miss because no one had bothered to use managed transitive

dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix

and match approaches; for example, you could store your jars in an SCM without XML descriptor files and

still use transitive dependency management.

23.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you

don't use transitive dependency management, version conflicts are undetected and the often accidental order

of the classpath will determine what version of a dependency will win. On a large project with many

developers changing dependencies, successful builds will be few and far between as the order of

dependencies may directly affect whether a build succeeds or fails (or whether a bug appears or disappears

in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small

anecdote of the fun that awaits you. In a large project with 30 submodules, adding a dependency to a

subproject changed the order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build

continued to work, developers were starting to notice all sorts of surprising (and surprisingly awful) bugs in

production. Worse yet, this unintentional downgrade of Spring introduced several security vulnerabilities

into the system, which now required a full security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You

might also want to learn where conflicting versions are used and consolidate on a particular version of a

dependency across your organization. With a good conflict reporting tool like Gradle, that information can

be used to communicate with the entire organization and standardize on a single version. If you think

 It is very common for different first-level dependencies toversion conflicts don't happen to you, think again.

rely on a range of different overlapping versions for other dependencies, and the JVM doesn't yet offer an

easy way to have different versions of the same jar in the classpath (see Section 23.1.2, “Dependency

).management and Java”

Gradle offers the following conflict resolution strategies:

Newest: The newest version of the dependency is used. This is Gradle's default strategy, and is often an

appropriate choice as long as versions are backwards-compatible.

Fail: A version conflict results in a build failure. This strategy requires all version conflicts to be

resolved explicitly in the build script. See for details on how to explicitlyResolutionStrategy

choose a particular version.

While the strategies introduced above are usually enough to solve most conflicts, Gradle provides more

fine-grained mechanisms to resolve version conflicts:

Configuring a first level dependency as . This approach is useful if the dependency in conflict isforced

already a first level dependency. See examples in .DependencyHandler

Configuring any dependency (transitive or not) as . This approach is useful if the dependency inforced

conflict is a transitive dependency. It also can be used to force versions of first level dependencies. See

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Page 160 of 573

examples in ResolutionStrategy

Dependency resolve rules are an feature introduced in Gradle 1.4 which give you fine-grainedincubating

control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such

reports are another feature of dependency management.

23.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest in

a range of versions. This can be a requirement during development, or you may be developing a library that

is designed to work with a range of dependency versions. You can easily depend on these constantly

changing dependencies by using a . A dynamic version can be either a version range (e.g. dynamic version 2.+

) or it can be a placeholder for the latest version available (e.g.).latest.integration

Alternatively, sometimes the module you request can change over time, even for the same version. An

example of this type of is a Maven module, which always points at the latestchanging module SNAPSHOT

artifact published. In other words, a standard Maven snapshot is a module that never stands still so to speak,

it is a “changing module”.

The main difference between a and a is that when you resolve a dynamic version changing module dynamic

, you'll get the real, static version as the module name. When you resolve a , theversion changing module

artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the

default cache modes using . You can change the cache expiry times in your buildcommand line options

using the resolution strategy (see).Section 23.9.3, “Fine-tuned control over dependency caching”

23.3. Dependency configurations
In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other

properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your

project. The Java plugin, for example, adds some configurations to represent the various classpaths it needs.

see for details. Of course you can add custom configurations onSection 45.5, “Dependency management”

top of that. There are many use cases for custom configurations. This is very handy for example for adding

dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped

with your distribution).

A project's configurations are managed by a object. The closure you pass to theconfigurations

configurations object is applied against its API. To learn more about this API have a look at

.ConfigurationContainer

To define a configuration:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Page 161 of 573

Example 23.1. Definition of a configuration

build.gradle

configurations {
 compile
}

To access a configuration:

Example 23.2. Accessing a configuration

build.gradle

println configurations.compile.name
println configurations[].name'compile'

To configure a configuration:

Example 23.3. Configuration of a configuration

build.gradle

configurations {
 compile {
 description = 'compile classpath'
 transitive = true
 }
 runtime {
 extendsFrom compile
 }
}
configurations.compile {
 description = 'compile classpath'
}

23.4. How to declare your dependencies
There are several different types of dependencies that you can declare:

Page 162 of 573

Table 23.1. Dependency types

Type Description

External module dependency A dependency on an external module in some repository.

Project dependency A dependency on another project in the same build.

File dependency A dependency on a set of files on the local filesystem.

Client module dependency A dependency on an external module, where the artifacts are located in

some repository but the module meta-data is specified by the local

build. You use this kind of dependency when you want to override the

meta-data for the module.

Gradle API dependency A dependency on the API of the current Gradle version. You use this

kind of dependency when you are developing custom Gradle plugins

and task types.

Local Groovy dependency A dependency on the Groovy version used by the current Gradle

version. You use this kind of dependency when you are developing

custom Gradle plugins and task types.

23.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external

repository.

Example 23.4. Module dependencies

build.gradle

dependencies {
 runtime group: , name: , version: 'org.springframework' 'spring-core' '2.5'
 runtime ,'org.springframework:spring-core:2.5'
 'org.springframework:spring-aop:2.5'
 runtime(
 [group: , name: , version:],'org.springframework' 'spring-core' '2.5'
 [group: , name: , version:]'org.springframework' 'spring-aop' '2.5'
)
 runtime() {'org.hibernate:hibernate:3.0.5'
 transitive = true
 }
 runtime group: , name: , version: , transitive: true'org.hibernate' 'hibernate' '3.0.5'
 runtime(group: , name: , version:) {'org.hibernate' 'hibernate' '3.0.5'
 transitive = true
 }
}

See the class in the API documentation for more examples and a completeDependencyHandler

reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation.

A module dependency has an API which allows further configuration. Have a look at

 to learn all about the API. This API provides properties andExternalModuleDependency

configuration methods. Via the string notation you can define a subset of the properties. With the map

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

Page 163 of 573

notation you can define all properties. To have access to the complete API, either with the map or with the

string notation, you can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (or) inpom.xml ivy.xml

the repositories. If such a module descriptor file exists, it is parsed and the artifacts of this module (e.g. hibernate-3.0.5.jar

) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle

looks for a file called to retrieve. In Maven, a module can have one and onlyhibernate-3.0.5.jar

one artifact. In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a different set of

dependencies.

23.4.1.1. Depending on modules with multiple artifacts

As mentioned earlier, a Maven module has only one artifact. Hence, when your project depends on a Maven

module, it's obvious what its artifact is. With Gradle or Ivy, the case is different. Ivy's dependency descriptor

() can declare multiple artifacts. For more information, see the Ivy reference for . Inivy.xml ivy.xml

Gradle, when you declare a dependency on an Ivy module, you actually declare a dependency on the default

configuration of that module. So the actual set of artifacts (typically jars) you depend on is the set of

artifacts that are associated with the configuration of that module. Here are some situations wheredefault

this matters:

The configuration of a module contains undesired artifacts. Rather than depending on thedefault

whole configuration, a dependency on just the desired artifacts is declared.

The desired artifact belongs to a configuration other than . That configuration is explicitlydefault

named as part of the dependency declaration.

There are other situations where it is necessary to fine-tune dependency declarations. Please see the

 class in the API documentation for examples and a complete reference forDependencyHandler

declaring dependencies.

23.4.1.2. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of

the module. But sometimes, even if the repository contains module descriptors, you want to download only

the artifact jar, without the dependencies. And sometimes you want to download a zip from a repository,[]10

that does not have module descriptors. Gradle provides an notation for those use cases - simplyartifact only

prefix the extension that you want to be downloaded with sign:'@'

Example 23.5. Artifact only notation

build.gradle

dependencies {
 runtime "org.groovy:groovy:2.2.0@jar"
 runtime group: , name: , version: , ext: 'org.groovy' 'groovy' '2.2.0' 'jar'
}

An artifact only notation creates a module dependency which downloads only the artifact file with the

specified extension. Existing module descriptors are ignored.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Page 164 of 573

23.4.1.3. Classifiers

The Maven dependency management has the notion of classifiers. Gradle supports this. To retrieve[]11

classified dependencies from a Maven repository you can write:

Example 23.6. Dependency with classifier

build.gradle

compile "org.gradle.test.classifiers:service:1.0:jdk15@jar"
otherConf group: , name: , version: , classifier: 'org.gradle.test.classifiers' 'service' '1.0' 'jdk14'

As can be seen in the first line above, classifiers can be used together with the artifact only notation.

It is easy to iterate over the dependency artifacts of a configuration:

Example 23.7. Iterating over a configuration

build.gradle

task listJars << {
 configurations.compile.each { File file -> println file.name }
}

Output of gradle -q listJars

> gradle -q listJars
hibernate-core-3.6.7.Final.jar
antlr-2.7.6.jar
commons-collections-3.1.jar
dom4j-1.6.1.jar
hibernate-commons-annotations-3.2.0.Final.jar
hibernate-jpa-2.0-api-1.0.1.Final.jar
jta-1.1.jar
slf4j-api-1.6.1.jar

23.4.2. Client module dependencies

Client module dependencies allow you to declare dependencies directly in the build script. Theytransitive

are a replacement for a module descriptor in an external repository.

Page 165 of 573

Example 23.8. Client module dependencies - transitive dependencies

build.gradle

dependencies {
 runtime module() {"org.codehaus.groovy:groovy:2.4.4"
 dependency() {"commons-cli:commons-cli:1.0"
 transitive = false
 }
 module(group: , name: , version:) {'org.apache.ant' 'ant' '1.9.4'
 dependencies ,"org.apache.ant:ant-launcher:1.9.4@jar"
 "org.apache.ant:ant-junit:1.9.4"
 }
 }
}

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not look for an

XML descriptor to figure them out but gets the information from the build file. The dependencies of a client

module can be normal module dependencies or artifact dependencies or another client module. Also look at

the API documentation for the class.ClientModule

In the current release client modules have one limitation. Let's say your project is a library and you want this

library to be uploaded to your company's Maven or Ivy repository. Gradle uploads the jars of your project to

the company repository together with the XML descriptor file of the dependencies. If you use client modules

the dependency declaration in the XML descriptor file is not correct. We will improve this in a future release

of Gradle.

23.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the

same multi-project build. For the latter you can declare .Project Dependencies

Example 23.9. Project dependencies

build.gradle

dependencies {
 compile project()':shared'
}

For more information see the API documentation for .ProjectDependency

Multi-project builds are discussed in .Chapter 24, Multi-project Builds

23.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a

repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you

do not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a as a dependency:file collection

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Page 166 of 573

Example 23.10. File dependencies

build.gradle

dependencies {
 runtime files(,)'libs/a.jar' 'libs/b.jar'
 runtime fileTree(dir: , include:)'libs' '*.jar'
}

File dependencies are not included in the published dependency descriptor for your project. However, file

dependencies are included in transitive project dependencies within the same build. This means they cannot

be used outside the current build, but they can be used with the same build.

You can declare which tasks produce the files for a file dependency. You might do this when, for example,

the files are generated by the build.

Example 23.11. Generated file dependencies

build.gradle

dependencies {
 compile files() {"$buildDir/classes"
 builtBy 'compile'
 }
}

task compile << {
 println 'compiling classes'
}

task list(dependsOn: configurations.compile) << {
 println "classpath = ${configurations.compile.collect {File file -> file.name}}"
}

Output of gradle -q list

> gradle -q list
compiling classes
classpath = [classes]

23.4.5. Gradle API Dependency

You can declare a dependency on the API of the current version of Gradle by using the

 method. This is useful when you are developing custom GradleDependencyHandler.gradleApi()

tasks or plugins.

Example 23.12. Gradle API dependencies

build.gradle

dependencies {
 compile gradleApi()
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

Page 167 of 573

23.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the

 method. This is useful when you are developing customDependencyHandler.localGroovy()

Gradle tasks or plugins in Groovy.

Example 23.13. Gradle's Groovy dependencies

build.gradle

dependencies {
 compile localGroovy()
}

23.4.7. Excluding transitive dependencies

You can exclude a dependency either by configuration or by dependency:transitive

Example 23.14. Excluding transitive dependencies

build.gradle

configurations {
 compile.exclude module: 'commons'
 all*.exclude group: , module: 'org.gradle.test.excludes' 'reports'
}

dependencies {
 compile() {"org.gradle.test.excludes:api:1.0"
 exclude module: 'shared'
 }
}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered

for all dependencies when resolving this configuration or any inheriting configuration. If you want to

exclude a transitive dependency from all your configurations you can use the Groovy spread-dot operator to

express this in a concise way, as shown in the example. When defining an exclude, you can specify either

only the organization or only the module name or both. Also look at the API documentation of the

 and classes.Dependency Configuration

Not every transitive dependency can be excluded - some transitive dependencies might be essential for

correct runtime behavior of the application. Generally, one can exclude transitive dependencies that are

either not required by runtime or that are guaranteed to be available on the target environment/platform.

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want

to use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a

transitive dependency. Bear in mind that for some of these use cases there are better solutions than

exclusions!

The dependency is undesired due to licensing reasons.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.Configuration.html

Page 168 of 573

The dependency is not available in any remote repositories.

The dependency is not needed for runtime.

The dependency has a version that conflicts with a desired version. For that use case please refer to

 and the documentation on for aSection 23.2.3, “Resolve version conflicts” ResolutionStrategy

potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This

way the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude

rule does not guarantee the given transitive dependency does not show up in the configuration. For example,

some other dependency, which does not have any exclude rules, might pull in that unwanted transitive

dependency.

Other examples of dependency exclusions can be found in the reference for the or ModuleDependency

 classes.DependencyHandler

23.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually

finding dependencies in the repository will depend on the repository type. See .Section 23.6, “Repositories”

For example, if you work with Maven repositories, you need to define the group, name and version. If you

work with filesystem repositories you might only need the name or the name and the version.

Example 23.15. Optional attributes of dependencies

build.gradle

dependencies {
 runtime , ":junit:4.12" ":testng"
 runtime name: 'testng'
}

You can also assign collections or arrays of dependency notations to a configuration:

Example 23.16. Collections and arrays of dependencies

build.gradle

List groovy = [,"org.codehaus.groovy:groovy-all:2.4.4@jar"
 ,"commons-cli:commons-cli:1.0@jar"
]"org.apache.ant:ant:1.9.4@jar"
List hibernate = [,'org.hibernate:hibernate:3.0.5@jar'
]'somegroup:someorg:1.0@jar'
dependencies {
 runtime groovy, hibernate
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Page 169 of 573

23.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different

configurations). If you don't specify anything explicitly, Gradle uses the default configuration of the

dependency. For dependencies from a Maven repository, the default configuration is the only possibility

anyway. If you work with Ivy repositories and want to declare a non-default configuration for your

dependency you have to use the map notation and declare:

Example 23.17. Dependency configurations

build.gradle

dependencies {
 runtime group: , name: , version: , configuration: 'org.somegroup' 'somedependency' '1.0' 'someConfiguration'
}

To do the same for project dependencies you need to declare:

Example 23.18. Dependency configurations for project

build.gradle

dependencies {
 compile project(path: , configuration:)':api' 'spi'
}

23.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 4.6.4, “Listing project

). With the help of the Project report plugin (see) suchdependencies” Chapter 27, The Project Report Plugin

a report can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The

dependency reports (see the previous paragraph) are using this API under the covers. The API lets you walk

the resolved dependency graph and provides information about the dependencies. In future releases the API

will grow to provide more information about the resolution result. For more information about the API

please refer to the Javadocs on . PotentialResolvableDependencies.getResolutionResult()

usages of the API:ResolutionResult

Creation of advanced dependency reports tailored to your use case.

Enabling the build logic to make decisions based on the content of the dependency graph.

23.5. Working with dependencies
For the examples below we have the following dependencies setup:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Page 170 of 573

Example 23.19. Configuration.copy

build.gradle

configurations {
 sealife
 alllife
}

dependencies {
 sealife , , "sea.mammals:orca:1.0" "sea.fish:shark:1.0" "sea.fish:tuna:1.0"
 alllife configurations.sealife
 alllife "air.birds:albatross:1.0"
}

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

You can use the configuration to access the declared dependencies or a subset of those:

Example 23.20. Accessing declared dependencies

build.gradle

task dependencies << {
 configurations.alllife.dependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.allDependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.allDependencies.findAll { dep -> dep.name != }'orca'
 .each { dep -> println dep.name }
}

Output of gradle -q dependencies

> gradle -q dependencies
albatross

albatross
orca
shark
tuna

albatross
shark
tuna

The task returns only the dependencies belonging explicitly to the configuration. The dependencies

 task includes the dependencies from extended configurations.allDependencies

To get the library files of the configuration dependencies you can do:

Page 171 of 573

Example 23.21. Configuration.files

build.gradle

task allFiles << {
 configurations.sealife.files.each { file ->
 println file.name
 }
}

Output of gradle -q allFiles

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar
herring-1.0.jar
seal-2.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single

dependency).

Example 23.22. Configuration.files with spec

build.gradle

task files << {
 configurations.sealife.files { dep -> dep.name == }.each { file ->'orca'
 println file.name
 }
}

Output of gradle -q files

> gradle -q files
orca-1.0.jar
seal-2.0.jar

The method always retrieves all artifacts of the configuration. It thenConfiguration.files whole

filters the retrieved files by specified dependencies. As you can see in the example, transitive dependencies

are included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the

original configuration should be copied. The copying methods come in two flavors. The methodcopy

copies only the dependencies belonging explicitly to the configuration. The methodcopyRecursive

copies all the dependencies, including the dependencies from extended configurations.

Page 172 of 573

Example 23.23. Configuration.copy

build.gradle

task copy << {
 configurations.alllife.copyRecursive { dep -> dep.name != }'orca'
 .allDependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.copy().allDependencies
 .each { dep -> println dep.name }
}

Output of gradle -q copy

> gradle -q copy
albatross
shark
tuna

albatross

It is important to note that the returned files of the copied configuration are often but not always the same

than the returned files of the dependency subset of the original configuration. In case of version conflicts

between dependencies of the subset and dependencies not belonging to the subset the resolve result might be

different.

Example 23.24. Configuration.copy vs. Configuration.files

build.gradle

task copyVsFiles << {
 configurations.sealife.copyRecursive { dep -> dep.name == }'orca'
 .each { file -> println file.name }
 println()
 configurations.sealife.files { dep -> dep.name == }'orca'
 .each { file -> println file.name }
}

Output of gradle -q copyVsFiles

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal-2.0.jar

In the example above, has a dependency on whereas has a dependency onorca seal-1.0 shark

. The original configuration has therefore a version conflict which is resolved to the newer seal-2.0

 version. The method therefore returns as a transitive dependency of .seal-2.0 files seal-2.0 orca

The copied configuration only has as a dependency and therefore there is no version conflict and orca

 is returned as a transitive dependency.seal-1.0

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies

will cause an exception. You can always copy a resolved configuration. The copied configuration is in the

Page 173 of 573

unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the API documentation: .Configuration

23.6. Repositories
Gradle repository management, based on Apache Ivy, gives you a lot of freedom regarding repository layout

and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured

repositories.

You may configure any number of repositories, each of which is treated independently by Gradle. If Gradle

finds a module descriptor in a particular repository, it will attempt to download all of the artifacts for that

module from . Although module meta-data and module artifacts must be located in thethe same repository

same repository, it is possible to compose a single repository of multiple URLs, giving multiple locations to

search for meta-data files and jar files.

There are several different types of repositories you can declare:

Table 23.2. Repository types

Type Description

Maven central repository A pre-configured repository that looks for dependencies in Maven Central.

Maven JCenter repository A pre-configured repository that looks for dependencies in Bintray's

JCenter.

Maven local repository A pre-configured repository that looks for dependencies in the local

Maven repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some

remote location.

Ivy repository An Ivy repository. Can be located on the local filesystem or at some

remote location.

Flat directory repository A simple repository on the local filesystem. Does not support any

meta-data formats.

23.6.1. Maven central repository

To add the central Maven 2 repository () simply add this to your build script:http://repo1.maven.org/maven2

Example 23.25. Adding central Maven repository

build.gradle

repositories {
 mavenCentral()
}

Now Gradle will look for your dependencies in this repository.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.Configuration.html
http://repo1.maven.org/maven2

Page 174 of 573

 Be aware that the central Maven 2 repository is HTTP only and HTTPS is not supported. If youWarning:

need a public HTTPS enabled central repository, you can use the public repository (see JCenter

).Section 23.6.2, “Maven JCenter repository”

23.6.2. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts

published directly to Bintray.

To add the JCenter Maven repository () simply add this to your build script:https://jcenter.bintray.com

Example 23.26. Adding Bintray's JCenter Maven repository

build.gradle

repositories {
 jcenter()
}

Now Gradle will look for your dependencies in the JCenter repository. uses HTTPS to connect tojcenter()

the repository. If you want to use HTTP you can configure :jcenter()

Example 23.27. Using Bintrays's JCenter with HTTP

build.gradle

repositories {
 jcenter {
 url "http://jcenter.bintray.com/"
 }
}

23.6.3. Local Maven repository

To use the local Maven cache as a repository you can do:

Example 23.28. Adding the local Maven cache as a repository

build.gradle

repositories {
 mavenLocal()
}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local repository

location is defined in a , this location will be used. The in settings.xml settings.xml /.m2USER_HOME

takes precedence over the in . If no is available,settings.xml /confM2_HOME settings.xml

Gradle uses the default location ./.m2/repositoryUSER_HOME

23.6.4. Maven repositories

For adding a custom Maven repository you can do:

http://jcenter.bintray.com
http://bintray.com
https://jcenter.bintray.com

Page 175 of 573

Example 23.29. Adding custom Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }
}

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts

published at another location. To define such a repository, you can do:

Example 23.30. Adding additional Maven repositories for JAR files

build.gradle

repositories {
 maven {
 // Look for POMs and artifacts, such as JARs, here
 url "http://repo2.mycompany.com/maven2"
 // Look for artifacts here if not found at the above location
 artifactUrls "http://repo.mycompany.com/jars"
 artifactUrls "http://repo.mycompany.com/jars2"
 }
}

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact

URLs are used to look for JARs.

23.6.4.1. Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to

use when you define the repository:

Example 23.31. Accessing password protected Maven repository

build.gradle

repositories {
 maven {
 credentials {
 username 'user'
 password 'password'
 }
 url "http://repo.mycompany.com/maven2"
 }
}

It is advisable to keep your username and password in rather than directly in thegradle.properties

build file.

23.6.5. Flat directory repository

If you want to use a (flat) filesystem directory as a repository, simply type:

Page 176 of 573

Example 23.32. Flat repository resolver

build.gradle

repositories {
 flatDir {
 dirs 'lib'
 }
 flatDir {
 dirs , 'lib1' 'lib2'
 }
}

This adds repositories which look into one or more directories for finding dependencies. Note that this type

of repository does not support any meta-data formats like Ivy XML or Maven POM files. Instead, Gradle

will dynamically generate a module descriptor (without any dependency information) based on the presence

of artifacts. However, as Gradle prefers to use modules whose descriptor has been created from real

meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with

real meta-data from other repositories. So, for example, if Gradle finds only in a flatjmxri-1.2.1.jar

directory repository, but in another repository that supports meta-data, it will use thejmxri-1.2.1.pom

second repository to provide the module. For the use case of overriding remote artifacts with local ones

consider using an Ivy or Maven repository instead whose URL points to a local directory. If you only work

with flat directory repositories you don't need to set all attributes of a dependency. See Section 23.4.8,

.“Optional attributes”

23.6.6. Ivy repositories

23.6.6.1. Defining an Ivy repository with a standard layout

Example 23.33. Ivy repository

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 }
}

23.6.6.2. Defining a named layout for an Ivy repository

You can specify that your repository conforms to the Ivy or Maven default layout by using a named layout.

Example 23.34. Ivy repository with named layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout "maven"
 }
}

Page 177 of 573

Valid named layout values are (the default), , and . See 'gradle' 'maven' 'ivy' 'pattern'

 in the API documentation for details of these named layouts.IvyArtifactRepository.layout()

23.6.6.3. Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a 'pattern' layout for the repository:

Example 23.35. Ivy repository with pattern layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout , {"pattern"
 artifact "[module]/[revision]/[type]/[artifact].[ext]"
 }
 }
}

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define

separate patterns to use to locate the Ivy files and artifacts:

Each or specified for a repository adds an pattern to use. The patterns are usedartifact ivy additional

in the order that they are defined.

Example 23.36. Ivy repository with multiple custom patterns

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout , {"pattern"
 artifact "3rd-party-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 artifact "company-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"
 }
 }
}

Optionally, a repository with pattern layout can have its 'organisation' part laid out in Maven style, with

forward slashes replacing dots as separators. For example, the organisation would then bemy.company

represented as .my/company

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

Page 178 of 573

Example 23.37. Ivy repository with Maven compatible layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout , {"pattern"
 artifact "[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 m2compatible = true
 }
 }
}

23.6.6.4. Accessing password protected Ivy repositories

To access an Ivy repository which uses basic authentication, you specify the username and password to use

when you define the repository:

Example 23.38. Ivy repository

build.gradle

repositories {
 ivy {
 url 'http://repo.mycompany.com'
 credentials {
 username 'user'
 password 'password'
 }
 }
}

23.6.7. Supported repository transport protocols

Maven and Ivy repositories support the use of various transport protocols. At the moment the following

protocols are supported:

Table 23.3. Repository transport protocols

Type Credential types

file none

http username/password

https username/password

sftp username/password

s3 access key/secret key

To define a repository use the configuration block. Within the closure,repositories repositories

a Maven repository is declared with . An Ivy repository is declared with . The transport protocolmaven ivy

is part of the URL definition for a repository. The following build script demonstrates how to create a

Page 179 of 573

HTTP-based Maven and Ivy repository:

Example 23.39. Declaring a Maven and Ivy repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }

 ivy {
 url "http://repo.mycompany.com/repo"
 }
}

If authentication is required for a repository, the relevant credentials can be provided. The following

example shows how to provide username/password-based authentication for SFTP repositories:

Example 23.40. Providing credentials to a Maven and Ivy repository

build.gradle

repositories {
 maven {
 url "sftp://repo.mycompany.com:22/maven2"
 credentials {
 username 'user'
 password 'password'
 }
 }

 ivy {
 url "sftp://repo.mycompany.com:22/repo"
 credentials {
 username 'user'
 password 'password'
 }
 }
}

When using an AWS S3 backed repository you need to authenticate using , providingAwsCredentials

access-key and a private-key. The following example shows how to declare a S3 backed repository and

providing AWS credentials:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.credentials.AwsCredentials.html

Page 180 of 573

Example 23.41. Declaring a S3 backed Maven and Ivy repository

build.gradle

repositories {
 maven {
 url "s3://myCompanyBucket/maven2"
 credentials(AwsCredentials) {
 accessKey "someKey"
 secretKey "someSecret"
 }
 }

 ivy {
 url "s3://myCompanyBucket/ivyrepo"
 credentials(AwsCredentials) {
 accessKey "someKey"
 secretKey "someSecret"
 }
 }
}

23.6.7.1. S3 configuration properties

The following system properties can be used to configure the interactions with s3 repositories:

Table 23.4. S3 Configuration Properties

Property Description

org.gradle.s3.endpoint Used to override the AWS S3 endpoint when using a non AWS, S3

API compatible, storage service.

org.gradle.s3.maxErrorRetry Specifies the maximum number of times to retry a request in the event

that the S3 server responds with a HTTP 5xx status code. When not

specified a default value of 3 is used.

23.6.7.2. S3 URL formats

S3 URL's are 'virtual-hosted-style' and must be in the following format s3://<bucketName>[.<regionSpecificEndpoint>]/<s3Key>

e.g. s3://myBucket.s3.eu-central-1.amazonaws.com/maven/release

myBucket is the AWS S3 bucket name.

s3.eu-central-1.amazonaws.com is the .optional region specific endpoint

/maven/release is the AWS S3 key (unique identifier for an object within a bucket)

23.6.7.3. S3 proxy settings

A proxy for S3 can be configured using the following system properties:

https.proxyHost

https.proxyPort

https.proxyUser

https.proxyPassword

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Page 181 of 573

https.nonProxyHosts

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following system

proxy settings can be used:

http.proxyHost

http.proxyPort

http.proxyUser

http.proxyPassword

http.nonProxyHosts

23.6.7.4. AWS S3 V4 Signatures (AWS4-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in

accordance with AWS's . It is recommended to specify S3 URL's containing the regionsignature version 4

specific endpoint when using buckets that require V4 signatures. e.g. s3://somebucket.s3.eu-central-1.amazonaws.com/maven/release

NOTE: When a region-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle

will use the default AWS region (us-east-1) and the following warning will appear on the console:

Attempting to re-send the request to with AWS V4 authentication. To avoid this warning in the

future, please use region-specific endpoint to access buckets located in regions that require V4

signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:

3 round-trips to AWS, as opposed to one, for every file upload and download.

Depending on location - increased network latencies and slower builds.

Increased likelihood of transmission failures.

23.6.7.5. Configuring HTTP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes

are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient

library, . In some cases, it may be preferable to explicitly specify which authenticationdocumented here

schemes should be used when exchanging credentials with a remote server. When explicitly declared, only

those schemes are used when authenticating to a remote repository. The following example show how to

configure a repository to use only digest authentication:

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625

Page 182 of 573

Example 23.42. Configure repository to use only digest authentication

build.gradle

repositories {
 maven {
 url 'https://repo.mycompany.com/maven2'
 credentials {
 username 'user'
 password 'password'
 }
 authentication {
 digest(DigestAuthentication)
 }
 }
}

Currently supported authentication schemes are:

Table 23.5. Authentication schemes

Type Description

BasicAuthentication Basic access authentication over HTTP. When using this scheme,

credentials are sent preemptively.

DigestAuthentication Digest access authentication over HTTP.

23.6.7.6. Using preemptive authentication

Gradle's default behavior is to only submit credentials when a server responds with an authentication

challenge in the form of a HTTP 401 response. In some cases, the server will respond with a different code

(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get

around this behavior, credentials may be sent to the server preemptively. To enable preemptive

authentication simply configure your repository to explicitly use the scheme:BasicAuthentication

Example 23.43. Configure repository to use preemptive authentication

build.gradle

repositories {
 maven {
 url 'https://repo.mycompany.com/maven2'
 credentials {
 username 'user'
 password 'password'
 }
 authentication {
 basic(BasicAuthentication)
 }
 }
}

23.6.8. Working with repositories

To access a repository:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.authentication.http.DigestAuthentication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.authentication.http.BasicAuthentication.html

Page 183 of 573

Example 23.44. Accessing a repository

build.gradle

println repositories.localRepository.name
println repositories[].name'localRepository'

To configure a repository:

Example 23.45. Configuration of a repository

build.gradle

repositories {
 flatDir {
 name 'localRepository'
 }
}
repositories {
 localRepository {
 dirs 'lib'
 }
}
repositories.localRepository {
 dirs 'lib'
}

23.6.9. More about Ivy resolvers

Gradle is extremely flexible regarding repositories:

There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh,

sftp ...)

The protocol sftp currently only supports username/password-based authentication.

Each repository can have its own layout.

Let's say, you declare a dependency on the library. Now how does Gradle find it injunit:junit:3.8.2

the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,

where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here

are some examples: []12

// Maven2 layout (if a repository is marked as Maven2 compatible, the organization (group) is split into subfolders according to the dots.)
someroot/[organisation]/[module]/[revision]/[module]-[revision].[ext]

// Typical layout for an Ivy repository (the organization is not split into subfolder)
someroot/[organisation]/[module]/[revision]/[type]s/[artifact].[ext]

// Simple layout (the organization is not used, no nested folders.)
someroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Page 184 of 573

Example 23.46. Definition of a custom repository

build.gradle

repositories {
 ivy {
 ivyPattern "$projectDir/repo/[organisation]/[module]-ivy-[revision].xml"
 artifactPattern "$projectDir/repo/[organisation]/[module]-[revision](-[classifier]).[ext]"
 }
}

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found . With Gradlehere

you just don't configure them via XML but directly via their API.

23.7. How dependency resolution works
Gradle takes your dependency declarations and repository definitions and attempts to download all of your

dependencies by a process called . Below is a brief outline of how this process works.dependency resolution

Given a required dependency, Gradle first attempts to resolve the for that dependency. Eachmodule

repository is inspected in order, searching first for a file (POM or Ivy file) thatmodule descriptor

indicates the presence of that module. If no module descriptor is found, Gradle will search for the

presence of the primary file indicating that the module exists in the repository.module artifact

If the dependency is declared as a dynamic version (like), Gradle will resolve this to the newest1.+

available static version (like) in the repository. For Maven repositories, this is done using the 1.2 maven-metadata.xml

file, while for Ivy repositories this is done by directory listing.

If the module descriptor is a POM file that has a parent POM declared, Gradle will recursively

attempt to resolve each of the parent modules for the POM.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is

done using the following criteria:

For a dynamic version, a 'higher' static version is preferred over a 'lower' version.

Modules declared by a module descriptor file (Ivy or POM file) are preferred over modules that have

an artifact file only.

Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a static version and a module descriptor file is found in a

repository, there is no need to continue searching later repositories and the remainder of the process is

short-circuited.

All of the artifacts for the module are then requested from the that was chosen in thesame repository

process above.

23.8. Fine-tuning the dependency resolution
process

In most cases, Gradle's default dependency management will resolve the dependencies that you want in your

build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your build

receives exactly the right dependencies.

There are a number of ways that you can influence how Gradle resolves dependencies.

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

Page 185 of 573

23.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or

not), overriding any version specified in a published module descriptor. This can be very useful when

tackling version conflicts - for more information see .Section 23.2.3, “Resolve version conflicts”

Force versions can also be used to deal with rogue metadata of transitive dependencies. If a transitive

dependency has poor quality metadata that leads to problems at dependency resolution time, you can force

Gradle to use a newer, fixed version of this dependency. For an example, see the ResolutionStrategy

class in the API documentation. Note that 'dependency resolve rules' (outlined below) provide a more

powerful mechanism for replacing a broken module dependency. See Section 23.8.2.3, “Blacklisting a

.particular version with a replacement”

23.8.2. Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for

manipulating a requested dependency prior to that dependency being resolved. This feature is ,incubating

but currently offers the ability to change the group, name and/or version of a requested dependency,

allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and

can be used to implement all sorts of advanced patterns in dependency management. Some of these patterns

are outlined below. For more information and code samples see the class in theResolutionStrategy

API documentation.

23.8.2.1. Modelling releaseable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested

and published together. These libraries form a 'releasable unit', designed and intended to be used as a whole.

It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

module-a depends on releasable-unit:part-one:1.0

module-b depends on releasable-unit:part-two:1.1

A build depending on both and will obtain different versions of libraries within themodule-a module-b

releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable

unit defined by all libraries that have 'org.gradle' group. We can force all of these libraries to use a consistent

version:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Page 186 of 573

Example 23.47. Forcing consistent version for a group of libraries

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 (details.requested.group ==) {if 'org.gradle'
 details.useVersion '1.4'
 }
 }
}

23.8.2.2. Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is

maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a

placeholder version, for example: ' '.default

The 'default' version is resolved to a specific version via a dependency resolve rule, which looks up the

version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds

within the organisation.

Example 23.48. Using a custom versioning scheme

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 (details.requested.version ==) {if 'default'
 def version = findDefaultVersionInCatalog(details.requested.group, details.requested.name)
 details.useVersion version
 }
 }
}

def findDefaultVersionInCatalog(String group, String name) {
 //some custom logic that resolves the default version into a specific version
 "1.0"
}

23.8.2.3. Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and

providing a replacement version. This can be useful if a certain dependency version is broken and should not

be used, where a dependency resolve rule causes this version to be replaced with a known good version. One

example of a broken module is one that declares a dependency on a library that cannot be found in any of

the public repositories, but there are many other reasons why a particular module version is unwanted and a

different version is preferred.

Page 187 of 573

In example below, imagine that version contains important fixes and should always be used in1.2.1

preference to . The rule provided will enforce just this: any time version is encountered it will be1.2 1.2

replaced with . Note that this is different from a forced version as described above, in that any other1.2.1

versions of this module would not be affected. This means that the 'newest' conflict resolution strategy

would still select version if this version was also pulled transitively.1.3

Example 23.49. Blacklisting a version with a replacement

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 (details.requested.group == && details.requested.name == && details.requested.version ==) {if 'org.software' 'some-library' '1.2'
 //prefer different version which contains some necessary fixes
 details.useVersion '1.2.1'
 }
 }
}

23.8.2.4. Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.

Examples include using ' ' in place of ' ', or using ' ' instead of 'groovy groovy-all log4j-over-slf4j log4j

'. Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:

Example 23.50. Changing dependency group and/or name at the resolution

build.gradle

configurations.all {
 resolutionStrategy.eachDependency { DependencyResolveDetails details ->
 (details.requested.name ==) {if 'groovy-all'
 //prefer 'groovy' over 'groovy-all':
 details.useTarget group: details.requested.group, name: , version: details.requested.version'groovy'
 }
 (details.requested.name ==) {if 'log4j'
 //prefer 'log4j-over-slf4j' over 'log4j', with fixed version:
 details.useTarget "org.slf4j:log4j-over-slf4j:1.7.10"
 }
 }
}

23.8.3. Dependency Substitution Rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of

dependency resolve rules can be implemented with dependency substitution rules. They allow project and

module dependencies to be transparently substituted with specified replacements. Unlike dependency

resolve rules, dependency substitution rules allow project and module dependencies to be substituted

interchangeably.

NOTE: Adding a dependency substitution rule to a configuration changes the timing of when that

Page 188 of 573

 Instead of being resolved on first use, the configuration is instead resolvedconfiguration is resolved.

when the task graph is being constructed. This can have unexpected consequences if the configuration

is being further modified during task execution, or if the configuration relies on modules that are

published during execution of another task.

To explain:

A can be declared as an input to any Task, and that configuration can includeConfiguration

project dependencies when it is resolved.

If a project dependency is an input to a Task (via a configuration), then tasks to built the project

artifacts must be added to the task dependencies.

In order to determine the project dependencies that are inputs to a task, Gradle needs to resolve the

 inputs.Configuration

Because the Gradle task graph is fixed once task execution has commenced, Gradle needs to

perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency

will never transitively reference a project dependency. This makes it easy to determine the full set of

project dependencies for a configuration through simple graph traversal. With this functionality,

Gradle can no longer make this assumption, and must perform a full resolve in order to determine the

project dependencies.

23.8.3.1. Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one

that is downloaded from an external repository. This could be useful for testing a local, patched version of a

dependency.

The module to be replaced can be declared with or without a version specified.

Example 23.51. Substituting a module with a project

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute module() with project()"org.utils:api" ":api"
 substitute module() with project()"org.utils:util:2.5" ":util"
 }
}

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).

Dependency substitution rules take care of replacing the module dependency with the project dependency

and wiring up any task dependencies, but do not implicitly include the project in the build.

Page 189 of 573

23.8.3.2. Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project

build. This can be useful to speed up development with a large multi-project build, by allowing a subset of

the project dependencies to be downloaded from a repository rather than being built.

The module to be used as a replacement must be declared with a version specified.

Example 23.52. Substituting a project with a module

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution {
 substitute project() with module()":api" "org.utils:api:1.3"
 }
}

When a project dependency has been replaced with a module dependency, that project is still included in the

overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to

build the resolve the depending .Configuration

23.8.3.3. Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a

multi-project build. This can be useful for developing a local, patched version of an external dependency or

for building a subset of the modules within a large multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the

group "org.example", but only if a local project matching the dependency name can be located.

Example 23.53. Conditionally substituting a dependency

build.gradle

configurations.all {
 resolutionStrategy.dependencySubstitution.all { DependencySubstitution dependency ->
 (dependency.requested ModuleComponentSelector && dependency.requested.group ==) {if instanceof "org.example"
 def targetProject = findProject()":${dependency.requested.module}"
 (targetProject != null) {if
 dependency.useTarget targetProject
 }
 }
 }
}

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).

Dependency substitution rules take care of replacing the module dependency with the project dependency,

but do not implicitly include the project in the build.

Page 190 of 573

23.8.4. Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set

for the configuration. A primary use case of this functionality is for developing plugins that make use of

versioned tools that the user might override. By specifying default dependencies, the plugin can use a

default version of the tool only if the user has not specified a particular version to use.

Example 23.54. Specifying default dependencies on a configuration

build.gradle

configurations {
 pluginTool {
 defaultDependencies { dependencies ->
 dependencies.add(.project.dependencies.create())this "org.gradle:my-util:1.0"
 }
 }
}

23.8.5. Enabling Ivy dynamic resolve mode

Gradle's Ivy repository implementations support the equivalent to Ivy's dynamic resolve mode. Normally,

Gradle will use the attribute for each dependency definition included in an file. In dynamicrev ivy.xml

resolve mode, Gradle will instead prefer the attribute over the attribute for a givenrevConstraint rev

dependency definition. If the attribute is not present, the attribute is used instead.revConstraint rev

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A

couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle's Ivy

repositories. It is not available for Maven repositories, or custom Ivy DependencyResolver

implementations.

Example 23.55. Enabling dynamic resolve mode

build.gradle

// Can enable dynamic resolve mode when you define the repository
repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 resolve.dynamicMode = true
 }
}

// Can use a rule instead to enable (or disable) dynamic resolve mode for all repositories
repositories.withType(IvyArtifactRepository) {
 resolve.dynamicMode = true
}

Page 191 of 573

23.8.6. Component metadata rules

Each module (also called) has metadata associated with it, such as its group, name, version,component

dependencies, and so on. This metadata typically originates in the module's descriptor. Metadata rules allow

certain parts of a module's metadata to be manipulated from within the build script. They take effect after a

module's descriptor has been downloaded, but before it has been selected among all candidate versions. This

makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module's . This concept, alsostatus scheme

known from Ivy, models the different levels of maturity that a module transitions through over time. The

default status scheme, ordered from least to most mature status, is , , integration milestone release

. Apart from a status scheme, a module also has a (current) , which must be one of the values in itsstatus

status scheme. If not specified in the (Ivy) descriptor, the status defaults to for Ivy modulesintegration

and Maven snapshot modules, and for Maven modules that aren't snapshots.release

A module's status and status scheme are taken into consideration when a version selector islatest

resolved. Specifically, will resolve to the highest module version that has status latest.someStatus someStatus

or a more mature status. For example, with the default status scheme in place, latest.integration

will select the highest module version regardless of its status (because is the least matureintegration

status), whereas will select the highest module version with status . Here islatest.release release

what this looks like in code:

Example 23.56. 'Latest' version selector

build.gradle

dependencies {
 config1 "org.sample:client:latest.integration"
 config2 "org.sample:client:latest.release"
}

task listConfigs << {
 configurations.config1.each { println it.name }
 println()
 configurations.config2.each { println it.name}
}

Output of gradle -q listConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates selectors based on a custom status scheme declared in alatest

component metadata rule that applies to all modules:

Page 192 of 573

Example 23.57. Custom status scheme

build.gradle

dependencies {
 config3 "org.sample:api:latest.silver"
 components {
 all { ComponentMetadataDetails details ->
 (details.id.group == && details.id.name ==) {if "org.sample" "api"
 details.statusScheme = [, , ,]"bronze" "silver" "gold" "platinum"
 }
 }
 }
}

Component metadata rules can be applied to a specified module. Modules must be specified in the form of

"group:module".

Example 23.58. Custom status scheme by module

build.gradle

dependencies {
 config4 "org.sample:lib:latest.prod"
 components {
 withModule() { ComponentMetadataDetails details ->'org.sample:lib'
 details.statusScheme = [, ,]"int" "rc" "prod"
 }
 }
}

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from

an Ivy repository. Values from the Ivy descriptor are made available via the IvyModuleDescriptor

interface.

Example 23.59. Ivy component metadata rule

build.gradle

dependencies {
 config6 "org.sample:lib:latest.rc"
 components {
 withModule() { ComponentMetadataDetails details, IvyModuleDescriptor ivyModule ->"org.sample:lib"
 (ivyModule.branch ==) {if 'testing'
 details.status = "rc"
 }
 }
 }
}

Note that any rule that declares specific arguments must include a always

 argument as the first argument. The second Ivy metadata argument isComponentMetadataDetails

optional.

Component metadata rules can also be defined using a object. A rule source object is any objectrule source

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html

Page 193 of 573

that contains exactly one method that defines the rule action and is annotated with .@Mutate

This method:

must return void.

must have as the first argument.ComponentMetadataDetails

may have an additional parameter of type .IvyModuleDescriptor

Example 23.60. Rule source component metadata rule

build.gradle

dependencies {
 config5 "org.sample:api:latest.gold"
 components {
 withModule(, CustomStatusRule())'org.sample:api' new
 }
}

 CustomStatusRule {class
 @Mutate
 setStatusScheme(ComponentMetadataDetails details) {void
 details.statusScheme = [, , ,]"bronze" "silver" "gold" "platinum"
 }
}

23.8.7. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple

versions are available that match a version selector. Rules are applied against every available version and

allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that

does not satisfy conditions set by the rule. Examples include:

For a dynamic version like '1.+' certain versions may be explicitly rejected from selection

For a static version like '1.4' an instance may be rejected based on extra component metadata such as the

Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the object. Each rule configured will be calledComponentSelectionRules

with a object as an argument which contains information about the candidateComponentSelection

version being considered. Calling causes the given candidateComponentSelection.reject()

version to be explicitly rejected, in which case the candidate will not be considered for the selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic

version to choose the next best candidate.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Page 194 of 573

Example 23.61. Component selection rule

build.gradle

configurations {
 rejectConfig {
 resolutionStrategy {
 componentSelection {
 // Accept the highest version matching the requested version that isn't '1.5'
 all { ComponentSelection selection ->
 (selection.candidate.group == && selection.candidate.module == && selection.candidate.version ==) {if 'org.sample' 'api' '1.5'
 selection.reject()"version 1.5 is broken for 'org.sample:api'"
 }
 }
 }
 }
 }
}

dependencies {
 rejectConfig "org.sample:api:1.+"
}

Note that version selection is applied starting with the highest version first. The version selected will be the

first version found that all component selection rules accept. A version is considered accepted no rule

explicitly rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of

"group:module".

Example 23.62. Component selection rule with module target

build.gradle

configurations {
 targetConfig {
 resolutionStrategy {
 componentSelection {
 withModule() { ComponentSelection selection ->"org.sample:api"
 (selection.candidate.version ==) {if "1.5"
 selection.reject()"version 1.5 is broken for 'org.sample:api'"
 }
 }
 }
 }
 }
}

Component selection rules can also consider component metadata when selecting a version. Possible

metadata arguments that can be considered are and .ComponentMetadata IvyModuleDescriptor

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Page 195 of 573

Example 23.63. Component selection rule with metadata

build.gradle

configurations {
 metadataRulesConfig {
 resolutionStrategy {
 componentSelection {
 // Reject any versions with a status of 'experimental'
 all { ComponentSelection selection, ComponentMetadata metadata ->
 (selection.candidate.group == && metadata.status ==) {if 'org.sample' 'experimental'
 selection.reject()"don't use experimental candidates from 'org.sample'"
 }
 }
 // Accept the highest version with either a "release" branch or a status of 'milestone'
 withModule() { ComponentSelection selection, IvyModuleDescriptor descriptor, ComponentMetadata metadata ->'org.sample:api'
 (descriptor.branch != && metadata.status !=) {if "release" 'milestone'
 selection.reject()"'org.sample:api' must have testing branch or milestone status"
 }
 }
 }
 }
 }
}

Note that a argument is required as the first parameter when declaring aComponentSelection always

component selection rule with additional Ivy metadata parameters, but the metadata parameters can be

declared in any order.

Lastly, component selection rules can also be defined using a object. A rule source object is anyrule source

object that contains exactly one method that defines the rule action and is annotated with .@Mutate

This method:

must return void.

must have as the first argument.ComponentSelection

may have additional parameters of type and/or .ComponentMetadata IvyModuleDescriptor

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Page 196 of 573

Example 23.64. Component selection rule using a rule source object

build.gradle

class RejectTestBranch {
 @Mutate
 evaluateRule(ComponentSelection selection, IvyModuleDescriptor ivy) {void
 (ivy.branch ==) {if "test"
 selection.reject()"reject test branch"
 }
 }
}

configurations {
 ruleSourceConfig {
 resolutionStrategy {
 componentSelection {
 all RejectTestBranch()new
 }
 }
 }
}

23.8.8. Module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A

good example when a new library replaced a legacy one is the "google-collections" -> "guava" migration.

The team that created google-collections decided to change the module name from

"com.google.collections:google-collections" into "com.google.guava:guava". This a legal scenario in the

industry: teams need to be able to change the names of products they maintain, including the module

coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections" -> "guava" scenario. It

may happen that both libraries are pulled into the same dependency graph. For example, "our" project

depends on guava but some of our dependencies pull in a legacy version of google-collections. This can

cause runtime errors, for example during test or application execution. Gradle does not automatically resolve

the google-collections VS guava conflict because it is not considered as a "version conflict". It's because the

module coordinates for both libraries are completely different and conflict resolution is activated when

"group" and "name" coordinates are the same but there are different versions available in the dependency

graph (for more info, please refer to the section on conflict resolution). Traditional remedies to this problem

are:

Declare exclusion rule to avoid pulling in "google-collections" to graph. It is probably the most popular

approach.

Avoid dependencies that pull in legacy libraries.

Upgrade the dependency version if the new version no longer pulls in a legacy library.

Downgrade to "google-collections". It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve

the google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is

Page 197 of 573

possible to declare that certain module was replaced by other. This enables organisations to include the

information about module replacement in the corporate plugin suite and resolve the problem holistically for

all Gradle-powered projects in the enterprise.

Example 23.65. Declaring module replacement

build.gradle

dependencies {
 modules {
 module() {"com.google.collections:google-collections"
 replacedBy()"com.google.guava:guava"
 }
 }
}

For more examples and detailed API, please refer to the DSL reference for

.ComponentMetadataHandler

What happens when we declare that "google-collections" are replaced by "guava"? Gradle can use this

information for conflict resolution. Gradle will consider every version of "guava" newer/better than any

version of "google-collections". Also, Gradle will ensure that only guava jar is present in the classpath /

resolved file list. Please note that if only "google-collections" appears in the dependency graph (e.g. no

"guava") Gradle will not eagerly replace it with "guava". Module replacement is an information that Gradle

uses for resolving conflicts. If there is no conflict (e.g. only "google-collections" or only "guava" in the

graph) the replacement information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is

possible to declare that multiple modules are replaced by a single module.

23.9. The dependency cache
Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the

number of remote requests made in dependency resolution, while striving to guarantee that the results of

dependency resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded

meta-data like POM files and Ivy files. The storage path for a downloaded artifact includes the SHA1

checksum, meaning that 2 artifacts with the same name but different content can easily be cached.

A binary store of resolved module meta-data, including the results of resolving dynamic versions,

module descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful

things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult

to debug behavior that has been a challenge with many build tools. This new behavior is implemented in a

bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

Page 198 of 573

23.9.1. Key features of the Gradle dependency cache

23.9.1.1. Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.

The information stored in the metadata cache includes:

The result of resolving a dynamic version (e.g.) to a concrete version (e.g.).1.+ 1.2

The resolved module metadata for a particular module, including module artifacts and module

dependencies.

The resolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

The of a particular module or artifact in a particular repository, eliminating repeated attempts toabsence

access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well

as a timestamp that can be used for cache expiry.

23.9.1.2. Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its

URL, type and layout. If a module or artifact has not been previously resolved from , Gradlethis repository

will attempt to resolve the module against the repository. This will always involve a remote lookup on the

repository, however in many cases no download will be required (see ,Section 23.9.1.3, “Artifact reuse”

below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the

build, even if the local cache has a copy of this artifact which was retrieved from a different repository.

Repository independence allows builds to be isolated from each other in an advanced way that no build tool

has done before. This is a key feature to create builds that are reliable and reproducible in any environment.

23.9.1.3. Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by

downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not

downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved

from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse

artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle

will use this artifact if it can be verified to match the checksum declared by the remote server.

23.9.1.4. Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact

identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact

which is republished without changing it's identifier. By caching artifacts based on their SHA1 checksum,

Gradle is able to maintain multiple versions of the same artifact. This means that when resolving against one

repository Gradle will never overwrite the cached artifact file from a different repository. This is done

without requiring a separate artifact file store per repository.

Page 199 of 573

23.9.1.5. Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle

processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is

released for slow operations such as downloading remote artifacts.

23.9.2. Command line options to override caching

23.9.2.1. Offline

The command line switch tells Gradle to always use dependency modules from the cache,--offline

regardless if they are due to be checked again. When running with offline, Gradle will never attempt to

access the network to perform dependency resolution. If required modules are not present in the dependency

cache, build execution will fail.

23.9.2.2. Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured

repositories. Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was

published incorrectly. To refresh all dependencies in the dependency cache, use the --refresh-dependencies

option on the command line.

The option tells Gradle to ignore all cached entries for resolved modules--refresh-dependencies

and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions

recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the

previously downloaded artifacts are valid before downloading again. This is done by comparing published

SHA1 values in the repository with the SHA1 values for existing downloaded artifacts.

23.9.3. Fine-tuned control over dependency caching

You can fine-tune certain aspects of caching using the for a configuration.ResolutionStrategy

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the

resolved version for a dynamic version, use:

Example 23.66. Dynamic version cache control

build.gradle

configurations.all {
 resolutionStrategy.cacheDynamicVersionsFor , 10 'minutes'
}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the

meta-data and artifacts for a changing module, use:

Page 200 of 573

Example 23.67. Changing module cache control

build.gradle

configurations.all {
 resolutionStrategy.cacheChangingModulesFor , 4 'hours'
}

For more details, take a look at the API documentation for .ResolutionStrategy

23.10. Strategies for transitive dependency
management

Many projects rely on the . This is not without problems.Maven Central repository

The Maven Central repository can be down or can be slow to respond.

The POM files of many popular projects specify dependencies or other configuration that are just plain

wrong (for instance, the POM file of the “ ” module declares JUnit as acommons-httpclient-3.0

runtime dependency).

For many projects there is not one right set of dependencies (as more or less imposed by the POM

format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,

because:

You might need dependencies that are not uploaded to Maven Central yet.

You want to deal properly with invalid metadata in a Maven Central POM file.

You don't want to expose people to the downtimes or slow response of Maven Central, if they just want

to build your project.

It is not a big deal to set-up a custom repository, but it can be tedious to keep it up to date. For a new[]13

version, you always have to create the new XML descriptor and the directories. Your custom repository is

another infrastructure element which might have downtimes and needs to be updated. To enable historical

builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of

indirection. Another source of information you have to lookup. All this is not really a big deal but in its sum

it has an impact. Repository managers like Artifactory or Nexus make this easier, but most open source

projects don't usually have a host for those products. This is changing with new services like that letBintray

developers host and distribute their release binaries using a self-service repository platform. Bintray also

supports sharing approved artifacts though the public repository to provide a single resolutionJCenter

address for all popular OSS Java artifacts (see).Section 23.6.2, “Maven JCenter repository”

This is a common reason why many projects prefer to store their libraries in their version control system.

This approach is fully supported by Gradle. The libraries can be stored in a flat directory without any XML

module descriptor files. Yet Gradle offers complete transitive dependency management. You can use either

client module dependencies to express the dependency relations, or artifact dependencies in case a first level

dependency has no transitive dependencies. People can check out such a project from your source code

control system and have everything necessary to build it.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo1.maven.org/maven2
http://bintray.com
http://jcenter.bintray.com

Page 201 of 573

If you are working with a distributed version control system like Git you probably don't want to use the

version control system to store libraries as people check out the whole history. But even here the flexibility

of Gradle can make your life easier. For example, you can use a shared flat directory without XML

descriptors and yet you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and

maintaining custom XML descriptors, then offer an alternative. However, you can still use aClient Modules

Maven2 repo or your custom repository as a repository for and still enjoy dependencyjars only transitive

management. Or you can only provide client modules for POMs with bad metadata. For the jars and the

correct POMs you still use the remote repository.

23.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies XML descriptor files. You can do thiswithout

with Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with

other build tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first

level dependencies and your transitive dependencies (see). TheSection 23.4.8, “Optional attributes”

problem with this is that Gradle dependency management will see this as specifying all dependencies as first

level dependencies. The dependency reports won't show your real dependency graph and the taskcompile

uses all dependencies, not just the first level dependencies. All in all, your build is less maintainable and

reliable than it could be when using client modules, and you don't gain anything.

[] 10 Gradle supports partial multiproject builds (see).Chapter 24, Multi-project Builds

[] 11 http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html

[] 12 At you can learn more about ivyhttp://ant.apache.org/ivy/history/latest-milestone/concept.html

patterns.

[] 13 If you want to shield your project from the downtimes of Maven Central things get more complicated.

You probably want to set-up a repository proxy for this. In an enterprise environment this is rather common.

For an open source project it looks like overkill.

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

Page 202 of 573

24
Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the

most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have

subprojects.

24.1. Cross project configuration
While each subproject could configure itself in complete isolation of the other subprojects, it is common that

subprojects share common traits. It is then usually preferable to share configurations among projects, so the

same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the

projects don't have to be Java projects. Our first examples are about marine life.

24.1.1. Configuration and execution

Section 20.1, “Build phases” describes the phases of every Gradle build. Let's zoom into the configuration

and execution phases of a multi-project build. Configuration here means executing the filebuild.gradle

of a project, which implies e.g. downloading all plugins that were declared using ' '. Byapply plugin

default, the configuration of all projects happens before any task is executed. This means that when a single

task, from a single project is requested, projects of multi-project build are configured first. The reasonall

every project needs to be configured is to support the flexibility of accessing and changing any part of the

Gradle project model.

24.1.1.1. Configuration on demand

The feature and access to the complete project model are possible because everyConfiguration injection

project is configured before the execution phase. Yet, this approach may not be the most efficient in a very

large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The

configuration time of huge multi-project builds may become noticeable. Scalability is an important

requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode

is introduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.

it only executes the file of projects that are participating in the build. This way, thebuild.gradle

configuration time of a large multi-project build can be reduced. In the long term, this mode will become the

default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is

Page 203 of 573

incubating so not every build is guaranteed to work correctly. The feature should work very well for

multi-project builds that have decoupled projects (). In “configuration onSection 24.9, “Decoupled Projects”

demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported

(allprojects or subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is

executed without any tasks. This way the default tasks behave correctly when projects are configured on

demand.

The standard project dependencies are supported and makes relevant projects configured. If project A

has a compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.

Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be

configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 11.1,

. To configure on demand just for a given build“Configuring the build environment via gradle.properties”

please see .Appendix D, Gradle Command Line

24.1.2. Defining common behavior

Let's look at some examples with the following project tree. This is a multi-project build with a root project

named and a subproject named .water bluewhale

Example 24.1. Multi-project tree - water & bluewhale projects

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/

Note: The code for this example can be found at samples/userguide/multiproject/firstExample/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include 'bluewhale'

And where is the build script for the project? In Gradle build scripts are optional. Obviouslybluewhale

for a single project build, a project without a build script doesn't make much sense. For multiproject builds

the situation is different. Let's look at the build script for the project and execute it:water

Page 204 of 573

Example 24.2. Build script of water (parent) project

build.gradle

Closure cl = { task -> println }"I'm $task.project.name"
task hello << cl
project() {':bluewhale'
 task hello << cl
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale

Gradle allows you to access any project of the multi-project build from any build script. The Project API

provides a method called , which takes a path as an argument and returns the Project object forproject()

this path. The capability to configure a project build from any build script we call cross project

. Gradle implements this via .configuration configuration injection

We are not that happy with the build script of the project. It is inconvenient to add the task explicitlywater

for every project. We can do better. Let's first add another project called to our multi-project build.krill

Example 24.3. Multi-project tree - water, bluewhale & krill projects

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 krill/

Note: The code for this example can be found at samples/userguide/multiproject/addKrill/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

Now we rewrite the build script and boil it down to a single line.water

Page 205 of 573

Example 24.4. Water project build script

build.gradle

allprojects {
 task hello << { task -> println }"I'm $task.project.name"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
I'm krill

Is this cool or is this cool? And how does this work? The Project API provides a property allprojects

which returns a list with the current project and all its subprojects underneath it. If you call allprojects

with a closure, the statements of the closure are delegated to the projects associated with .allprojects

You could also do an iteration via , but that would be more verbose.allprojects.each

Other build systems use inheritance as the primary means for defining common behavior. We also offer

inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of

defining common behavior. We think it provides a very powerful and flexible way of configuring

multiproject builds.

Another possibilty for sharing configuration is to use a common external script. See Section 41.3,

 for more information.“Configuring the project using an external build script”

24.2. Subproject configuration
The Project API also provides a property for accessing the subprojects only.

24.2.1. Defining common behavior

Example 24.5. Defining common behavior of all projects and subprojects

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
I'm krill
- I depend on water

Page 206 of 573

You may notice that there are two code snippets referencing the “ ” task. The first one, which uses thehello

“ ” keyword, constructs the task and provides it's base configuration. The second piece doesn't use the “task task

” keyword, as it is further configuring the existing “ ” task. You may only construct a task once in ahello

project, but you may add any number of code blocks providing additional configuration.

24.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior

in the build script of the project where we want to apply this specific behavior. But as we have already seen,

we don't have to do it this way. We could add project specific behavior for the project likebluewhale

this:

Example 24.6. Defining specific behaviour for particular project

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}
project().hello << {':bluewhale'
 println "- I'm the largest animal that has ever lived on this planet."
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's

refactor and also add some project specific behavior to the project.krill

Page 207 of 573

Example 24.7. Defining specific behaviour for project krill

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/spreadSpecifics/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

bluewhale/build.gradle

hello.doLast {
 println "- I'm the largest animal that has ever lived on this planet."
}

krill/build.gradle

hello.doLast {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.

24.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called andtropicalFish

add more behavior to the build via the build script of the project.water

Page 208 of 573

24.2.3.1. Filtering by name

Example 24.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle
 tropicalFish/

Note: The code for this example can be found at samples/userguide/multiproject/addTropical/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}
configure(subprojects.findAll {it.name != }) {'tropicalFish'
 hello << {println }'- I love to spend time in the arctic waters.'
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I love to spend time in the arctic waters.
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- I love to spend time in the arctic waters.
- The weight of my species in summer is twice as heavy as all human beings.
I'm tropicalFish
- I depend on water

The method takes a list as an argument and applies the configuration to the projects in thisconfigure()

list.

24.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See

 for more information on extra properties.)Section 16.4.2, “Extra properties”

Page 209 of 573

Example 24.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle
 tropicalFish/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/tropicalWithProperties/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

bluewhale/build.gradle

ext.arctic = true
hello.doLast {
 println "- I'm the largest animal that has ever lived on this planet."
}

krill/build.gradle

ext.arctic = true
hello.doLast {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

tropicalFish/build.gradle

ext.arctic = false

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello {
 doLast {println }"- I depend on water"
 afterEvaluate { Project project ->
 (project.arctic) { doLast {if
 println }'- I love to spend time in the arctic waters.'
 }
 }
 }
}

Output of gradle -q hello

Page 210 of 573

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

In the build file of the project we use an notification. This means that the closurewater afterEvaluate

we are passing gets evaluated the build scripts of the subproject are evaluated. As the property after arctic

is set in those build scripts, we have to do it this way. You will find more on this topic in Section 24.6,

“Dependencies - Which dependencies?”

24.3. Execution rules for multi-project builds
When we executed the task from the root project dir, things behaved in an intuitive way. All the hello hello

tasks of the different projects were executed. Let's switch to the dir and see what happens ifbluewhale

we execute Gradle from there.

Example 24.10. Running build from subproject

Output of gradle -q hello

> gradle -q hello
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.

The basic rule behind Gradle's behavior is simple. Gradle looks down the hierarchy, starting with the

, for tasks with the name and executes them. One thing is very important to note. Gradle current dir hello

 evaluates project of the multi-project build and creates all existing task objects. Then,always every

according to the task name arguments and the current dir, Gradle filters the tasks which should be executed.

Because of Gradle's cross project configuration project has to be evaluated before task getsevery any

executed. We will have a closer look at this in the next section. Let's now have our last marine example.

Let's add a task to and .bluewhale krill

Page 211 of 573

Example 24.11. Evaluation and execution of projects

bluewhale/build.gradle

ext.arctic = true
hello << { println }"- I'm the largest animal that has ever lived on this planet."

task distanceToIceberg << {
 println '20 nautical miles'
}

krill/build.gradle

ext.arctic = true
hello << {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

task distanceToIceberg << {
 println '5 nautical miles'
}

Output of gradle -q distanceToIceberg

> gradle -q distanceToIceberg
20 nautical miles
5 nautical miles

Here's the output without the option:-q

Example 24.12. Evaluation and execution of projects

Output of gradle distanceToIceberg

> gradle distanceToIceberg
:bluewhale:distanceToIceberg
20 nautical miles
:krill:distanceToIceberg
5 nautical miles

BUILD SUCCESSFUL

Total time: 1 secs

The build is executed from the project. Neither nor have a task with thewater water tropicalFish

name . Gradle does not care. The simple rule mentioned already above is: ExecutedistanceToIceberg

all tasks down the hierarchy which have this name. Only complain if there is such task!no

24.4. Running tasks by their absolute path
As we have seen, you can run a multi-project build by entering any subproject dir and execute the build

from there. All matching task names of the project hierarchy starting with the current dir are executed. But

Gradle also offers to execute tasks by their absolute path (see also):Section 24.5, “Project and task paths”

Page 212 of 573

Example 24.13. Running tasks by their absolute path

Output of gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello
I'm water
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

The build is executed from the project. We execute the tasks of the , the tropicalFish hello water krill

and the project. The first two tasks are specified by their absolute path, the last task istropicalFish

executed using the name matching mechanism described above.

24.5. Project and task paths
A project path has the following pattern: It starts with an optional colon, which denotes the root project. The

root project is the only project in a path that is not specified by its name. The rest of a project path is a

colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “ ”. Within a:bluewhale:hello

project you can address a task of the same project just by its name. This is interpreted as a relative path.

24.6. Dependencies - Which dependencies?
The examples from the last section were special, as the projects had no . They hadExecution Dependencies

only . The following sections illustrate the differences between these two typesConfiguration Dependencies

of dependencies.

Page 213 of 573

24.6.1. Execution dependencies

24.6.1.1. Dependencies and execution order

Example 24.14. Dependencies and execution order

Build layout

messages/
 settings.gradle
 consumer/
 build.gradle
 producer/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/firstMessages/messages

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action << {
 println()"Consuming message: ${rootProject.producerMessage}"
}

producer/build.gradle

task action << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q action

> gradle -q action
Consuming message: null
Producing message:

This didn't quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.

Therefore, Gradle will execute “ ” before “ ”. Let's try to:consumer:action :producer:action

solve this with a hack and rename the producer project to “ ”.aProducer

Page 214 of 573

Example 24.15. Dependencies and execution order

Build layout

messages/
 settings.gradle
 aProducer/
 build.gradle
 consumer/
 build.gradle

settings.gradle

include , 'consumer' 'aProducer'

aProducer/build.gradle

task action << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

consumer/build.gradle

task action << {
 println()"Consuming message: ${rootProject.producerMessage}"
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

We can show where this hack doesn't work if we now switch to the dir and execute the build.consumer

Example 24.16. Dependencies and execution order

Output of gradle -q action

> gradle -q action
Consuming message: null

The problem is that the two “ ” tasks are unrelated. If you execute the build from the “ ”action messages

project Gradle executes them both because they have the same name and they are down the hierarchy. In the

last example only one “ ” task was down the hierarchy and therefore it was the only task that wasaction

executed. We need something better than this hack.

Page 215 of 573

24.6.1.2. Declaring dependencies

Example 24.17. Declaring dependencies

Build layout

messages/
 settings.gradle
 consumer/
 build.gradle
 producer/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/messagesWithDependencies/messages

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action(dependsOn:) << {":producer:action"
 println()"Consuming message: ${rootProject.producerMessage}"
}

producer/build.gradle

task action << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

Running this from the directory gives:consumer

Example 24.18. Declaring dependencies

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

This is now working better because we have declared that the “ ” task in the “ ” projectaction consumer

has an on the “ ” task in the “ ” project.execution dependency action producer

Page 216 of 573

24.6.1.3. The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's

change the naming of our tasks and execute the build.

Example 24.19. Cross project task dependencies

consumer/build.gradle

task consume(dependsOn:) << {':producer:produce'
 println()"Consuming message: ${rootProject.producerMessage}"
}

producer/build.gradle

task produce << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message: Watch the order of execution.

24.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter land. We add aJava

property to the “ ” project and create a configuration time dependency from “ ” to “producer consumer producer

”.

Example 24.20. Configuration time dependencies

consumer/build.gradle

def message = rootProject.producerMessage

task consume << {
 println(+ message)"Consuming message: "
}

producer/build.gradle

rootProject.producerMessage = 'Watch the order of evaluation.'

Output of gradle -q consume

> gradle -q consume
Consuming message: null

The default order of projects is alphanumeric (for the same nesting level). Therefore the “evaluation consumer

” project is evaluated before the “ ” project and the “ ” value is set itproducer producerMessage after

Page 217 of 573

is read by the “ ” project. Gradle offers a solution for this.consumer

Example 24.21. Configuration time dependencies - evaluationDependsOn

consumer/build.gradle

evaluationDependsOn()':producer'

def message = rootProject.producerMessage

task consume << {
 println(+ message)"Consuming message: "
}

Output of gradle -q consume

> gradle -q consume
Consuming message: Watch the order of evaluation.

The use of the “ ” command results in the evaluation of the “ ”evaluationDependsOn producer

project the “ ” project is evaluated. This example is a bit contrived to show thebefore consumer

mechanism. In case there would be an easier solution by reading the key property at execution time.this

Example 24.22. Configuration time dependencies

consumer/build.gradle

task consume << {
 println()"Consuming message: ${rootProject.producerMessage}"
}

Output of gradle -q consume

> gradle -q consume
Consuming message: Watch the order of evaluation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies

are between projects whereas execution dependencies are always resolved to task dependencies. Also note

that all projects are always configured, even when you start the build from a subproject. The default

configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “evaluationDependsOnChildren()

” method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common

use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).

If you declare with a between different projects, the default behavior ofdependsOn execution dependency

this method is to also create a dependency between the two projects. Therefore it is likely thatconfiguration

you don't have to define configuration dependencies explicitly.

Page 218 of 573

24.6.3. Real life examples

Gradle's multi-project features are driven by real life use cases. One good example consists of two web

application projects and a parent project that creates a distribution including the two web applications. []14

For the example we use only one build script and do .cross project configuration

Example 24.23. Dependencies - real life example - crossproject configuration

Build layout

webDist/
 settings.gradle
 build.gradle
 date/
 src/main/java/
 org/gradle/sample/
 DateServlet.java
 hello/
 src/main/java/
 org/gradle/sample/
 HelloServlet.java

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/webDist

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'date' 'hello'

build.gradle

allprojects {
 apply plugin: 'java'
 group = 'org.gradle.sample'
 version = '1.0'
}

subprojects {
 apply plugin: 'war'
 repositories {
 mavenCentral()
 }
 dependencies {
 compile "javax.servlet:servlet-api:2.5"
 }
}

task explodedDist(type: Copy) {
 into "$buildDir/explodedDist"
 subprojects {
 from tasks.withType(War)
 }
}

We have an interesting set of dependencies. Obviously the and projects have a date hello configuration

Page 219 of 573

dependency on , as all the build logic for the webapp projects is injected by . The webDist webDist

 dependency is in the other direction, as depends on the build artifacts of and execution webDist date hello

. There is even a third dependency. has a dependency on and webDist configuration date hello

because it needs to know the . But it asks for this information at . ThereforearchivePath execution time

we have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system

does not support these patterns, you either can't solve your problem or you need to do ugly hacks which are

hard to maintain and massively impair your productivity as a build master.

24.7. Project lib dependencies
What if one project needs the jar produced by another project in its compile path, and not just the jar but also

the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project

builds. As already mentioned in , Gradle offers project libSection 23.4.3, “Project dependencies”

dependencies for this.

Example 24.24. Project lib dependencies

Build layout

java/
 settings.gradle
 build.gradle
 api/
 src/main/java/
 org/gradle/sample/
 api/
 Person.java
 apiImpl/
 PersonImpl.java
 services/personService/
 src/
 main/java/
 org/gradle/sample/services/
 PersonService.java
 test/java/
 org/gradle/sample/services/
 PersonServiceTest.java
 shared/
 src/main/java/
 org/gradle/sample/shared/
 Helper.java

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/java

in the ‘-all’ distribution of Gradle.

We have the projects “ ”, “ ” and “ ”. The “ ” project has ashared api personService personService

lib dependency on the other two projects. The “ ” project has a lib dependency on the “ ”api shared

project. []15

Page 220 of 573

Example 24.25. Project lib dependencies

settings.gradle

include , , 'api' 'shared' 'services:personService'

build.gradle

subprojects {
 apply plugin: 'java'
 group = 'org.gradle.sample'
 version = '1.0'
 repositories {
 mavenCentral()
 }
 dependencies {
 testCompile "junit:junit:4.12"
 }
}

project() {':api'
 dependencies {
 compile project()':shared'
 }
}

project() {':services:personService'
 dependencies {
 compile project(), project()':shared' ':api'
 }
}

All the build logic is in the “ ” file of the root project. A “ ” dependency is a specialbuild.gradle []16 lib

form of an execution dependency. It causes the other project to be built first and adds the jar with the classes

of the other project to the classpath. It also adds the dependencies of the other project to the classpath. So

you can enter the “ ” directory and trigger a “ ”. First the “ ” project is builtapi gradle compile shared

and then the “ ” project is built. Project dependencies enable partial multi-project builds.api

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers this to you:

Page 221 of 573

Example 24.26. Fine grained control over dependencies

build.gradle

subprojects {
 apply plugin: 'java'
 group = 'org.gradle.sample'
 version = '1.0'
}

project() {':api'
 configurations {
 spi
 }
 dependencies {
 compile project()':shared'
 }
 task spiJar(type: Jar) {
 baseName = 'api-spi'
 dependsOn classes
 from sourceSets.main.output
 include()'org/gradle/sample/api/**'
 }
 artifacts {
 spi spiJar
 }
}

project() {':services:personService'
 dependencies {
 compile project()':shared'
 compile project(path: , configuration:)':api' 'spi'
 testCompile , project()"junit:junit:4.12" ':api'
 }
}

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example

we create an library containing only the interfaces of the “ ” project. We assign this library toadditional api

a new . For the person service we declare that the project should be compiled onlydependency configuration

against the “ ” interfaces but tested with all classes from “ ”.api api

24.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partial build. To disable the build

of the depended on projects you can run Gradle with the option.-a

24.8. Parallel project execution
With more and more CPU cores available on developer desktops and CI servers, it is important that Gradle

is able to fully utilise these processing resources. More specifically, the parallel execution attempts to:

Reduce total build time for a multi-project build where execution is IO bound or otherwise does not

consume all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.

Page 222 of 573

Although Gradle already offers parallel test execution via the featureTest.setMaxParallelForks()

described in this section is parallel execution at a project level. Parallel execution is an incubating feature.

Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in

parallel (see also:). While parallel execution does not strictly requireSection 24.9, “Decoupled Projects”

decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be

available for fully decoupled projects. Such features include:

Section 24.1.1.1, “Configuration on demand”.

Configuration of projects in parallel.

Re-use of configuration for unchanged projects.

Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use the parallel mode. You can use the

command line argument () or configure your build environment (Appendix D, Gradle Command Line

). Unless you provide a specificSection 11.1, “Configuring the build environment via gradle.properties”

number of parallel threads Gradle attempts to choose the right number based on available CPU cores. Every

parallel worker exclusively owns a given project while executing a task. This means that 2 tasks from the

same project are never executed in parallel. Therefore only multi-project builds can take advantage of

parallel execution. Task dependencies are fully supported and parallel workers will start executing upstream

tasks first. Bear in mind that the alphabetical scheduling of decoupled tasks, known from the sequential

execution, does not really work in parallel mode. You need to make sure the task dependencies are declared

correctly to avoid ordering issues.

24.9. Decoupled Projects
Gradle allows any project to access any other project during both the configuration and execution phases.

While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that

Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly

building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built

artifact in place of a project dependency.

Two projects are said to be if they do not directly access each other's project model. Decoupleddecoupled

projects may only interact in terms of declared dependencies: project dependencies (Section 23.4.3, “Project

) and/or task dependencies (). Any other form of projectdependencies” Section 14.5, “Task dependencies”

interaction (i.e. by modifying another project object or by reading a value from another project object)

causes the projects to be coupled. The consequence of coupling during the configuration phase is that if

gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in several

ways. The consequence of coupling during execution phase is that if gradle is invoked with the parallel

option, one project task runs too late to influence a task of a project building in parallel. Gradle does not

attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 24.1, “Cross

). It may not be immediately apparent, but using key Gradle features like the project configuration” allprojects

and keywords automatically cause your projects to be coupled. This is because thesesubprojects

keywords are used in a file, which defines a project. Often this is a “root project” thatbuild.gradle

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)

Page 223 of 573

does nothing more than define common configuration, but as far as Gradle is concerned this root project is

still a fully-fledged project, and by using that project is effectively coupled to all otherallprojects

projects. Coupling of the root project to subprojects does not impact 'configuration on demand', but using the

 and in any subproject's file will have an impact.allprojects subprojects build.gradle

This means that using any form of shared build script logic or configuration injection (, allprojects subprojects

, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide

features that take advantage of decoupled projects, we will also introduce new features to help you to solve

common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and

'configuration on demand' options, follow these recommendations:

Avoid a subproject's referencing other subprojects; prefering cross configuration frombuild.gradle

the root project.

Avoid changing the configuration of other projects at execution time.

24.10. Multi-Project Building and Testing
The task of the Java plugin is typically used to compile, test, and perform code style checks (if thebuild

CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these

tasks across a range of projects. The and tasks can help with this.buildNeeded buildDependents

Look at . In this example, the “Example 24.25, “Project lib dependencies” :services:personservice

” project depends on both the “ ” and “ ” projects. The “ ” project also depends on the “:api :shared :api :shared

” project.

Assume you are working on a single project, the “ ” project. You have been making changes, but have:api

not built the entire project since performing a clean. You want to build any necessary supporting jars, but

only perform code quality and unit tests on the project you have changed. The task does this.build

Page 224 of 573

Example 24.27. Build and Test Single Project

Output of gradle :api:build

> gradle :api:build
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build

BUILD SUCCESSFUL

Total time: 1 secs

While you are working in a typical development cycle repeatedly building and testing changes to the “:api

” project (knowing that you are only changing files in this one project), you may not want to even suffer the

expense of building “ ” to see what has changed in the “ ” project. Adding:shared:compile :shared

the “ ” option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to-a

re-build the depended on projects.

Example 24.28. Partial Build and Test Single Project

Output of gradle -a :api:build

> gradle -a :api:build
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build

BUILD SUCCESSFUL

Total time: 1 secs

If you have just gotten the latest version of source from your version control system which included changes

in other projects that “ ” depends on, you might want to not only build all the projects you depend on,:api

but test them as well. The task also tests all the projects from the project lib dependenciesbuildNeeded

of the testRuntime configuration.

Page 225 of 573

Example 24.29. Build and Test Depended On Projects

Output of gradle :api:buildNeeded

> gradle :api:buildNeeded
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build
:shared:assemble
:shared:compileTestJava
:shared:processTestResources
:shared:testClasses
:shared:test
:shared:check
:shared:build
:shared:buildNeeded
:api:buildNeeded

BUILD SUCCESSFUL

Total time: 1 secs

You also might want to refactor some part of the “ ” project that is used in other projects. If you make:api

these types of changes, it is not sufficient to test just the “ ” project, you also need to test all projects:api

that depend on the “ ” project. The task also tests all the projects that have a:api buildDependents

project lib dependency (in the testRuntime configuration) on the specified project.

Page 226 of 573

Example 24.30. Build and Test Dependent Projects

Output of gradle :api:buildDependents

> gradle :api:buildDependents
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build
:services:personService:compileJava
:services:personService:processResources
:services:personService:classes
:services:personService:jar
:services:personService:assemble
:services:personService:compileTestJava
:services:personService:processTestResources
:services:personService:testClasses
:services:personService:test
:services:personService:check
:services:personService:build
:services:personService:buildDependents
:api:buildDependents

BUILD SUCCESSFUL

Total time: 1 secs

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder

will cause that same named task to be run on all the children. So you can just run “ ” togradle build

build and test all projects.

24.11. Multi Project and buildSrc
 tells us that we can place build logic to be compiledSection 41.4, “Build sources in the project”buildSrc

and tested in the special directory. In a multi project build, there can only be one buildSrc buildSrc

directory which must be located in the root directory.

24.12. Property and method inheritance
Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to

configuration injection. But we think that the model of inheritance does not reflect the problem space of

multi-project builds very well. In a future edition of this user guide we might write more about this.

Page 227 of 573

Method inheritance might be interesting to use as Gradle's does not supportConfiguration Injection

methods yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don't like that much. One reason

is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we

like to offer our users a choice.

24.13. Summary
Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for

this chapter is that multi-project builds with Gradle are usually difficult. There are five elements younot

need to remember: , , , allprojects subprojects evaluationDependsOn evaluationDependsOnChildren

and project lib dependencies. With those elements, and keeping in mind that Gradle has a distinct[]17

configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory

Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[] 14 The real use case we had, was using , where you need a separate war forhttp://lucene.apache.org/solr

each index you are accessing. That was one reason why we have created a distribution of webapps. The

Resin servlet container allows us, to let such a distribution point to a base installation of the servlet

container.

[] 15 “ ” is also a project, but we use it just as a container. It has no build script and gets nothingservices

injected by another build script.

[] 16 We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the

build script of the respective projects.

[] 17 So we are well in the range of the :)7 plus 2 Rule

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Page 228 of 573

25
Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like

the ability to compile Java code, are added by . Plugins add new tasks (e.g.),plugins JavaCompile

domain objects (e.g.), conventions (e.g. Java source is located at) as wellSourceSet src/main/java

as extending core objects and objects from other plugins.

In this chapter we will discuss how to use plugins and the terminology and concepts surrounding plugins.

25.1. What plugins do
Applying a plugin to a project allows the plugin to extend the project's capabilities. It can do things such as:

Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.

Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects

Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

25.2. Types of plugins
There are two general types of plugins in Gradle, plugins and plugins. Script plugins arescript binary

additional build scripts that further configure the build and usually implement a declarative approach to

manipulating the build. They are typically used within a build although they can be externalized and

accessed from a remote location. Binary plugins are classes that implement the interface and adoptPlugin

a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within

the project hierarchy or externally in a plugin jar.

25.3. Applying plugins
Plugins are said to be , which is done via the method. The application ofapplied Project.apply()

plugins is . That is, the same plugin can be applied multiple times. If the plugin has previouslyidempotent

been applied, any further applications are safe and will have no effect.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)

Page 229 of 573

25.3.1. Script plugins

Example 25.1. Applying a script plugin

build.gradle

apply from: 'other.gradle'

Script plugins can be applied from a script on the local filesystem or at a remote location. Filesystem

locations are relative to the project directory, while remote script locations are specified with an HTTP

URL. Multiple script plugins (of either form) can be applied to a given build.

25.3.2. Binary plugins

Example 25.2. Applying a binary plugin

build.gradle

apply plugin: 'java'

Plugins can be applied using a . The plugin id serves as a unique identifier for a given plugin. Coreplugin id

plugins register a short name that can be used as the plugin id. In the above case, we are using the short

name ‘ ’ to apply the . Community plugins, on the other hand, use a fully qualified formjava JavaPlugin

for the plugin id (e.g.), although some legacy plugins may still utilize a short,com.github.foo.bar

unqualified form.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:

Example 25.3. Applying a binary plugin by type

build.gradle

apply plugin: JavaPlugin

The symbol in the above sample refers to the the . This class does not strictlyJavaPlugin JavaPlugin

need to be imported as the package is automatically imported in all buildorg.gradle.api.plugins

scripts (see). Furthermore, it is not necessary to append to identifySection 16.8, “Default imports” .class

a class literal in Groovy as it is in Java.

25.3.2.1. Locations of binary plugins

A plugin is simply any class that implements the interface. Gradle provides the core plugins as partPlugin

of its distribution so simply applying the plugin as above is all you need to do. However, non-core binary

plugins need to be available to the build classpath before they can be applied. This can be achieved in a

number of ways, including:

Defining the plugin as an inline class declaration inside a build script.

Defining the plugin as a source file under the buildSrc directory in the project (see Section 41.4, “Build

).sources in the project”buildSrc

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html

Page 230 of 573

Including the plugin from an external jar defined as a buildscript dependency (see Section 25.4,

).“Applying plugins with the buildscript block”

Including the plugin from the plugin portal using the plugins DSL (see Section 25.5, “Applying plugins

).with the plugins DSL”

For more on defining your own plugins, see .Chapter 39, Writing Custom Plugins

25.4. Applying plugins with the buildscript block
Binary plugins that have been published as external jar files can be added to a project by adding the plugin

to the build script classpath and then applying the plugin. External jars can be added to the build script

classpath using the block as described in buildscript {} Section 41.6, “External dependencies for the

.build script”

Example 25.4. Applying a plugin with the buildscript block

build.gradle

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:0.4.1"
 }
}

apply plugin: "com.jfrog.bintray"

25.5. Applying plugins with the plugins DSL

The plugins DSL is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The new plugins DSL provides a more succinct and convenient way to declare plugin dependencies. It

works with the new to provide easy access to both core and community plugins. TheGradle plugin portal

plugins script block configures an instance of .PluginDependenciesSpec

To apply a core plugin, the short name can be used:

Example 25.5. Applying a core plugin

build.gradle

plugins {
 id 'java'
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

http://plugins.gradle.org
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Page 231 of 573

Example 25.6. Applying a community plugin

build.gradle

plugins {
 id version "com.jfrog.bintray" "0.4.1"
}

No further configuration is necessary. Specifically, there is no need to configure the buildscript classpath.

Gradle will resolve the plugin in the plugin portal, locate it, and make it available to the build.

See for more information on using the Plugin DSL.PluginDependenciesSpec

25.5.1. Limitations of the plugins DSL

The new way to add plugins to a project is much more than a more convenient syntax. The new DSL is

processed very differently to the old one. The new mechanism allows Gradle to determine the plugins in use

very early and very quickly. This allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.

Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for

editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing

the rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” methodapply()

mechanism. There are also some constraints, some of which are temporary limitations while the mechanism

is still being developed and some are inherent to the new approach.

25.5.1.1. Constrained Syntax

The new block does not support arbitrary Groovy code. It is constrained, in order to beplugins {}

idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

The form is:

plugins {
 id «plugin id» version «plugin version»
}

Where and must be constant, literal, strings. No other statements«plugin version» «plugin id»

are allowed; their presence will cause a compilation error.

The block must also be a top level statement in the buildscript. It cannot be nested insideplugins {}

another construct (e.g. an if-statement or for-loop).

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Page 232 of 573

25.5.1.2. Can only be used in build scripts

The block can currently only be used in a project's build script. It cannot be used in scriptplugins {}

plugins, the settings.gradle file or init scripts.

Future versions of Gradle will remove this restriction.

25.5.1.3. Cannot be used in conjunction with subprojects {}, allprojects {}, etc

It is not possible to use the familiar pattern of applying a plugin to multiple projects at once using

, etc at the moment. There is currently no mechanism for applying a plugin to multiplesubprojects {}

projects at once. At the moment, each project that requires a plugin must declare so in the plugins {}

block in its buildscript.

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the buildscript {} block

.

25.6. Finding community plugins
Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of

capabilities. The Gradle provides an interface for searching and exploring community plugins.plugin portal

25.7. More on plugins
This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more

information on the inner workings of plugins, see .Chapter 39, Writing Custom Plugins

http://plugins.gradle.org

Page 233 of 573

26
Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

26.1. Language plugins
These plugins add support for various languages which can be compiled for and executed in the JVM.

Table 26.1. Language plugins

Plugin

Id

Automatically

applies

Works

with

Description

java java-base - Adds Java compilation, testing and bundling capabilities to

a project. It serves as the basis for many of the other Gradle

plugins. See also .Chapter 44, Java Quickstart

groovy java, groovy-base- Adds support for building Groovy projects. See also

.Chapter 52, Groovy Quickstart

scala java, scala-base- Adds support for building Scala projects.

antlr java - Adds support for generating parsers using .Antlr

26.2. Incubating language plugins
These plugins add support for various languages:

http://www.antlr.org/

Page 234 of 573

Table 26.2. Language plugins

Plugin Id Automatically

applies

Works

with

Description

assembler - - Adds native assembly language capabilities

to a project.

c - - Adds C source compilation capabilities to a

project.

cpp - - Adds C++ source compilation capabilities

to a project.

objective-c - - Adds Objective-C source compilation

capabilities to a project.

objective-cpp - - Adds Objective-C++ source compilation

capabilities to a project.

windows-resources - - Adds support for including Windows

resources in native binaries.

26.3. Integration plugins
These plugins provide some integration with various runtime technologies.

Page 235 of 573

Table 26.3. Integration plugins

Plugin Id Automatically

applies

Works

with

Description

application , java distribution- Adds tasks for running and bundling a Java project

as a command-line application.

ear - java Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web

container embedded in the build. See also

.Chapter 46, Web Application Quickstart

maven - java,

war

Adds support for publishing artifacts to Maven

repositories.

osgi java-base java Adds support for building OSGi bundles.

war java - Adds support for assembling web application

WAR files. See also Chapter 46, Web Application

.Quickstart

26.4. Incubating integration plugins
These plugins provide some integration with various runtime technologies.

Page 236 of 573

Table 26.4. Incubating integration plugins

Plugin Id Automatically

applies

Works

with

Description

distribution - - Adds support for building

ZIP and TAR distributions.

java-library-distribution java, distribution- Adds support for building

ZIP and TAR distributions

for a Java library.

ivy-publish - java,

war

This plugin provides a new

DSL to support publishing

artifacts to Ivy repositories,

which improves on the

existing DSL.

maven-publish - java,

war

This plugin provides a new

DSL to support publishing

artifacts to Maven

repositories, which improves

on the existing DSL.

26.5. Software development plugins
These plugins provide help with your software development process.

Table 26.5. Software development plugins

Plugin Id Automatically

applies

Works

with

Description

announce - - Publish messages to your

favourite platforms, such as

Twitter or Growl.

build-announcements announce - Sends local announcements to

your desktop about interesting

events in the build lifecycle.

checkstyle java-base - Performs quality checks on your

project's Java source files using

 and generates reportsCheckstyle

from these checks.

http://checkstyle.sourceforge.net/index.html

Page 237 of 573

codenarc groovy-base - Performs quality checks on your

project's Groovy source files

using and generatesCodeNarc

reports from these checks.

eclipse - java,groovy

, scala

Generates files that are used by

, thus making itEclipse IDE

possible to import the project

into Eclipse. See also

.Chapter 44, Java Quickstart

eclipse-wtp - ear, war Does the same as the eclipse

plugin plus generates eclipse

WTP (Web Tools Platform)

configuration files. After

importing to eclipse your

war/ear projects should be

configured to work with WTP.

See also Chapter 44, Java

.Quickstart

findbugs java-base - Performs quality checks on your

project's Java source files using

 and generates reportsFindBugs

from these checks.

idea - java Generates files that are used by

, thus makingIntellij IDEA IDE

it possible to import the project

into IDEA.

jdepend java-base - Performs quality checks on your

project's source files using

 and generates reportsJDepend

from these checks.

pmd java-base - Performs quality checks on your

project's Java source files using

 and generates reports fromPMD

these checks.

project-report reporting-base - Generates reports containing

useful information about your

Gradle build.

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

Page 238 of 573

signing base - Adds the ability to digitally sign

built files and artifacts.

sonar - java-base,

java,

jacoco

Provides integration with the

 code quality platform.Sonar

Superceeded by the sonar-runner

plugin.

26.6. Incubating software development plugins
These plugins provide help with your software development process.

Table 26.6. Software development plugins

Plugin Id Automatically

applies

Works

with

Description

build-dashboard reporting-base - Generates build dashboard report.

build-init wrapper - Adds support for initializing a new

Gradle build. Handles converting a

Maven build to a Gradle build.

cunit - - Adds support for running tests.CUnit

jacoco reporting-base java Provides integration with the JaCoCo

code coverage library for Java.

sonar-runner - java-base,

java,

jacoco

Provides integration with the Sonar

code quality platform. Supersedes the sonar

plugin.

visual-studio - native

language

plugins

Adds integration with Visual Studio.

wrapper - - Adds a task for generatingWrapper

Gradle wrapper files.

java-gradle-plugin java Assists with development of Gradle

plugins by providing standard plugin

build configuration and validation.

http://www.sonarsource.org
http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.sonarsource.org
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 239 of 573

26.7. Base plugins
These plugins form the basic building blocks which the other plugins are assembled from. They are

available for you to use in your build files, and are listed here for completeness. However, be aware that

they are not yet considered part of Gradle's public API. As such, these plugins are not documented in the

user guide. You might refer to their API documentation to learn more about them.

Table 26.7. Base plugins

Plugin Id Description

base Adds the standard lifecycle tasks and configures reasonable defaults for the archive

tasks:

adds build tasks. Those tasks assemble the artifactsConfigurationName

belonging to the specified configuration.

adds upload tasks. Those tasks assemble and upload theConfigurationName

artifacts belonging to the specified configuration.

configures reasonable default values for all archive tasks (e.g. tasks that inherit

from). For example, the archive tasks are tasks ofAbstractArchiveTask

types: , , . Specifically, , and Jar Tar Zip destinationDir baseName version

properties of the archive tasks are preconfigured with defaults. This is extremely

useful because it drives consistency across projects; the consistency regarding

naming conventions of archives and their location after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.

groovy-base Adds the Groovy source sets concept to the project.

scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

26.8. Third party plugins
You can find a list of external plugins at the .Gradle Plugins site

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

Page 240 of 573

27
The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful

information about your build. These tasks generate the same content that you get by executing the , tasks dependencies

, and tasks from the command line (see properties Section 4.6, “Obtaining information about your

). In contrast to the command line reports, the report plugin generates the reports into a file. There isbuild”

also an aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

27.1. Usage
To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report'

27.2. Tasks
The project report plugin defines the following tasks:

Page 241 of 573

Table 27.1. Project report plugin - tasks

Task name Depends on Type Description

dependencyReport - DependencyReportTask Generates

the project

dependency

report.

htmlDependencyReport - HtmlDependencyReportTask Generates

an HTML

dependency

and

dependency

insight

report for

the project

or a set of

projects.

propertyReport - PropertyReportTask Generates

the project

property

report.

taskReport - TaskReportTask Generates

the project

task report.

projectReport , dependencyReport propertyReport

, , taskReport htmlDependencyReport

Task Generates

all project

reports.

27.3. Project layout
The project report plugin does not require any particular project layout.

27.4. Dependency management
The project report plugin does not define any dependency configurations.

27.5. Convention properties
The project report defines the following convention properties:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html

Page 242 of 573

Table 27.2. Project report plugin - convention properties

Property name Type Default value Description

reportsDirName String reports The name of

the directory

to generate

reports into,

relative to the

build

directory.

reportsDir (read-only)File /buildDir reportsDirNameThe directory

to generate

reports into.

projects Set<Project> A one element set with the

project the plugin was

applied to.

The projects

to generate the

reports for.

projectReportDirName String project The name of

the directory

to generate the

project report

into, relative

to the reports

directory.

projectReportDir (read-only)File /reportsDir projectReportDirNameThe directory

to generate the

project report

into.

These convention properties are provided by a convention object of type

.ProjectReportsPluginConvention

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

Page 243 of 573

28
The Build Dashboard Plugin

The build dashboard plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point

of access to all of the reports generated by a build.

28.1. Usage
To use the Build Dashboard plugin, include the following in your build script:

Example 28.1. Using the Build Dashboard plugin

build.gradle

apply plugin: 'build-dashboard'

Applying the plugin adds the task to your project. The task aggregates the reports forbuildDashboard

all tasks that implement the interface from in the build. It is typically only appliedReporting all projects

to the root project.

The task does not depend on any other tasks. It will only aggregate the reporting tasksbuildDashboard

that are independently being executed as part of the build run. To generate the build dashboard, simply

include this task in the list of tasks to execute. For example, “ ” willgradle buildDashboard build

generate a dashboard for all of the reporting tasks that are dependents of the task.build

28.2. Tasks
The Build Dashboard plugin adds the following task to the project:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.reporting.Reporting.html

Page 244 of 573

Table 28.1. Build Dashboard plugin - tasks

Task name Depends

on

Type Description

buildDashboard - GenerateBuildDashboard Generates build dashboard

report.

28.3. Project layout
The Build Dashboard plugin does not require any particular project layout.

28.4. Dependency management
The Build Dashboard plugin does not define any dependency configurations.

28.5. Configuration
You can influence the location of build dashboard plugin generation via .ReportingExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.reporting.ReportingExtension.html

Page 245 of 573

29
Comparing Builds

Build comparison support is an feature. This means that it is incomplete and not yet atincubating

regular Gradle production quality. This also means that this Gradle User Guide chapter is a work in

progress.

Gradle provides support for comparing the (e.g. the produced binary archives) of two builds.outcomes

There are several reasons why you may want to compare the outcomes of two builds. You may want to

compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something

else (i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build

changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,

migration to Gradle or build change by understanding the differences in the outcomes. The comparison

process produces a HTML report outlining which outcomes were found to be identical and identifying the

differences between non-identical outcomes.

29.1. Definition of terms
The following are the terms used for build comparison and their definitions.

“Build”

In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable

“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a

Gradle build.

“Build Outcome”

Something that happens in an observable manner during a build, such as the creation of a zip file or test

execution. These are the things that are compared.

“Source Build”

The build that comparisons are being made against, typically the build in its “current” state. In other

words, the left hand side of the comparison.

Page 246 of 573

“Target Build”

The build that is being compared to the source build, typically the “proposed” build. In other words, the

right hand side of the comparison.

“Host Build”

The Gradle build that executes the comparison process. It may be the same project as either the “target”

or “source” build or may be a completely separate project. It does not need to be the same Gradle

version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”

Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are

therefore meaningfully comparable.

“Uncompared Build Outcome”

A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build

produces a zip file that the other build does not).

“Unknown Build Outcome”

A build outcome that cannot be understood by the host build. This can occur when the source or target

build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.

Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent

to an unknown build outcome in the other build, but no meaningful comparison of what the build

outcome actually is can be performed. Using the latest Gradle version for the host build will avoid

encountering unknown build outcomes.

29.2. Current Capabilities
As this is an feature, a limited set of the eventual functionality has been implemented at this time.incubating

29.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must

execute with Gradle newer or equal to version . The host build must be at least version .1.0 1.2

Future versions will provide support for executing builds from other build systems such as Apache Ant or

Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

29.2.2. Supported build outcomes

Only support for comparing build outcomes that are archives is supported at this time. This includes zip jar

, and archives.war ear

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were

executed, which tests failed, etc.)

Page 247 of 573

29.3. Comparing Gradle Builds
The plugin can be used to facilitate a comparison between two Gradlecompare-gradle-builds

builds. The plugin adds a task named “ ” to theCompareGradleBuilds compareGradleBuilds

project. The configuration of this task specifies what is to be compared. By default, it is configured to

compare the current build with itself using the current Gradle version by executing the tasks: “clean assemble

”.

apply plugin: 'compare-gradle-builds'

This task can be configured to change what is compared.

compareGradleBuilds {
 sourceBuild {
 projectDir "/projects/project-a"
 gradleVersion "1.1"
 }
 targetBuild {
 projectDir "/projects/project-b"
 gradleVersion "1.2"
 }
}

The example above specifies a comparison between two different projects using two different Gradle

versions.

29.3.1. Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the build.gradle

of the .root project

apply plugin: 'compare-gradle-builds'

compareGradleBuilds {
 targetBuild.gradleVersion = "«gradle version»"
}

Then simply execute the task. You will see the console output of the “source” andcompareGradleBuilds

“target” builds as they are executing.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

Page 248 of 573

29.3.2. The comparison “result”

If there are any differences between the , the task will fail. The location of the HTMLcompared outcomes

report providing insight into the comparison will be given. If all compared outcomes are found to be

identical, and there are no uncompared outcomes, and there are no unknown build outcomes, the task will

succeed.

You can configure the task to not fail on compared outcome differences by setting the ignoreFailures

property to true.

compareGradleBuilds {
 ignoreFailures = true
}

29.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.

Take a look at for more information on how to configure and add artifacts.Chapter 30, Publishing artifacts

The archive must also have been produced by a , , , task. Future versions of Gradle willZip Jar War Ear

support increased flexibility in this area.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 249 of 573

30
Publishing artifacts

This chapter describes the publishing mechanism available in Gradle 1.0: in Gradle 1.3 aoriginal

new mechanism for publishing was introduced. While this new mechanism is and not yetincubating

complete, it introduces some new concepts and features that do (and will) make Gradle publishing

even more powerful.

You can read about the new publishing plugins in and Chapter 33, Ivy Publishing (new) Chapter 34,

. Please try them out and give us feedback.Maven Publishing (new)

30.1. Introduction
This chapter is about how you declare the outgoing artifacts of your project, and how to work with them

(e.g. upload them). We define the artifacts of the projects as the files the project provides to the outside

world. This might be a library or a ZIP distribution or any other file. A project can publish as many artifacts

as it wants.

30.2. Artifacts and configurations
Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts

and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks and uploadConfigurationName buildConfigurationName

. Execution of these tasks will build or upload the artifacts belonging to the respective configuration.[]18

Table 45.5, “Java plugin - dependency configurations” shows the configurations added by the Java plugin.

Two of the configurations are relevant for the usage with artifacts. The configuration is thearchives

standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to

this configuration. We will talk more about the configuration in runtime Section 30.5, “More about

. As with dependencies, you can declare as many custom configurations as you like andproject libraries”

assign artifacts to them.

Page 250 of 573

30.3. Declaring artifacts

30.3.1. Archive task artifacts

You can use an archive task to define an artifact:

Example 30.1. Defining an artifact using an archive task

build.gradle

task myJar(type: Jar)

artifacts {
 archives myJar
}

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

30.3.2. File artifacts

You can also use a file to define an artifact:

Example 30.2. Defining an artifact using a file

build.gradle

def someFile = file()'build/somefile.txt'

artifacts {
 archives someFile
}

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Example 30.3. Customizing an artifact

build.gradle

task myTask(type: MyTaskType) {
 destFile = file()'build/somefile.txt'
}

artifacts {
 archives(myTask.destFile) {
 name 'my-artifact'
 type 'text'
 builtBy myTask
 }
}

Page 251 of 573

There is a map-based syntax for defining an artifact using a file. The map must include a entry thatfile

defines the file. The map may include other artifact properties:

Example 30.4. Map syntax for defining an artifact using a file

build.gradle

task generate(type: MyTaskType) {
 destFile = file()'build/somefile.txt'
}

artifacts {
 archives file: generate.destFile, name: , type: , builtBy: generate'my-artifact' 'text'
}

30.4. Publishing artifacts
We have said that there is a specific upload task for each configuration. Before you can do an upload, you

have to configure the upload task and define where to publish the artifacts to. The repositories you have

defined (as described in) are not automatically used for uploading. In fact,Section 23.6, “Repositories”

some of those repositories only allow downloading artifacts, not uploading. Here is an example of how you

can configure the upload task of a configuration:

Example 30.5. Configuration of the upload task

build.gradle

repositories {
 flatDir {
 name "fileRepo"
 dirs "repo"
 }
}

uploadArchives {
 repositories {
 add project.repositories.fileRepo
 ivy {
 credentials {
 username "username"
 password "pw"
 }
 url "http://repo.mycompany.com"
 }
 }
}

As you can see, you can either use a reference to an existing repository or create a new repository. As

described in , you can use all the Ivy resolvers suitable for theSection 23.6.9, “More about Ivy resolvers”

purpose of uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading

each file. By default, Gradle will upload to the pattern defined by the parameter, combined with theurl

Page 252 of 573

optional parameter. If no parameter is supplied, then Gradle will use the first defined layout url artifactPattern

for uploading, or the first defined for uploading Ivy files, if this is set.ivyPattern

Uploading to a Maven repository is described in .Section 31.6, “Interacting with Maven repositories”

30.5. More about project libraries
If your project is supposed to be used as a library, you need to define what are the artifacts of this library and

what are the dependencies of these artifacts. The Java plugin adds a configuration for thisruntime

purpose, with the implicit assumption that the dependencies are the dependencies of the artifactruntime

you want to publish. Of course this is fully customizable. You can add your own custom configuration or let

the existing configurations extend from other configurations. You might have a different group of artifacts

which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the

dependency to depend on. A Gradle dependency offers the property to declare this. Ifconfiguration

this is not specified, the configuration is used (see).default Section 23.4.9, “Dependency configurations”

Using your project as a library can either happen from within a multi-project build or by retrieving your

project from a repository. In the latter case, an descriptor in the repository is supposed to containivy.xml

all the necessary information. If you work with Maven repositories you don't have the flexibility as

described above. For how to publish to a Maven repository, see the section Section 31.6, “Interacting with

.Maven repositories”

[] 18 To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the

Java plugin.

Page 253 of 573

31
The Maven Plugin

This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

31.1. Usage
To use the Maven plugin, include the following in your build script:

Example 31.1. Using the Maven plugin

build.gradle

apply plugin: 'maven'

31.2. Tasks
The Maven plugin defines the following tasks:

Table 31.1. Maven plugin - tasks

Task

name

Depends

on

Type Description

install All tasks

that build

the

associated

archives.

Upload Installs the associated artifacts to the local Maven cache,

including Maven metadata generation. By default the install

task is associated with the configuration. Thisarchives

configuration has by default only the default jar as an element.

To learn more about installing to the local repository, see:

Section 31.6.3, “Installing to the local repository”

31.3. Dependency management
The Maven plugin does not define any dependency configurations.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Upload.html

Page 254 of 573

31.4. Convention properties
The Maven plugin defines the following convention properties:

Table 31.2. Maven plugin - properties

Property name Type Default value Description

mavenPomDir File /poms${project.buildDir} The directory

where the

generated POMs

are written to.

conf2ScopeMappings Conf2ScopeMappingContainer n/a Instructions for

mapping Gradle

configurations

to Maven

scopes. See

Section 31.6.4.2,

“Dependency

.mapping”

These properties are provided by a convention object.MavenPluginConvention

31.5. Convention methods
The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without

the context of uploading to a Maven repo.

Example 31.2. Creating a stand alone pom.

build.gradle

task writeNewPom << {
 pom {
 project {
 inceptionYear '2008'
 licenses {
 license {
 name 'The Apache Software License, Version 2.0'
 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 distribution 'repo'
 }
 }
 }
 }.writeTo()"$buildDir/newpom.xml"
}

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the

Gradle Maven POM object, see . See also: MavenPom MavenPluginConvention

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.MavenPluginConvention.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Page 255 of 573

31.6. Interacting with Maven repositories

31.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This

includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's

deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle can

generate this POM for you using the dependency information it has.

31.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote

Maven repository.

Example 31.3. Upload of file to remote Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 }
 }
}

That is all. Calling the task will generate the POM and deploys the artifact and theuploadArchives

POM to the specified repository.

There is more work to do if you need support for protocols other than . In this case the native Mavenfile

code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you

plan to use. The available protocols and the corresponding libraries are listed in Table 31.3, “Protocol jars

 (those libraries have transitive dependencies which have transitive dependencies). for Maven deployment” [

 For example, to use the ssh protocol you can do:]19

Page 256 of 573

Example 31.4. Upload of file via SSH

build.gradle

configurations {
 deployerJars
}

repositories {
 mavenCentral()
}

dependencies {
 deployerJars "org.apache.maven.wagon:wagon-ssh:2.2"
}

uploadArchives {
 repositories.mavenDeployer {
 configuration = configurations.deployerJars
 repository(url:) {"scp://repos.mycompany.com/releases"
 authentication(userName: , password:)"me" "myPassword"
 }
 }
}

There are many configuration options for the Maven deployer. The configuration is done via a Groovy

builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the

bean elements. To add bean elements to its parent, you use a closure. In the example above and repository

 are such bean elements. listsauthentication Table 31.4, “Configuration elements of the MavenDeployer”

the available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you can see

the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is

defined, releases and snapshots are both deployed to the element. Otherwise snapshots arerepository

deployed to the element.snapshotRepository

Table 31.3. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:2.2

ssh org.apache.maven.wagon:wagon-ssh:2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2

webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2

file -

Page 257 of 573

Table 31.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDeployer

repository org.apache.maven.artifact.ant.RemoteRepository

authentication org.apache.maven.artifact.ant.Authentication

releases org.apache.maven.artifact.ant.RepositoryPolicy

snapshots org.apache.maven.artifact.ant.RepositoryPolicy

proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

31.6.3. Installing to the local repository

The Maven plugin adds an task to your project. This task depends on all the archives task of the install archives

configuration. It installs those archives to your local Maven repository. If the default location for the local

repository is redefined in a Maven , this is considered by this task.settings.xml

31.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The groupId

, , and elements used for the POM default to the values shown in theartifactId version packaging

table below. The elements are created from the project's dependency declarations.dependency

Table 31.5. Default Values for Maven POM generation

Maven

Element

Default Value

groupId project.group

artifactId uploadTask.repositories.mavenDeployer.pom.artifactId (if set) or

archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here, and refer to the tasks used for uploading and generating the archive,uploadTask archiveTask

respectively (for example and). defaults to uploadArchives jar archiveTask.baseName project.archivesBaseName

which in turn defaults to .project.name

When you set the “ ” property to a value other than the default, you'llarchiveTask.baseName

also have to set to theuploadTask.repositories.mavenDeployer.pom.artifactId

same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from

generated POMs for other projects in the same build.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

Page 258 of 573

Generated POMs can be found in . They can be further customized via the <buildDir>/poms

 API. For example, you might want the artifact deployed to the Maven repository to have aMavenPom

different version or name than the artifact generated by Gradle. To customize these you can do:

Example 31.5. Customization of pom

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 pom.version = '1.0Maven'
 pom.artifactId = 'myMavenName'
 }
 }
}

To add additional content to the POM, the builder can be used. With this builder, anypom.project

element listed in the can be added.Maven POM reference

Example 31.6. Builder style customization of pom

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 pom.project {
 licenses {
 license {
 name 'The Apache Software License, Version 2.0'
 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 distribution 'repo'
 }
 }
 }
 }
 }
}

Note: , , , and should always be set directly on the groupId artifactId version packaging pom

object.

Example 31.7. Modifying auto-generated content

build.gradle

def installer = install.repositories.mavenInstaller
def deployer = uploadArchives.repositories.mavenDeployer

[installer, deployer]*.pom*.whenConfigured {pom ->
 pom.dependencies.find {dep -> dep.groupId == && dep.artifactId == }.optional = true'group3' 'runtime'
}

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

Page 259 of 573

If you have more than one artifact to publish, things work a little bit differently. See Section 31.6.4.1,

.“Multiple artifacts per project”

To customize the settings for the Maven installer (see),Section 31.6.3, “Installing to the local repository”

you can do:

Example 31.8. Customization of Maven installer

build.gradle

install {
 repositories.mavenInstaller {
 pom.version = '1.0Maven'
 pom.artifactId = 'myName'
 }
}

31.6.4.1. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We

think there are many situations where it makes sense to have more than one artifact per project. In such a

case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you

want to publish to a Maven repository. The and the MavenInstaller both provide an APIMavenDeployer

for this:

Example 31.9. Generation of multiple poms

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 addFilter() {artifact, file ->'api'
 artifact.name == 'api'
 }
 addFilter() {artifact, file ->'service'
 artifact.name == 'service'
 }
 pom().version = 'api' 'mySpecialMavenVersion'
 }
 }
}

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for

which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn

more about this have a look at and its associated classes.PomFilterContainer

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html

Page 260 of 573

31.6.4.2. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and

War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this

section. The mapping works like the following. You can map a configuration to one and only one scope.

Different configurations can be mapped to one or different scopes. You can also assign a priority to a

particular configuration-to-scope mapping. Have a look at to learnConf2ScopeMappingContainer

more. To access the mapping configuration you can say:

Example 31.10. Accessing a mapping configuration

build.gradle

task mappings << {
 println conf2ScopeMappings.mappings
}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the

Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to

Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[] 19 It is planned for a future release to provide out-of-the-box support for this

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Page 261 of 573

32
The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then

be used to prove who built the artifact the signature is attached to as well as other information such as when

the signature was generated.

The signing plugin currently only provides support for generating (which is the signaturePGP signatures

format).required for publication to the Maven Central Repository

32.1. Usage
To use the Signing plugin, include the following in your build script:

Example 32.1. Using the Signing plugin

build.gradle

apply plugin: 'signing'

32.2. Signatory credentials
In order to create PGP signatures, you will need a key pair (instructions on creating a key pair using the

 can be found in the). You need to provide the signing plugin with your keyGnuPG tools GnuPG HOWTOs

information, which means three things:

The public key ID (an 8 character hexadecimal string).

The absolute path to the secret key ring file containing your private key.

The passphrase used to protect your private key.

These items must be supplied as the values of properties , signing.keyId signing.secretKeyRingFile

, and respectively. Given the personal and private nature of these values, a goodsigning.password

practice is to store them in the user file (described in gradle.properties Section 11.2, “Gradle

).properties and system properties”

signing.keyId=24875D73
signing.password=secret
signing.secretKeyRingFile=/Users/me/.gnupg/secring.gpg

http://www.pgpi.org/
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
http://www.gnupg.org/
http://www.gnupg.org/documentation/howtos.html

Page 262 of 573

If specifying this information in the user file is not feasible for your environment,gradle.properties

you can source the information however you need to and set the project properties manually.

import org.gradle.plugins.signing.Sign

gradle.taskGraph.whenReady { taskGraph ->
 if (taskGraph.allTasks.any { it instanceof Sign }) {
 // Use Java 6's console to read from the console (no good for
 // a CI environment)
 Console console = System.console()
 console.printf "\n\nWe have to sign some things in this build." +
 "\n\nPlease enter your signing details.\n\n"

 def id = console.readLine("PGP Key Id: ")
 def file = console.readLine("PGP Secret Key Ring File (absolute path): ")
 def password = console.readPassword("PGP Private Key Password: ")

 allprojects { ext."signing.keyId" = id }
 allprojects { ext."signing.secretKeyRingFile" = file }
 allprojects { ext."signing.password" = password }

 console.printf "\nThanks.\n\n"
 }
}

32.3. Specifying what to sign
As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify

what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or

configurations that should be signed.

32.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the configures a jar toJava plugin

build and this jar artifact is added to the configuration. Using the Signing DSL, you can specifyarchives

that all of the artifacts of this configuration should be signed.

Example 32.2. Signing a configuration

build.gradle

signing {
 sign configurations.archives
}

This will create a task (of type) in your project named “ ”, that will build any Sign signArchives archives

artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the

artifacts being signed.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.signing.Sign.html

Page 263 of 573

Example 32.3. Signing a configuration output

Output of gradle signArchives

> gradle signArchives
:compileJava
:processResources
:classes
:jar
:signArchives

BUILD SUCCESSFUL

Total time: 1 secs

32.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can

directly sign the task that produces the artifact to sign.

Example 32.4. Signing a task

build.gradle

task stuffZip (type: Zip) {
 baseName = "stuff"
 from "src/stuff"
}

signing {
 sign stuffZip
}

This will create a task (of type) in your project named “ ”, that will build the inputSign signStuffZip

task's archive (if needed) and then sign it. The signature file will be placed alongside the artifact being

signed.

Example 32.5. Signing a task output

Output of gradle signStuffZip

> gradle signStuffZip
:stuffZip
:signStuffZip

BUILD SUCCESSFUL

Total time: 1 secs

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the , , Tar Zip

, and tasks.Jar War Ear

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 264 of 573

32.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not

wish to sign artifacts for non release versions. To achieve this, you can specify that signing is only required

under certain conditions.

Example 32.6. Conditional signing

build.gradle

version = '1.0-SNAPSHOT'
ext.isReleaseVersion = !version.endsWith()"SNAPSHOT"

signing {
 required { isReleaseVersion && gradle.taskGraph.hasTask() }"uploadArchives"
 sign configurations.archives
}

In this example, we only want to require signing if we are building a release version and we are going to

publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must

set the property to a closure to defer the evaluation. See signing.required

 for more information.SigningExtension.setRequired()

32.4. Publishing the signatures
When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically

added to the and dependency configurations. This means that if you want tosignatures archives

upload your signatures to your distribution repository along with the artifacts you simply execute the uploadArchives

task as normal.

32.5. Signing POM files
When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published

POM file. The signing plugin adds a (see:)signing.signPom() SigningExtension.signPom()

method that can be used in the block in your upload task configuration.beforeDeployment()

Example 32.7. Signing a POM for deployment

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 beforeDeployment { MavenDeployment deployment -> signing.signPom(deployment) }
 }
 }
}

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no

http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

Page 265 of 573

credentials for signing) then the method will silently do nothing.signPom()

Page 266 of 573

33
Ivy Publishing (new)

This chapter describes the new Ivy publishing support provided by the “ ”incubating ivy-publish

plugin. Eventually this new publishing support will replace publishing via the task.Upload

If you are looking for documentation on the original Ivy publishing support using the taskUpload

please see .Chapter 30, Publishing artifacts

This chapter describes how to publish build artifacts in the format, usually to a repository forApache Ivy

consumption by other builds or projects. What is published is one or more artifacts created by the build, and

an Ivy (normally) that describes the artifacts and the dependencies of themodule descriptor ivy.xml

artifacts, if any.

A published Ivy module can be consumed by Gradle (see) and otherChapter 23, Dependency Management

tools that understand the Ivy format.

33.1. The “ ” Pluginivy-publish
The ability to publish in the Ivy format is provided by the “ ” plugin.ivy-publish

The “ ” plugin creates an extension on the project named “ ” of type publishing publishing

. This extension provides a container of named publications and a container ofPublishingExtension

named repositories. The “ ” plugin works with publications and ivy-publish IvyPublication

 repositories.IvyArtifactRepository

Example 33.1. Applying the “ivy-publish” plugin

build.gradle

apply plugin: 'ivy-publish'

Applying the “ ” plugin does the following:ivy-publish

Applies the “ ” pluginpublishing

Establishes a rule to automatically create a task for each GenerateIvyDescriptor

 added (see).IvyPublication Section 33.2, “Publications”

Establishes a rule to automatically create a task for the combination ofPublishToIvyRepository

http://ant.apache.org/ivy/
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Page 267 of 573

each added (see), with each IvyPublication Section 33.2, “Publications”

 added (see).IvyArtifactRepository Section 33.3, “Repositories”

33.2. Publications

If you are not familiar with project artifacts and configurations, you should read Chapter 30,

, which introduces these concepts. This chapter also describes “publishingPublishing artifacts

artifacts” using a different mechanism than what is described in this chapter. The publishing

functionality described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are

published to repositories via tasks, and the configuration of the publication object determines exactly what is

published. All of the publications of a project are defined in the

 container. Each publication has a unique namePublishingExtension.getPublications()

within the project.

For the “ ” plugin to have any effect, an must be added to the set ofivy-publish IvyPublication

publications. This publication determines which artifacts are actually published as well as the details

included in the associated Ivy module descriptor file. A publication can be configured by adding

components, customizing artifacts, and by modifying the generated module descriptor file directly.

33.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a toSoftwareComponent

publish. The components presently available for publication are:

Table 33.1. Software Components

Name Provided By Artifacts Dependencies

java Java Plugin Generated jar file Dependencies from 'runtime' configuration

web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the `java` component, which is

added by the .Java Plugin

Example 33.2. Publishing a Java module to Ivy

build.gradle

publications {
 ivyJava(IvyPublication) {
 from components.java
 }
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/component/SoftwareComponent.html

Page 268 of 573

33.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly

supplied as raw files, or as instances of (e.g. Jar, Zip).AbstractArchiveTask

For each custom artifact, it is possible to specify the , , , and name extension type classifier conf

values to use for publication. Note that each artifacts must have a unique name/classifier/extension

combination.

Configure custom artifacts as follows:

Example 33.3. Publishing additional artifact to Ivy

build.gradle

task sourceJar(type: Jar) {
 from sourceSets.main.java
 classifier "source"
}
publishing {
 publications {
 ivy(IvyPublication) {
 from components.java
 artifact(sourceJar) {
 type "source"
 conf "runtime"
 }
 }
 }
}

See the class in the API documentation for more detailed information on how artifactsIvyPublication

can be customized.

33.2.3. Identity values for the published project

The generated Ivy module descriptor file contains an element that identifies the module. The<info>

default identity values are derived from the following:

organisation - Project.getGroup()

module - Project.getName()

revision - Project.getVersion()

status - Project.getStatus()

branch - (not set)

Overriding the default identity values is easy: simply specify the , or organisation module revision

attributes when configuring the . The and attributes can be set viaIvyPublication status branch

the property (see). The property can alsodescriptor IvyModuleDescriptorSpec descriptor

be used to add additional custom elements as children of the element.<info>

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Page 269 of 573

Certain repositories are not able

to handle all supported

characters. For example, the ':'

character cannot be used as an

identifier when publishing to a

filesystem-backed repository on

Windows.

Example 33.4. customizing the publication identity

build.gradle

publishing {
 publications {
 ivy(IvyPublication) {
 organisation 'org.gradle.sample'
 module 'project1-sample'
 revision '1.1'
 descriptor.status = 'milestone'
 descriptor.branch = 'testing'
 descriptor.extraInfo , , 'http://my.namespace' 'myElement' 'Some value'

 from components.java
 }
 }
}

Gradle will handle any valid Unicode character for organisation,

module and revision (as well as artifact name, extension and

classifier). The only values that are explicitly prohibited are ' ', '\ /

' and any ISO control character. The supplied values are

validated early during publication.

33.2.4. Modifying the generated module
descriptor

At times, the module descriptor file generated from the project

information will need to be tweaked before publishing. The “ ” plugin provides a hook toivy-publish

allow such modification.

Example 33.5. Customizing the module descriptor file

build.gradle

publications {
 ivyCustom(IvyPublication) {
 descriptor.withXml {
 asNode().info[].appendNode(,0 'description'
)'A demonstration of ivy descriptor customization'
 }
 }
}

In this example we are simply adding a 'description' element to the generated Ivy dependency descriptor, but

this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the

version range for a dependency with the actual version used to produce the build.

See in the API documentation for more information.IvyModuleDescriptorSpec.withXml()

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it

is also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so

care must be taken when using this feature.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

Page 270 of 573

The identifier (organisation, module, revision) of the published module is an exception; these values cannot

be modified in the descriptor using the `withXML` hook.

33.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate

Gradle subproject. An example is publishing a separate API and implementation jar for your library. With

Gradle this is simple:

Example 33.6. Publishing multiple modules from a single project

build.gradle

task apiJar(type: Jar) {
 baseName "publishing-api"
 from sourceSets.main.output
 exclude '**/impl/**'
}
publishing {
 publications {
 impl(IvyPublication) {
 organisation 'org.gradle.sample.impl'
 module 'project2-impl'
 revision '2.3'

 from components.java
 }
 api(IvyPublication) {
 organisation 'org.gradle.sample'
 module 'project2-api'
 revision '2'
 }
 }
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.

Each publication must be given a unique identity as described above.

33.3. Repositories
Publications are published to repositories. The repositories to publish to are defined by the

 container.PublishingExtension.getRepositories()

Example 33.7. Declaring repositories to publish to

build.gradle

repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url "$buildDir/repo"
 }
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Page 271 of 573

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for

dependencies (). However, in the context of Ivy publication only the repositoriesRepositoryHandler

created by the methods can be used as publication destinations. You cannot publish an ivy() IvyPublication

to a Maven repository for example.

33.4. Performing a publish
The “ ” plugin automatically creates a task for each ivy-publish PublishToIvyRepository

 and combination in the IvyPublication IvyArtifactRepository publishing.publications

and containers respectively.publishing.repositories

The created task is named “ ”,publish« »PublicationTo« »RepositoryPUBNAME REPONAME

which is “ ” for this example. This task is of type publishIvyJavaPublicationToIvyRepository

.PublishToIvyRepository

Example 33.8. Choosing a particular publication to publish

build.gradle

apply plugin: 'java'
apply plugin: 'ivy-publish'

group = 'org.gradle.sample'
version = '1.0'

publishing {
 publications {
 ivyJava(IvyPublication) {
 from components.java
 }
 }
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url "$buildDir/repo"
 }
 }
}

Output of gradle publishIvyJavaPublicationToIvyRepository

> gradle publishIvyJavaPublicationToIvyRepository
:generateDescriptorFileForIvyJavaPublication
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:publishIvyJavaPublicationToIvyRepository

BUILD SUCCESSFUL

Total time: 1 secs

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Page 272 of 573

33.4.1. The “ ” lifecycle taskpublish

The “ ” plugin (that the “ ” plugin implicitly applies) adds a lifecycle task that canpublish ivy-publish

be used to publish all publications to all applicable repositories named “ ”.publish

In more concrete terms, executing this task will execute all tasks in thePublishToIvyRepository

project. This is usually the most convenient way to perform a publish.

Example 33.9. Publishing all publications via the “publish” lifecycle task

Output of gradle publish

> gradle publish
:generateDescriptorFileForIvyJavaPublication
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:publishIvyJavaPublicationToIvyRepository
:publish

BUILD SUCCESSFUL

Total time: 1 secs

33.5. Generating the Ivy module descriptor file
without publishing

At times it is useful to generate the Ivy module descriptor file (normally) without publishing yourivy.xml

module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very

easy to do.

The “ ” plugin creates one task for each registered ivy-publish GenerateIvyDescriptor

, named “ ”, whichIvyPublication generateDescriptorFileFor« »PublicationPUBNAME

will be “ ” for the previous example of the “generateDescriptorFileForIvyJavaPublication ivyJava

” publication.

You can specify where the generated Ivy file will be located by setting the property on thedestination

generated task. By default this file is written to “ ”.build/publications/« »/ivy.xmlPUBNAME

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Page 273 of 573

Example 33.10. Generating the Ivy module descriptor file

build.gradle

model {
 tasks.generateDescriptorFileForIvyCustomPublication {
 destination = file()"$buildDir/generated-ivy.xml"
 }
}

Output of gradle generateDescriptorFileForIvyCustomPublication

> gradle generateDescriptorFileForIvyCustomPublication
:generateDescriptorFileForIvyCustomPublication

BUILD SUCCESSFUL

Total time: 1 secs

The “ ” plugin leverages some experimental support for late plugin configuration, andivy-publish

the task will not be constructed until the publishing extension isGenerateIvyDescriptor

configured. The simplest way to ensure that the publishing plugin is configured when you attempt to

access the task is to place the access inside a block, as theGenerateIvyDescriptor model

example above demonstrates.

The same applies to any attempt to access publication-specific tasks like

. These tasks should be referenced from within a block.PublishToIvyRepository model

33.6. Complete example
The following example demonstrates publishing with a multi-project build. Each project publishes a Java

component and a configured additional source artifact. The descriptor file is customized to include the

project description for each project.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Page 274 of 573

Example 33.11. Publishing a Java module

build.gradle

subprojects {
 apply plugin: 'java'
 apply plugin: 'ivy-publish'

 version = '1.0'
 group = 'org.gradle.sample'

 repositories {
 mavenCentral()
 }
 task sourceJar(type: Jar) {
 from sourceSets.main.java
 classifier "source"
 }
}

project() {":project1"
 description = "The first project"

 dependencies {
 compile , project()'junit:junit:4.12' ':project2'
 }
}

project() {":project2"
 description = "The second project"

 dependencies {
 compile 'commons-collections:commons-collections:3.1'
 }
}

subprojects {
 publishing {
 repositories {
 ivy {
 // change to point to your repo, e.g. http://my.org/repo
 url "${rootProject.buildDir}/repo"
 }
 }
 publications {
 ivy(IvyPublication) {
 from components.java
 artifact(sourceJar) {
 type "source"
 conf "runtime"
 }
 descriptor.withXml {
 asNode().info[].appendNode(, description)0 'description'
 }
 }
 }
 }
}

The result is that the following artifacts will be published for each project:

Page 275 of 573

Note that «PUBLICATION-TIME-STAMP»

in this example Ivy module

descriptor will be the timestamp

of when the descriptor was

generated.

The Ivy module descriptor file: “ ”.ivy-1.0.xml

The primary “jar” artifact for the Java component: “ ”.project1-1.0.jar

The source “jar” artifact that has been explicitly configured: “ ”.project1-1.0-source.jar

When is published, the module descriptor (i.e. the file) that is produced will lookproject1 ivy.xml

like:

Example 33.12. Example generated ivy.xml

output-ivy.xml

<?xml version="1.0" encoding="UTF-8"?>
 =<ivy-module version "2.0">

 = = = = =<info organisation "org.gradle.sample" module "project1" revision "1.0" status "integration" publication "«PUBLICATION-TIME-STAMP»">
 The first project<description> </description>
 </info>
 <configurations>
 = = =<conf name "default" visibility "public" extends "runtime"/>
 = =<conf name "runtime" visibility "public"/>
 </configurations>
 <publications>
 = = = =<artifact name "project1" type "jar" ext "jar" conf "runtime"/>
 = = = = = =<artifact name "project1" type "source" ext "jar" conf "runtime" m:classifier "source" xmlns:m "http://ant.apache.org/ivy/maven"/>
 </publications>
 <dependencies>
 = = = =<dependency org "junit" name "junit" rev "4.12" conf "runtime->default"/>
 = = = =<dependency org "org.gradle.sample" name "project2" rev "1.0" conf "runtime->default"/>
 </dependencies>
</ivy-module>

33.7. Future features
The “ ” plugin functionality as described above is incomplete, as the feature is still ivy-publish incubating

. In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

Convenient customization of module attributes (, etc.)module organisation

Convenient customization of dependencies reported in .module descriptor

Multiple discrete publications per project

Page 276 of 573

34
Maven Publishing (new)

This chapter describes the new Maven publishing support provided by the “incubating maven-publish

” plugin. Eventually this new publishing support will replace publishing via the task.Upload

If you are looking for documentation on the original Maven publishing support using the Upload

task please see .Chapter 30, Publishing artifacts

This chapter describes how to publish build artifacts to an Repository. A module publishedApache Maven

to a Maven repository can be consumed by Maven, Gradle (see) andChapter 23, Dependency Management

other tools that understand the Maven repository format.

34.1. The “ ” Pluginmaven-publish
The ability to publish in the Maven format is provided by the “ ” plugin.maven-publish

The “ ” plugin creates an extension on the project named “ ” of type publishing publishing

. This extension provides a container of named publications and a container ofPublishingExtension

named repositories. The “ ” plugin works with publications and maven-publish MavenPublication

 repositories.MavenArtifactRepository

Example 34.1. Applying the 'maven-publish' plugin

build.gradle

apply plugin: 'maven-publish'

Applying the “ ” plugin does the following:maven-publish

Applies the “ ” pluginpublishing

Establishes a rule to automatically create a task for each GenerateMavenPom

 added (see).MavenPublication Section 34.2, “Publications”

Establishes a rule to automatically create a task for the combinationPublishToMavenRepository

of each added (see), with each MavenPublication Section 34.2, “Publications”

 added (see).MavenArtifactRepository Section 34.3, “Repositories”

Establishes a rule to automatically create a task for each PublishToMavenLocal

 added (see).MavenPublication Section 34.2, “Publications”

http://maven.apache.org/
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html

Page 277 of 573

34.2. Publications

If you are not familiar with project artifacts and configurations, you should read the Chapter 30,

 that introduces these concepts. This chapter also describes “publishing artifacts”Publishing artifacts

using a different mechanism than what is described in this chapter. The publishing functionality

described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are

published to repositories via tasks, and the configuration of the publication object determines exactly what is

published. All of the publications of a project are defined in the

 container. Each publication has a unique namePublishingExtension.getPublications()

within the project.

For the “ ” plugin to have any effect, a must be added to the setmaven-publish MavenPublication

of publications. This publication determines which artifacts are actually published as well as the details

included in the associated POM file. A publication can be configured by adding components, customizing

artifacts, and by modifying the generated POM file directly.

34.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a SoftwareComponent

to publish. The components presently available for publication are:

Table 34.1. Software Components

Name Provided By Artifacts Dependencies

java Chapter 45, The Java

Plugin

Generated jar file Dependencies from 'runtime'

configuration

web Chapter 47, The War

Plugin

Generated war

file

No dependencies

In the following example, artifacts and runtime dependencies are taken from the `java` component, which is

added by the .Java Plugin

Example 34.2. Adding a MavenPublication for a Java component

build.gradle

publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 }
 }
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/component/SoftwareComponent.html

Page 278 of 573

34.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly

supplied as raw files, or as instances of (e.g. Jar, Zip).AbstractArchiveTask

For each custom artifact, it is possible to specify the and values to use forextension classifier

publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts

must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 34.3. Adding additional artifact to a MavenPublication

build.gradle

task sourceJar(type: Jar) {
 from sourceSets.main.allJava
}

publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java

 artifact sourceJar {
 classifier "sources"
 }
 }
 }
}

See the class in the API documentation for more information about how artifactsMavenPublication

can be customized.

34.2.3. Identity values in the generated POM

The attributes of the generated file will contain identity values derived from the following projectPOM

properties:

groupId - Project.getGroup()

artifactId - Project.getName()

version - Project.getVersion()

Overriding the default identity values is easy: simply specify the , or groupId artifactId version

attributes when configuring the .MavenPublication

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

Page 279 of 573

Certain repositories will not be

able to handle all supported

characters. For example, the ':'

character cannot be used as an

identifier when publishing to a

filesystem-backed repository on

Windows.

Example 34.4. customizing the publication identity

build.gradle

publishing {
 publications {
 maven(MavenPublication) {
 groupId 'org.gradle.sample'
 artifactId 'project1-sample'
 version '1.1'

 from components.java
 }
 }
}

Maven restricts 'groupId' and 'artifactId' to a limited character

set () and Gradle enforces this[A-Za-z0-9_\\-.]+

restriction. For 'version' (as well as artifact 'extension' and

'classifier'), Gradle will handle any valid Unicode character.

The only Unicode values that are explicitly prohibited are ' ', ' '\ /

and any ISO control character. Supplied values are validated

early in publication.

34.2.4. Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “ ” pluginmaven-publish

provides a hook to allow such modification.

Example 34.5. Modifying the POM file

build.gradle

publications {
 mavenCustom(MavenPublication) {
 pom.withXml {
 asNode().appendNode(,'description'
)'A demonstration of maven POM customization'
 }
 }
}

In this example we are adding a 'description' element for the generated POM. With this hook, you can

modify any aspect of the POM. For example, you could replace the version range for a dependency with the

actual version used to produce the build.

See in the API documentation for more information.MavenPom.withXml()

It is possible to modify virtually any aspect of the created POM should you need to. This means that it is

also possible to modify the POM in such a way that it is no longer a valid Maven Pom, so care must be

taken when using this feature.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

Page 280 of 573

The identifier (groupId, artifactId, version) of the published module is an exception; these values cannot be

modified in the POM using the `withXML` hook.

34.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate

Gradle subproject. An example is publishing a separate API and implementation jar for your library. With

Gradle this is simple:

Example 34.6. Publishing multiple modules from a single project

build.gradle

task apiJar(type: Jar) {
 baseName "publishing-api"
 from sourceSets.main.output
 exclude '**/impl/**'
}

publishing {
 publications {
 impl(MavenPublication) {
 groupId 'org.gradle.sample.impl'
 artifactId 'project2-impl'
 version '2.3'

 from components.java
 }
 api(MavenPublication) {
 groupId 'org.gradle.sample'
 artifactId 'project2-api'
 version '2'

 artifact apiJar
 }
 }
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.

Each publication must be given a unique identity as described above.

34.3. Repositories
Publications are published to repositories. The repositories to publish to are defined by the

 container.PublishingExtension.getRepositories()

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Page 281 of 573

Example 34.7. Declaring repositories to publish to

build.gradle

publishing {
 repositories {
 maven {
 // change to point to your repo, e.g. http://my.org/repo
 url "$buildDir/repo"
 }
 }
}

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to

consume dependencies from, . However, in the context of Maven publication only RepositoryHandler

 repositories can be used for publication.MavenArtifactRepository

34.4. Performing a publish
The “ ” plugin automatically creates a task for each maven-publish PublishToMavenRepository

 and combination in the MavenPublication MavenArtifactRepository publishing.publications

and containers respectively.publishing.repositories

The created task is named “ ”.publish« »PublicationTo« »RepositoryPUBNAME REPONAME

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Page 282 of 573

Example 34.8. Publishing a project to a Maven repository

build.gradle

apply plugin: 'java'
apply plugin: 'maven-publish'

group = 'org.gradle.sample'
version = '1.0'

publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 }
 }
}
publishing {
 repositories {
 maven {
 // change to point to your repo, e.g. http://my.org/repo
 url "$buildDir/repo"
 }
 }
}

Output of gradle publish

> gradle publish
:generatePomFileForMavenJavaPublication
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:publishMavenJavaPublicationToMavenRepository
:publish

BUILD SUCCESSFUL

Total time: 1 secs

In this example, a task named “ ” ispublishMavenJavaPublicationToMavenRepository

created, which is of type . This task is wired into the lifecyclePublishToMavenRepository publish

task. Executing “ ” builds the POM file and all of the artifacts to be published, andgradle publish

transfers them to the repository.

34.5. Publishing to Maven Local
For integration with a local Maven installation, it is sometimes useful to publish the module into the local

.m2 repository. In Maven parlance, this is referred to as 'installing' the module. The “ ”maven-publish

plugin makes this easy to do by automatically creating a task for each PublishToMavenLocal

 in the container. Each of these tasks is wired intoMavenPublication publishing.publications

the lifecycle task. You do not need to have `mavenLocal` in yourpublishToMavenLocal

`publishing.repositories` section.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.MavenPublication.html

Page 283 of 573

The created task is named “ ”.publish« »PublicationToMavenLocalPUBNAME

Example 34.9. Publish a project to the Maven local repository

Output of gradle publishToMavenLocal

> gradle publishToMavenLocal
:generatePomFileForMavenJavaPublication
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:publishMavenJavaPublicationToMavenLocal
:publishToMavenLocal

BUILD SUCCESSFUL

Total time: 1 secs

The resulting task in this example is named “ ”.publishMavenJavaPublicationToMavenLocal

This task is wired into the lifecycle task. Executing “publishToMavenLocal gradle publishToMavenLocal

” builds the POM file and all of the artifacts to be published, and “installs” them into the local Maven

repository.

34.6. Generating the POM file without publishing
At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM

generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type , and it is given a name based on theGenerateMavenPom

name of the publication: “ ”. So in the examplegeneratePomFileFor« »PublicationPUBNAME

below, where the publication is named “ ”, the task will be named “mavenCustom generatePomFileForMavenCustomPublication

”.

Example 34.10. Generate a POM file without publishing

build.gradle

model {
 tasks.generatePomFileForMavenCustomPublication {
 destination = file()"$buildDir/generated-pom.xml"
 }
}

Output of gradle generatePomFileForMavenCustomPublication

> gradle generatePomFileForMavenCustomPublication
:generatePomFileForMavenCustomPublication

BUILD SUCCESSFUL

Total time: 1 secs

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

Page 284 of 573

All details of the publishing model are still considered in POM generation, including `,components

custom , and any modifications made via .artifacts pom.withXml

The “ ” plugin leverages some experimental support for late plugin configuration,maven-publish

and any tasks will not be constructed until the publishing extension isGenerateMavenPom

configured. The simplest way to ensure that the publishing plugin is configured when you attempt to

access the task is to place the access inside a block, as the exampleGenerateMavenPom model

above demonstrates.

The same applies to any attempt to access publication-specific tasks like

. These tasks should be referenced from within a block.PublishToMavenRepository model

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

Page 285 of 573

35
The Distribution Plugin

The distribution plugin is currently . Please be aware that the DSL and other configurationincubating

may change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution

archives typically contain the executable application and other supporting files, such as documentation.

35.1. Usage
To use the distribution plugin, include the following in your build script:

Example 35.1. Using the distribution plugin

build.gradle

apply plugin: 'distribution'

The plugin adds an extension named “ ” of type to thedistributions DistributionContainer

project. It also creates a single distribution in the distributions container extension named “ ”. If yourmain

build only produces one distribution you only need to configure this distribution (or use the defaults).

You can run “ ” to package the main distribution as a ZIP, or “ ” togradle distZip gradle distTar

create a TAR file. To build both types of archives just run . The files will begradle assembleDist

created at “ ”./distributions/ - .$buildDir $project.name $project.version «ext»

You can run “ ” to assemble the uncompressed distribution into “gradle installDist /install/$buildDir main

”.

35.2. Tasks
The Distribution plugin adds the following tasks to the project:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.distribution.DistributionContainer.html

Page 286 of 573

Table 35.1. Distribution plugin - tasks

Task name Depends on Type Description

distZip - Zip Creates a ZIP archive of the distribution contents

distTar - Tar Creates a TAR archive of the distribution contents

assembleDist , distTar distZipTask Creates ZIP and TAR archives with the distribution

contents

installDist - Sync Assembles the distribution content and installs it on

the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table 35.2. Multiple distributions - tasks

Task name Depends on Type Description

DistZip${distribution.name} - Zip Creates a

ZIP archive

of the

distribution

contents

DistTar${distribution.name} - Tar Creates a

TAR

archive of

the

distribution

contents

assemble Dist${distribution.name.capitalize()} DistTar${distribution.name}

, DistZip${distribution.name}

Task Assembles

all

distribution

archives

install Dist${distribution.name.capitalize()}- Sync Assembles

the

distribution

content and

installs it on

the current

machine

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Sync.html

Page 287 of 573

Example 35.2. Adding extra distributions

build.gradle

apply plugin: 'distribution'

version = '1.2'
distributions {
 custom {}
}

This will add following tasks to the project:

customDistZip

customDistTar

assembleCustomDist

installCustomDist

Given that the project name is “ ” and version “ ”, running “ ”myproject 1.2 gradle customDistZip

will produce a ZIP file named “ ”.myproject-custom-1.2.zip

Running “ ” will install the distribution contents into “gradle installCustomDist /install/custom$buildDir

”.

35.3. Distribution contents
All of the files in the “ ” directory will automatically be included insrc/ /dist$distribution.name

the distribution. You can add additional files by configuring the object that is part of theDistribution

container.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/distribution/Distribution.html

Page 288 of 573

Example 35.3. Configuring the main distribution

build.gradle

apply plugin: 'distribution'

distributions {
 main {
 baseName = 'someName'
 contents {
 from { }'src/readme'
 }
 }
}

apply plugin:'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://some/repo"
 }
 }
}

In the example above, the content of the “ ” directory will be included in the distributionsrc/readme

(along with the files in the “ ” directory which are added by default).src/main/dist

The “ ” property has also been changed. This will cause the distribution archives to be createdbaseName

with a different name.

35.4. Publishing distributions
The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the maven

plugin applied the distribution zip file will be published when running uploadArchives if no other default

artifact is configured

Example 35.4. publish main distribution

build.gradle

apply plugin:'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://some/repo"
 }
 }
}

Page 289 of 573

36
The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following

notification systems are supported:

Twitter

notify-send (Ubuntu)

Snarl (Windows)

Growl (Mac OS X)

36.1. Usage
To use the announce plugin, apply it to your build script:

Example 36.1. Using the announce plugin

build.gradle

apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are

available):

Example 36.2. Configure the announce plugin

build.gradle

announce {
 username = 'myId'
 password = 'myPassword'
}

Finally, send announcements with the method:announce

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Page 290 of 573

Example 36.3. Using the announce plugin

build.gradle

task helloWorld << {
 println "Hello, world!"
}

helloWorld.doLast {
 announce.announce(,)"helloWorld completed!" "twitter"
 announce.announce(,)"helloWorld completed!" "local"
}

The method takes two String arguments: The message to be sent, and the notification service toannounce

be used. The following table lists supported notification services and their configuration properties.

Table 36.1. Announce Plugin Notification Services

Notification

Service

Operating

System

Configuration

Properties

Further Information

twitter Any username,

password

snarl Windows

growl Mac OS X

notify-send Ubuntu Requires the notify-send package to be installed.

Use sudo apt-get install libnotify-bin

to install it.

local Windows,

Mac OS X,

Ubuntu

Automatically chooses between snarl, growl, and

notify-send depending on the current operating

system.

36.2. Configuration
See the class in the API documentation.AnnouncePluginExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

Page 291 of 573

37
The Build Announcements Plugin

The build announcements plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The build announcements plugin uses the plugin to send local announcements on important eventsannounce

in the build.

37.1. Usage
To use the build announcements plugin, include the following in your build script:

Example 37.1. Using the build announcements plugin

build.gradle

apply plugin: 'build-announcements'

That's it. If you want to tweak where the announcements go, you can configure the plugin toannounce

change the local announcer.

You can also apply the plugin from an init script:

Example 37.2. Using the build announcements plugin from an init script

init.gradle

rootProject {
 apply plugin: 'build-announcements'
}

Part IV. Extending the build

Table of Contents
38. Writing Custom Task Classes
38.1. Packaging a task class
38.2. Writing a simple task class
38.3. A standalone project
38.4. Incremental tasks

39. Writing Custom Plugins
39.1. Packaging a plugin
39.2. Writing a simple plugin
39.3. Getting input from the build
39.4. Working with files in custom tasks and plugins
39.5. A standalone project
39.6. Maintaining multiple domain objects

40. The Java Gradle Plugin Development Plugin
40.1. Usage

41. Organizing Build Logic
41.1. Inherited properties and methods
41.2. Injected configuration
41.3. Configuring the project using an external build script
41.4. Build sources in the projectbuildSrc
41.5. Running another Gradle build from a build
41.6. External dependencies for the build script
41.7. Ant optional dependencies
41.8. Summary

42. Initialization Scripts
42.1. Basic usage
42.2. Using an init script
42.3. Writing an init script
42.4. External dependencies for the init script
42.5. Init script plugins

43. The Gradle TestKit
43.1. Usage
43.2. Functionally testing with the Gradle runner

Page 294 of 573

38
Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an action

closure. We have seen these in . For this type of task, the action closureChapter 14, Build Script Basics

determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build

script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides

some properties which you can use to configure the behaviour. We have seen these in Chapter 17, More

. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don't need to implement theabout Tasks

task behaviour as you do with simple tasks. You simply declare the task and configure the task using its

properties. In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly

across different builds.

The behaviour and properties of an enhanced task is defined by the task's class. When you declare an

enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in

pretty much any language you like, provided it ends up compiled to bytecode. In our examples, we are going

to use Groovy as the implementation language, but you could use, for example, Java or Scala. In general,

using Groovy is the easiest option, because the Gradle API is designed to work well with Groovy.

38.1. Packaging a task class
There are several places where you can put the source for the task class.

Build script

You can include the task class directly in the build script. This has the benefit that the task class is

automatically compiled and included in the classpath of the build script without you having to do

anything. However, the task class is not visible outside the build script, and so you cannot reuse the task

class outside the build script it is defined in.

 projectbuildSrc

You can put the source for the task class in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the task class and making it available on the

classpath of the build script. The task class is visible to every build script used by the build. However, it

is not visible outside the build, and so you cannot reuse the task class outside the build it is defined in.

Using the project approach separates the task declaration - that is, what the task should do -buildSrc

from the task implementation - that is, how the task does it.

Page 295 of 573

See for more details about the project.Chapter 41, Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR which

you can then use in multiple builds and share with others. Generally, this JAR might include some

custom plugins, or bundle several related task classes into a single library. Or some combination of the

two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look

at creating a standalone project.

38.2. Writing a simple task class
To implement a custom task class, you extend .DefaultTask

Example 38.1. Defining a custom task

build.gradle

class GreetingTask DefaultTask {extends
}

This task doesn't do anything useful, so let's add some behaviour. To do so, we add a method to the task and

mark it with the annotation. Gradle will call the method when the task executes. You don'tTaskAction

have to use a method to define the behaviour for the task. You could, for instance, call or doFirst() doLast()

with a closure in the task constructor to add behaviour.

Example 38.2. A hello world task

build.gradle

task hello(type: GreetingTask)

 GreetingTask DefaultTask {class extends
 @TaskAction
 def greet() {
 println 'hello from GreetingTask'
 }
}

Output of gradle -q hello

> gradle -q hello
hello from GreetingTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a

task, you can set the properties or call methods on the task object. Here we add a property, andgreeting

set the value when we declare the task.greeting

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskAction.html

Page 296 of 573

Example 38.3. A customizable hello world task

build.gradle

// Use the default greeting
task hello(type: GreetingTask)

// Customize the greeting
task greeting(type: GreetingTask) {
 greeting = 'greetings from GreetingTask'
}

 GreetingTask DefaultTask {class extends
 String greeting = 'hello from GreetingTask'

 @TaskAction
 def greet() {
 println greeting
 }
}

Output of gradle -q hello greeting

> gradle -q hello greeting
hello from GreetingTask
greetings from GreetingTask

38.3. A standalone project
Now we will move our task to a standalone project, so we can publish it and share it with others. This

project is simply a Groovy project that produces a JAR containing the task class. Here is a simple build

script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 38.4. A build for a custom task

build.gradle

apply plugin: 'groovy'

dependencies {
 compile gradleApi()
 compile localGroovy()
}

Note: The code for this example can be found at in the ‘-all’samples/customPlugin/plugin

distribution of Gradle.

We just follow the convention for where the source for the task class should go.

Page 297 of 573

Example 38.5. A custom task

src/main/groovy/org/gradle/GreetingTask.groovy

package org.gradle

 org.gradle.api.DefaultTaskimport
 org.gradle.api.tasks.TaskActionimport

 GreetingTask DefaultTask {class extends
 String greeting = 'hello from GreetingTask'

 @TaskAction
 def greet() {
 println greeting
 }
}

38.3.1. Using your task class in another project

To use a task class in a build script, you need to add the class to the build script's classpath. To do this, you

use a block, as described in buildscript { } Section 41.6, “External dependencies for the build script”

. The following example shows how you might do this when the JAR containing the task class has been

published to a local repository:

Example 38.6. Using a custom task in another project

build.gradle

buildscript {
 repositories {
 maven {
 url uri()'../repo'
 }
 }
 dependencies {
 classpath group: , name: ,'org.gradle' 'customPlugin'
 version: '1.0-SNAPSHOT'
 }
}

task greeting(type: org.gradle.GreetingTask) {
 greeting = 'howdy!'
}

38.3.2. Writing tests for your task class

You can use the class to create instances to use when you test your taskProjectBuilder Project

class.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html

Page 298 of 573

Example 38.7. Testing a custom task

src/test/groovy/org/gradle/GreetingTaskTest.groovy

class GreetingTaskTest {
 @Test
 canAddTaskToProject() {public void
 Project project = ProjectBuilder.builder().build()
 def task = project.task(, type: GreetingTask)'greeting'
 assertTrue(task GreetingTask)instanceof
 }
}

38.4. Incremental tasks

Incremental tasks are an feature.incubating

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),

discussions within the Gradle community have produced superior ideas for exposing the information

about changes to task implementors to what is described below. As such, the API for this feature will

almost certainly change in upcoming releases. However, please do experiment with the current

implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix C, The

), exists for this purpose of ensuring high quality final implementations throughFeature Lifecycle

incorporation of early user feedback.

With Gradle, it's very simple to implement a task that gets skipped when all of it's inputs and outputs are up

to date (see). However, there are times when only a fewSection 17.9, “Skipping tasks that are up-to-date”

input files have changed since the last execution, and you'd like to avoid reprocessing all of the unchanged

inputs. This can be particularly useful for a transformer task, that converts input files to output files on a 1:1

basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an

.incremental task

38.4.1. Implementing an incremental task

For a task to process inputs incrementally, that task must contain an . This is a taskincremental task action

action method that contains a single parameter, which indicates to GradleIncrementalTaskInputs

that the action will process the changed inputs only.

The incremental task action may supply an action forIncrementalTaskInputs.outOfDate()

processing any input file that is out-of-date, and a action thatIncrementalTaskInputs.removed()

executes for any input file that has been removed since the previous execution.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 299 of 573

Example 38.8. Defining an incremental task action

build.gradle

class IncrementalReverseTask DefaultTask {extends
 @InputDirectory
 def File inputDir

 @OutputDirectory
 def File outputDir

 @Input
 def inputProperty

 @TaskAction
 execute(IncrementalTaskInputs inputs) {void
 println inputs.incremental ? "CHANGED inputs considered out of date"
 : "ALL inputs considered out of date"
 (!inputs.incremental)if
 project.delete(outputDir.listFiles())

 inputs.outOfDate { change ->
 println "out of date: ${change.file.name}"
 def targetFile = File(outputDir, change.file.name)new
 targetFile.text = change.file.text.reverse()
 }

 inputs.removed { change ->
 println "removed: ${change.file.name}"
 def targetFile = File(outputDir, change.file.name)new
 targetFile.delete()
 }
 }
}

Note: The code for this example can be found at samples/userguide/tasks/incrementalTask

in the ‘-all’ distribution of Gradle.

If for some reason the task is not run incremental, e.g. by running with --rerun-tasks, only the outOfDate

action is executed, even if there where deleted input files. You should consider handling this case at the

beginning, as is done in the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any

out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

38.4.2. Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context

since that execution are to input files, then Gradle is able to determine which input files need to be

reprocessed by the task. In this case, the action will beIncrementalTaskInputs.outOfDate()

executed for any input file that was or , and the added modified

 action will be executed for any input file.IncrementalTaskInputs.removed() removed

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 300 of 573

However, there are many cases where Gradle is unable to determine which input files need to be

reprocessed. Examples include:

There is no history available from a previous execution.

You are building with a different version of Gradle. Currently, Gradle does not use task history from a

different version.

An criteria added to the task returns .upToDateWhen false

An input property has changed since the previous execution.

One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be . The outOfDate

 action will be executed for every input file, and the IncrementalTaskInputs.outOfDate()

 action will not be executed at all.IncrementalTaskInputs.removed()

You can check if Gradle was able to determine the incremental changes to input files with

.IncrementalTaskInputs.isIncremental()

38.4.3. An incremental task in action

Given the incremental task implementation , we can explore the various change scenarios by example.above

Note that the various mutation tasks ('updateInputs', 'removeInput', etc) are only present for demonstration

purposes: these would not normally be part of your build script.

First, consider the executed against a set of inputs for the first time. In thisIncrementalReverseTask

case, all inputs will be considered “out of date”:

Example 38.9. Running the incremental task for the first time

build.gradle

task incrementalReverse(type: IncrementalReverseTask) {
 inputDir = file()'inputs'
 outputDir = file()"$buildDir/outputs"
 inputProperty = project.properties[] ?: 'taskInputProperty' "original"
}

Build layout

incrementalTask/
 build.gradle
 inputs/
 1.txt
 2.txt
 3.txt

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse
ALL inputs considered out of date
out of date: 1.txt
out of date: 2.txt
out of date: 3.txt

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

Page 301 of 573

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are

reported to the task action:

Example 38.10. Running the incremental task with unchanged inputs

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse

When an input file is modified in some way or a new input file is added, then re-executing the task results in

those files being reported to :IncrementalTaskInputs.outOfDate()

Example 38.11. Running the incremental task with updated input files

build.gradle

task updateInputs() << {
 file().text = 'inputs/1.txt' "Changed content for existing file 1."
 file().text = 'inputs/4.txt' "Content for new file 4."
}

Output of gradle -q updateInputs incrementalReverse

> gradle -q updateInputs incrementalReverse
CHANGED inputs considered out of date
out of date: 1.txt
out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported to

:IncrementalTaskInputs.removed()

Example 38.12. Running the incremental task with an input file removed

build.gradle

task removeInput() << {
 file().delete()'inputs/3.txt'
}

Output of gradle -q removeInput incrementalReverse

> gradle -q removeInput incrementalReverse
CHANGED inputs considered out of date
removed: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of

date. In this case, input files are reported to the action,all IncrementalTaskInputs.outOfDate()

and no input files are reported to the action:IncrementalTaskInputs.removed()

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 302 of 573

Example 38.13. Running the incremental task with an output file removed

build.gradle

task removeOutput() << {
 file().delete()"$buildDir/outputs/1.txt"
}

Output of gradle -q removeOutput incrementalReverse

> gradle -q removeOutput incrementalReverse
ALL inputs considered out of date
out of date: 1.txt
out of date: 2.txt
out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task

outputs, so all input files are assumed to be out of date. So similar to the changed output file example, all

input files are reported to the action, and no input files areIncrementalTaskInputs.outOfDate()

reported to the action:IncrementalTaskInputs.removed()

Example 38.14. Running the incremental task with an input property changed

Output of gradle -q -PtaskInputProperty=changed incrementalReverse

> gradle -q -PtaskInputProperty=changed incrementalReverse
ALL inputs considered out of date
out of date: 1.txt
out of date: 2.txt
out of date: 3.txt

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Page 303 of 573

39
Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different

projects and builds. Gradle allows you to implement your own custom plugins, so you can reuse your build

logic, and share it with others.

You can implement a custom plugin in any language you like, provided the implementation ends up

compiled as bytecode. For the examples here, we are going to use Groovy as the implementation language.

You could use Java or Scala instead, if you want.

39.1. Packaging a plugin
There are several places where you can put the source for the plugin.

Build script

You can include the source for the plugin directly in the build script. This has the benefit that the plugin

is automatically compiled and included in the classpath of the build script without you having to do

anything. However, the plugin is not visible outside the build script, and so you cannot reuse the plugin

outside the build script it is defined in.

 projectbuildSrc

You can put the source for the plugin in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the plugin and making it available on the

classpath of the build script. The plugin is visible to every build script used by the build. However, it is

not visible outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See for more details about the project.Chapter 41, Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your plugin. This project produces and publishes a JAR which you

can then use in multiple builds and share with others. Generally, this JAR might include some custom

plugins, or bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at

creating a standalone project.

Page 304 of 573

39.2. Writing a simple plugin
To create a custom plugin, you need to write an implementation of . Gradle instantiates the pluginPlugin

and calls the plugin instance's method when the plugin is used with a project. ThePlugin.apply()

project object is passed as a parameter, which the plugin can use to configure the project however it needs

to. The following sample contains a greeting plugin, which adds a task to the project.hello

Example 39.1. A custom plugin

build.gradle

apply plugin: GreetingPlugin

 GreetingPlugin Plugin<Project> {class implements
 apply(Project project) {void
 project.task() << {'hello'
 println "Hello from the GreetingPlugin"
 }
 }
}

Output of gradle -q hello

> gradle -q hello
Hello from the GreetingPlugin

One thing to note is that a new instance of a given plugin is created for each project it is applied to. Also

note that the class is a generic type. This example has it receiving the type as a typePlugin Project

parameter. It's possible to write unusual custom plugins that take different type parameters, but this will be

unlikely (until someone figures out more creative things to do here).

39.3. Getting input from the build
Most plugins need to obtain some configuration from the build script. One method for doing this is to use

. The Gradle has an associated object that helpsextension objects Project ExtensionContainer

keep track of all the settings and properties being passed to plugins. You can capture user input by telling

the extension container about your plugin. To capture input, simply add a Java Bean compliant class into the

extension container's list of extensions. Groovy is a good language choice for a plugin because plain old

Groovy objects contain all the getter and setter methods that a Java Bean requires.

Let's add a simple extension object to the project. Here we add a extension object to the project,greeting

which allows you to configure the greeting.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Page 305 of 573

Example 39.2. A custom plugin extension

build.gradle

apply plugin: GreetingPlugin

greeting.message = 'Hi from Gradle'

 GreetingPlugin Plugin<Project> {class implements
 apply(Project project) {void
 // Add the 'greeting' extension object
 project.extensions.create(, GreetingPluginExtension)"greeting"
 // Add a task that uses the configuration
 project.task() << {'hello'
 println project.greeting.message
 }
 }
}

 GreetingPluginExtension {class
 def String message = 'Hello from GreetingPlugin'
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, is a plain old Groovy object with a field called GreetingPluginExtension message

. The extension object is added to the plugin list with the name . This object then becomesgreeting

available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a

configuration closure block for each extension object, so you can group settings together. The following

example shows you how this works.

Page 306 of 573

Example 39.3. A custom plugin with configuration closure

build.gradle

apply plugin: GreetingPlugin

greeting {
 message = 'Hi'
 greeter = 'Gradle'
}

 GreetingPlugin Plugin<Project> {class implements
 apply(Project project) {void
 project.extensions.create(, GreetingPluginExtension)"greeting"
 project.task() << {'hello'
 println "${project.greeting.message} from ${project.greeting.greeter}"
 }
 }
}

 GreetingPluginExtension {class
 String message
 String greeter
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, several settings can be grouped together within the closure. The name of thegreeting

closure block in the build script () needs to match the extension object name. Then, when thegreeting

closure is executed, the fields on the extension object will be mapped to the variables within the closure

based on the standard Groovy closure delegate feature.

39.4. Working with files in custom tasks and
plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input

configuration for file locations. To do this, you can leverage the method to resolveProject.file()

values to files as late as possible.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 307 of 573

Example 39.4. Evaluating file properties lazily

build.gradle

class GreetingToFileTask DefaultTask {extends

 def destination

 File getDestination() {
 project.file(destination)
 }

 @TaskAction
 def greet() {
 def file = getDestination()
 file.parentFile.mkdirs()
 file.write "Hello!"
 }
}

task greet(type: GreetingToFileTask) {
 destination = { project.greetingFile }
}

task sayGreeting(dependsOn: greet) << {
 println file(greetingFile).text
}

ext.greetingFile = "$buildDir/hello.txt"

Output of gradle -q sayGreeting

> gradle -q sayGreeting
Hello!

In this example, we configure the task property as a closure, which is evaluatedgreet destination

with the method to turn the return value of the closure into a file object at the lastProject.file()

minute. You will notice that in the example above we specify the property value after wegreetingFile

have configured to use it for the task. This kind of lazy evaluation is a key benefit of accepting any value

when setting a file property, then resolving that value when reading the property.

39.5. A standalone project
Now we will move our plugin to a standalone project, so we can publish it and share it with others. This

project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build

script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 308 of 573

Example 39.5. A build for a custom plugin

build.gradle

apply plugin: 'groovy'

dependencies {
 compile gradleApi()
 compile localGroovy()
}

Note: The code for this example can be found at in the ‘-all’samples/customPlugin/plugin

distribution of Gradle.

So how does Gradle find the implementation? The answer is you need to provide a properties filePlugin

in the jar's directory that matches the id of your plugin.META-INF/gradle-plugins

Example 39.6. Wiring for a custom plugin

src/main/resources/META-INF/gradle-plugins/org.samples.greeting.properties

implementation-class=org.gradle.GreetingPlugin

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the implementation-class

property identifies the implementation class.Plugin

39.5.1. Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps

to avoid collisions and provides a way to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you

or your organization) and the name of the plugin it provides. For example if you had a Github account

named “foo” and your plugin was named “bar”, a suitable plugin id might be .com.github.foo.bar

Similarly, if the plugin was developed at the baz organization, the plugin id might be .org.baz.bar

Plugin ids should conform to the following:

May contain any alphanumeric character, '.', and '-'.

Must contain at least one '.' character separating the namespace from the name of the plugin.

Conventionally use a lowercase reverse domain name convention for the namespace.

Conventionally use only lowercase characters in the name.

org.gradle and namespaces may not be used.com.gradleware

Cannot start or end with a '.' character.

Cannot contain consecutive '.' characters (i.e. '..').

Although there are conventional similarities between plugin ids and package names, package names are

generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html

Page 309 of 573

“gradle” as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would

be superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a

good plugin id.

39.5.2. Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any

other code artifact. See the and chapters on publishing artifacts.ivy maven

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it

to the . This site provides the ability to search for and gather information about pluginsGradle plugin portal

contributed by the Gradle community. See the instructions on how to make your plugin available onhere

this site.

39.5.3. Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script's classpath. To do this,

you use a “ ” block, as described in buildscript { } Section 25.4, “Applying plugins with the

. The following example shows how you might do this when the JAR containing thebuildscript block”

plugin has been published to a local repository:

Example 39.7. Using a custom plugin in another project

build.gradle

buildscript {
 repositories {
 maven {
 url uri()'../repo'
 }
 }
 dependencies {
 classpath group: , name: ,'org.gradle' 'customPlugin'
 version: '1.0-SNAPSHOT'
 }
}
apply plugin: 'org.samples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see

) to apply the plugin:Section 25.5, “Applying plugins with the plugins DSL”

Example 39.8. Applying a community plugin with the plugins DSL

build.gradle

plugins {
 id version "com.jfrog.bintray" "0.4.1"
}

39.5.4. Writing tests for your plugin

You can use the class to create instances to use when you test your pluginProjectBuilder Project

implementation.

http://plugins.gradle.org
http://plugins.gradle.org/docs/submit
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html

Page 310 of 573

Example 39.9. Testing a custom plugin

src/test/groovy/org/gradle/GreetingPluginTest.groovy

class GreetingPluginTest {
 @Test
 greeterPluginAddsGreetingTaskToProject() {public void
 Project project = ProjectBuilder.builder().build()
 project.pluginManager.apply 'org.samples.greeting'

 assertTrue(project.tasks.hello GreetingTask)instanceof
 }
}

39.5.5. Using the Java Gradle Plugin development plugin

You can use the incubating to eliminate some of the boilerplateJava Gradle Plugin development plugin

declarations in your build script and provide some basic validations of plugin metadata. This plugin will

automatically apply the , add the dependency to the compile configuration, andJava plugin gradleApi()

perform plugin metadata validations as part of the task execution.jar

Example 39.10. Using the Java Gradle Plugin Development plugin

build.gradle

apply plugin: 'java-gradle-plugin'

39.6. Maintaining multiple domain objects
Gradle provides some utility classes for maintaining collections of objects, which work well with the Gradle

build language.

Page 311 of 573

Example 39.11. Managing domain objects

build.gradle

apply plugin: DocumentationPlugin

books {
 quickStart {
 sourceFile = file()'src/docs/quick-start'
 }
 userGuide {

 }
 developerGuide {

 }
}

task books << {
 books.each { book ->
 println "$book.name -> $book.sourceFile"
 }
}

 DocumentationPlugin Plugin<Project> {class implements
 apply(Project project) {void
 def books = project.container(Book)
 books.all {
 sourceFile = project.file()"src/docs/$name"
 }
 project.extensions.books = books
 }
}

 Book {class
 String namefinal
 File sourceFile

 Book(String name) {
 .name = namethis
 }
}

Output of gradle -q books

> gradle -q books
developerGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/developerGuide
quickStart -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/quick-start
userGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/userGuide

The methods create instances of , thatProject.container() NamedDomainObjectContainer

have many useful methods for managing and configuring the objects. In order to use a type with any of the project.container

methods, it MUST expose a property named “ ” as the unique, and constant, name for the object. The name project.container(Class)

variant of the container method creates new instances by attempting to invoke the constructor of the class

that takes a single string argument, which is the desired name of the object. See the above link for project.container

method variants that allow custom instantiation strategies.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.NamedDomainObjectContainer.html

Page 312 of 573

40
The Java Gradle Plugin Development

Plugin

The Java Gradle plugin development plugin is currently . Please be aware that the DSL andincubating

other configuration may change in later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It

automatically applies the plugin, adds the dependency to the compile configurationJava gradleApi()

and performs validation of plugin metadata during task execution.jar

40.1. Usage
To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 40.1. Using the Java Gradle Plugin Development plugin

build.gradle

apply plugin: 'java-gradle-plugin'

Applying the plugin automatically applies the plugin and adds the dependency to theJava gradleApi()

compile configuration. It also decorates the task with validations.jar

The following validations are performed:

There is a plugin descriptor defined for the plugin.

The plugin descriptor contains an property.implementation-class

The property references a valid class file in the jar.implementation-class

Any failed validations will result in a warning message.

Page 313 of 573

41
Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly

in the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a

method. If multiple projects of a multi-project build share some logic you can define this method in the

parent project. If the build logic gets too complex for being properly modeled by methods then you likely

should implement your logic with classes to encapsulate your logic. Gradle makes this very easy. Just[]20

drop your classes in a certain directory and Gradle automatically compiles them and puts them in the

classpath of your build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The

build script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to

organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and

methods of their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties

and methods into another project.

 projectbuildSrc . Drop the source for your build classes into a certain directory and Gradle

automatically compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple

projects, possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects.

The plugin must be in the classpath of your build script. You can achieve this either by using build sources

or by adding an that contains the plugin.external library

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

41.1. Inherited properties and methods
Any method or property defined in a project build script is also visible to all the sub-projects. You can use

this to define common configurations, and to extract build logic into methods which can be reused by the

sub-projects.

Page 314 of 573

Example 41.1. Using inherited properties and methods

build.gradle

// Define an extra property
ext.srcDirName = 'src/java'

// Define a method
def getSrcDir(project) {
 project.file(srcDirName)return
}

child/build.gradle

task show << {
 // Use inherited property
 println + srcDirName'srcDirName: '

 // Use inherited method
 File srcDir = getSrcDir(project)
 println + rootProject.relativePath(srcDir)'srcDir: '
}

Output of gradle -q show

> gradle -q show
srcDirName: src/java
srcDir: child/src/java

41.2. Injected configuration
You can use the configuration injection technique discussed in Section 24.1, “Cross project configuration”

and to inject properties and methods into various projects. This isSection 24.2, “Subproject configuration”

generally a better option than inheritance, for a number of reasons: The injection is explicit in the build

script, You can inject different logic into different projects, And you can inject any kind of configuration

such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 315 of 573

Example 41.2. Using injected properties and methods

build.gradle

subprojects {
 // Define a new property
 ext.srcDirName = 'src/java'

 // Define a method using a closure as the method body
 ext.srcDir = { file(srcDirName) }

 // Define a task
 task show << {
 println + project.path'project: '
 println + srcDirName'srcDirName: '
 File srcDir = srcDir()
 println + rootProject.relativePath(srcDir)'srcDir: '
 }
}

// Inject special case configuration into a particular project
project() {':child2'
 ext.srcDirName = "$srcDirName/legacy"
}

child1/build.gradle

// Use injected property and method. Here, we override the injected value
srcDirName = 'java'
def dir = srcDir()

Output of gradle -q show

> gradle -q show
project: :child1
srcDirName: java
srcDir: child1/java
project: :child2
srcDirName: src/java/legacy
srcDir: child2/src/java/legacy

41.3. Configuring the project using an external
build script

You can configure the current project using an external build script. All of the Gradle build language is

available in the external script. You can even apply other scripts from the external script.

Page 316 of 573

Example 41.3. Configuring the project using an external build script

build.gradle

apply from: 'other.gradle'

other.gradle

println "configuring $project"
task hello << {
 println 'hello from other script'
}

Output of gradle -q hello

> gradle -q hello
configuring root project 'configureProjectUsingScript'
hello from other script

41.4. Build sources in the projectbuildSrc
When you run Gradle, it checks for the existence of a directory called . Gradle thenbuildSrc

automatically compiles and tests this code and puts it in the classpath of your build script. You don't need to

provide any further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one directory, which has to be in the root projectbuildSrc

directory.

Listed below is the default build script that Gradle applies to the project:buildSrc

Figure 41.1. Default buildSrc build script

apply plugin: 'groovy'
dependencies {
 compile gradleApi()
 compile localGroovy()
}

This means that you can just put your build source code in this directory and stick to the layout convention

for a Java/Groovy project (see).Table 45.4, “Java plugin - default project layout”

If you need more flexibility, you can provide your own . Gradle applies the default buildbuild.gradle

script regardless of whether there is one specified. This means you only need to declare the extra things you

need. Below is an example. Notice that this example does not need to declare a dependency on the Gradle

API, as this is done by the default build script:

Page 317 of 573

Example 41.4. Custom buildSrc build script

buildSrc/build.gradle

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.12'
}

The project can be a multi-project build, just like any other regular multi-project build.buildSrc

However, all of the projects that should be on the classpath of the actual build must be runtime

dependencies of the root project in . You can do this by adding this to the configuration of eachbuildSrc

project you wish to export:

Example 41.5. Adding subprojects to the root buildSrc project

buildSrc/build.gradle

rootProject.dependencies {
 runtime project(path)
}

Note: The code for this example can be found at in the ‘-all’samples/multiProjectBuildSrc

distribution of Gradle.

41.5. Running another Gradle build from a build
You can use the task. You can use either of the or properties to specifyGradleBuild dir buildFile

which build to execute, and the property to specify which tasks to execute.tasks

Example 41.6. Running another build from a build

build.gradle

task build(type: GradleBuild) {
 buildFile = 'other.gradle'
 tasks = []'hello'
}

other.gradle

task hello << {
 println "hello from the other build."
}

Output of gradle -q build

> gradle -q build
hello from the other build.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.GradleBuild.html

Page 318 of 573

41.6. External dependencies for the build script
If your build script needs to use external libraries, you can add them to the script's classpath in the build

script itself. You do this using the method, passing in a closure which declares the buildbuildscript()

script classpath.

Example 41.7. Declaring external dependencies for the build script

build.gradle

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'
 }
}

The closure passed to the method configures a instance. You declarebuildscript() ScriptHandler

the build script classpath by adding dependencies to the configuration. This is the same wayclasspath

you declare, for example, the Java compilation classpath. You can use any of the dependency types

described in , except project dependencies.Section 23.4, “How to declare your dependencies”

Having declared the build script classpath, you can use the classes in your build script as you would any

other classes on the classpath. The following example adds to the previous example, and uses classes from

the build script classpath.

Example 41.8. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'
 }
}

task encode << {
 def [] encodedString = Base6 ().encode(.getBytes())byte new 4 'hello world\n'
 println String(encodedString)new
}

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared with a project's method are availablebuildscript()

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 319 of 573

to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult for moreChapter 25, Gradle Plugins

information on Gradle plugins.

Every project automatically has a task of type buildEnvironment

 that can be invoked to report on the resolution of the build scriptBuildEnvironmentReportTask

dependencies.

41.7. Ant optional dependencies
For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks.

But you can easily do it in another way. []21

Example 41.9. Ant optional dependencies

build.gradle

configurations {
 ftpAntTask
}

dependencies {
 ftpAntTask() {"org.apache.ant:ant-commons-net:1.9.4"
 module() {"commons-net:commons-net:1.4.1"
 dependencies "oro:oro:2.0.8:jar"
 }
 }
}

task ftp << {
 ant {
 taskdef(name: ,'ftp'
 classname: ,'org.apache.tools.ant.taskdefs.optional.net.FTP'
 classpath: configurations.ftpAntTask.asPath)
 ftp(server: , userid: , password:) {"ftp.apache.org" "anonymous" "me@myorg.com"
 fileset(dir:)"htdocs/manual"
 }
 }
}

This is also a good example for the usage of client modules. The POM file in Maven Central for the

ant-commons-net task does not provide the right information for this use case.

41.8. Summary
Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your

domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to

maintain code base. It is our experience that even very complex custom build logic is rarely shared between

different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle

spares you this unnecessary overhead and indirection.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

Page 320 of 573

[] 20 Which might range from a single class to something very complex.

[] 21 In fact, we think this is a better solution. Only if your buildscript and Ant's optional task need the same

library would you have to define it twice. In such a case it would be nice if Ant's optional task would

automatically pick up the classpath defined in the “ ” file.gradle.settings

Page 321 of 573

42
Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment.

This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “ ” task provided by the “ ” incubatinginit build-init

plugin (see).Chapter 15, Build Init Plugin

42.1. Basic usage
Initialization scripts (a.k.a.) are similar to other scripts in Gradle. These scripts, however, are runinit scripts

before the build starts. Here are several possible uses:

Set up enterprise-wide configuration, such as where to find custom plugins.

Set up properties based on the current environment, such as a developer's machine vs. a continuous

integration server.

Supply personal information about the user that is required by the build, such as repository or database

authentication credentials.

Define machine specific details, such as where JDKs are installed.

Register build listeners. External tools that wish to listen to Gradle events might find this useful.

Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the project (see buildSrc

 for details of this feature).Section 41.4, “Build sources in the project”buildSrc

42.2. Using an init script
There are several ways to use an init script:

Specify a file on the command line. The command line option is or followed by-I --init-script

the path to the script. The command line option can appear more than once, each time adding another

init script.

Put a file called in the directory.init.gradle /.gradle/USER_HOME

Put a file that ends with in the directory..gradle /.gradle/init.d/USER_HOME

Put a file that ends with in the directory, in the Gradle.gradle /init.d/GRADLE_HOME

distribution. This allows you to package up a custom Gradle distribution containing some custom build

logic and plugins. You can combine this with the as a way to make custom logicGradle wrapper

available to all builds in your enterprise.

Page 322 of 573

If more than one init script is found they will all be executed, in the order specified above. Scripts in a given

directory are executed in alphabetical order. This allows, for example, a tool to specify an init script on the

command line and the user to put one in their home directory for defining the environment and both scripts

will run when Gradle is executed.

42.3. Writing an init script
Similar to a Gradle build script, an init script is a Groovy script. Each init script has a instanceGradle

associated with it. Any property reference and method call in the init script will delegate to this Gradle

instance.

Each init script also implements the interface.Script

42.3.1. Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring

projects in a multi-project build. The following sample shows how to perform extra configuration from an

init script the projects are evaluated. This sample uses this feature to configure an extra repository tobefore

be used only for certain environments.

Example 42.1. Using init script to perform extra configuration before projects are evaluated

build.gradle

repositories {
 mavenCentral()
}

task showRepos << {
 println "All repos:"
 println repositories.collect { it.name }
}

init.gradle

allprojects {
 repositories {
 mavenLocal()
 }
}

Output of gradle --init-script init.gradle -q showRepos

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

42.4. External dependencies for the init script
In it was explained how to add externalSection 41.6, “External dependencies for the build script”

dependencies to a build script. Init scripts can also declare dependencies. You do this with the initscript()

method, passing in a closure which declares the init script classpath.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Script.html

Page 323 of 573

Example 42.2. Declaring external dependencies for an init script

init.gradle

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'
 }
}

The closure passed to the method configures a instance. You declareinitscript() ScriptHandler

the init script classpath by adding dependencies to the configuration. This is the same way youclasspath

declare, for example, the Java compilation classpath. You can use any of the dependency types described in

, except project dependencies.Section 23.4, “How to declare your dependencies”

Having declared the init script classpath, you can use the classes in your init script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the init

script classpath.

Example 42.3. An init script with external dependencies

init.gradle

import org.apache.commons.math.fraction.Fraction

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'
 }
}

println Fraction.ONE_FIFTH.multiply()2

Output of gradle --init-script init.gradle -q doNothing

> gradle --init-script init.gradle -q doNothing
2 / 5

42.5. Init script plugins
Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 324 of 573

Example 42.4. Using plugins in init scripts

init.gradle

apply plugin:EnterpriseRepositoryPlugin

 EnterpriseRepositoryPlugin Plugin<Gradle> {class implements

 String ENTERPRISE_REPOSITORY_URL = private static "https://repo.gradle.org/gradle/repo"

 apply(Gradle gradle) {void
 // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
 gradle.allprojects{ project ->
 project.repositories {

 // Remove all repositories not pointing to the enterprise repository url
 all { ArtifactRepository repo ->
 (!(repo MavenArtifactRepository) ||if instanceof
 repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
 project.logger.lifecycle "Repository ${repo.url} removed. Only $ENTERPRISE_REPOSITORY_URL is allowed"
 remove repo
 }
 }

 // add the enterprise repository
 maven {
 name "STANDARD_ENTERPRISE_REPO"
 url ENTERPRISE_REPOSITORY_URL
 }
 }
 }
 }
}

build.gradle

repositories{
 mavenCentral()
}

 task showRepositories << {
 repositories.each{
 println "repository: ${it.name} ('${it.url}')"
 }
}

Output of gradle -q -I init.gradle showRepositories

> gradle -q -I init.gradle showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance's

 method. The object is passed as a parameter, which can be used to configurePlugin.apply() gradle

all aspects of a build. Of course, the applied plugin can be resolved as an external dependency as described

in Section 42.4, “External dependencies for the init script”

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html#apply(T)

Page 325 of 573

43
The Gradle TestKit

The Gradle TestKit is currently . Please be aware that its API and other characteristics mayincubating

change in later Gradle versions.

The Gradle TestKit (a.k.a. just TestKit) is a library that aids in testing Gradle plugins and build logic

generally. At this time, it is focused on testing. That is, testing build logic by exercising it as partfunctional

of a programmatically executed build. Over time, the TestKit will likely expand to facilitate other kinds of

tests.

43.1. Usage
To use the TestKit, include the following in your plugin's build:

Example 43.1. Declaring the TestKit dependency

build.gradle

dependencies {
 testCompile gradleTestKit()
}

The encompasses the classes of the TestKit, as well as the .gradleTestKit() Gradle Tooling API client

It does not include a version of , , or any other test execution framework. Such a dependencyJUnit TestNG

must be explicitly declared.

Example 43.2. Declaring the JUnit dependency

build.gradle

dependencies {
 testCompile 'junit:junit:4.12'
}

43.2. Functionally testing with the Gradle runner
The facilitates programmatically executing Gradle builds, and inspecting the result.GradleRunner

A contrived build can be created (e.g. programmatically, or from a template) that exercises the “logic under

http://junit.org
http://testng.org
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html

Page 326 of 573

test”. The build can then be executed, potentially in a variety of ways (e.g. different combinations of tasks

and arguments). The correctness of the logic can then be verified by asserting the following, potentially in

combination:

The build's output;

The build's logging (i.e. console output);

The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the

 or methods depending on theGradleRunner.build() GradleRunner.buildAndFail()

anticipated outcome.

The following demonstrates the usage of Gradle runner in a Java JUnit test:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#build()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#build()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail()

Page 327 of 573

Example 43.3. Using GradleRunner with JUnit

BuildLogicFunctionalTest.java

import org.gradle.testkit.runner.BuildResult;
 org.gradle.testkit.runner.GradleRunner;import
 org.junit.Before;import
 org.junit.Rule;import
 org.junit.Test;import
 org.junit.rules.TemporaryFolder;import

 java.io.BufferedWriter;import
 java.io.File;import
 java.io.FileWriter;import
 java.io.IOException;import
 java.util.Collections;import

 org.junit.Assert.assertEquals;import static
 org.junit.Assert.assertTrue;import static

 org.gradle.testkit.runner.TaskOutcome.*;import static

 BuildLogicFunctionalTest {public class
 TemporaryFolder testProjectDir = TemporaryFolder();@Rule public final new
 File buildFile;private

 @Before
 setup() IOException {public void throws
 buildFile = testProjectDir.newFile();"build.gradle"
 }

 @Test
 testHelloWorldTask() IOException {public void throws
 String buildFileContent = +"task helloWorld {"
 +" doLast {"
 +" println 'Hello world!'"
 +" }"
 ;"}"
 writeFile(buildFile, buildFileContent);

 BuildResult result = GradleRunner.create()
 .withProjectDir(testProjectDir.getRoot())
 .withArguments()"helloWorld"
 .build();

 assertTrue(result.getOutput().contains());"Hello world!"
 assertEquals(result.task().getOutcome(), SUCCESS);":helloWorld"
 }

 writeFile(File destination, String content) IOException {private void throws
 BufferedWriter output = null;
 {try
 output = BufferedWriter(FileWriter(destination));new new
 output.write(content);
 } {finally
 (output != null) {if
 output.close();
 }
 }
 }
}

Page 328 of 573

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are

implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.

Furthermore, it is recommended to use the (Groovy based) as it offers manySpock test execution framework

compelling features over the use of JUnit.

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

Example 43.4. Using GradleRunner with Spock

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner
 org.gradle.testkit.runner.TaskOutcome.*import static
 org.junit.Ruleimport
 org.junit.rules.TemporaryFolderimport
 spock.lang.Specificationimport

 BuildLogicFunctionalTest Specification {class extends
 TemporaryFolder testProjectDir = TemporaryFolder()@Rule final new
 File buildFile

 def setup() {
 buildFile = testProjectDir.newFile()'build.gradle'
 }

 def () {"hello world task prints hello world"
 given:
 buildFile << """
 task helloWorld {
 doLast {
 println 'Hello world!'
 }
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir.root)
 .withArguments()'helloWorld'
 .build()

 then:
 result.output.contains()'Hello world!'
 result.task().outcome == SUCCESS":helloWorld"
 }
}

It is a common practice to implement any custom build logic (like plugins and task types) that is more

complex in nature as external classes in a standalone project. The main driver behind this approach is bundle

the compiled code into a JAR file, publish it to a binary repository and reuse it across various projects.

https://code.google.com/p/spock/

Page 329 of 573

43.2.1. Getting the code under test into the test build

The runner uses the to execute builds. An implication of this is that the builds are executed in aTooling API

separate process (i.e. not the same process executing the tests). Therefore, the test build does not share the

same classpath or classloaders as the test process and the code under test is not implicitly available to the

test build.

At the moment the TestKit does not provide any automatic mechanism to inject the code under test into the

test builds. This feature will be added to future versions.

In the meantime, it is possible to manually make the code under test available via some extra configuration.

The following example demonstrates having the build generate a file denoting the implementation classpath

of the code under test, and making it available at test runtime.

Example 43.5. Making the code under test classpath available to the tests

plugin/build.gradle

// Write the plugin's classpath to a file to share with the tests
task createClasspathManifest {
 def outputDir = file()"$buildDir/$name"

 inputs.files sourceSets.main.runtimeClasspath
 outputs.dir outputDir

 doLast {
 outputDir.mkdirs()
 file().text = sourceSets.main.runtimeClasspath.join()"$outputDir/plugin-classpath.txt" "\n"
 }
}

// Add the classpath file to the test runtime classpath
dependencies {
 testRuntime files(createClasspathManifest)
}

Note: The code for this example can be found at samples/testKit/testKitSpockClasspath

in the ‘-all’ distribution of Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method

. This classpath is then available to use to locate pluginsGradleRunner.withPluginClasspath()

in a test build via the plugins DSL (see). Applying plugins with the plugins DSLChapter 25, Gradle Plugins

requires the definition of a plugin identifier. The following is an example (in Groovy) of doing this from

within a Spock Framework method, which is analogous to a JUnit method.setup() @Before

This approach works well when executing the functional tests as part of the Gradle build. When executing

the functional tests from an IDE, there are extra considerations. Namely, the classpath manifest file points to

the class files etc. generated by Gradle and not the IDE. This means that after making a change to the source

of the code under test, the source must be recompiled by Gradle. Similarly, if the effective classpath of the

code under test changes, the manifest must be regenerated. In either case, executing the testClasses

task of the build will ensure that things are up to date.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)

Page 330 of 573

43.2.1.1. Working with Gradle versions prior to 2.8

The method will not work when executing the build withGradleRunner.withPluginClasspath()

a Gradle version earlier than 2.8 (see:), as this feature isSection 43.2.3, “The Gradle version used to test”

not supported on such Gradle versions.

Instead, the code must be injected via the build script itself. The following sample demonstrates how this

can be done.

Example 43.6. Injecting the code under test classes into test builds

plugin/src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

List<File> pluginClasspath

def setup() {
 buildFile = testProjectDir.newFile()'build.gradle'

 def pluginClasspathResource = getClass().classLoader.findResource()"plugin-classpath.txt"
 (pluginClasspathResource == null) {if
 IllegalStateException()throw new "Did not find plugin classpath resource, run `testClasses` build task."
 }

 pluginClasspath = pluginClasspathResource.readLines().collect { File(it) }new
}

def () {"hello world task prints hello world"
 given:
 buildFile << """
 plugins {
 id 'org.gradle.sample.helloworld'
 }
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir.root)
 .withArguments()'helloWorld'
 .withPluginClasspath(pluginClasspath)
 .build()

 then:
 result.output.contains()'Hello world!'
 result.task().outcome == SUCCESS":helloWorld"
}

Note: The code for this example can be found at samples/testKit/testKitSpockClasspath

in the ‘-all’ distribution of Gradle.

plugin/src/test/groovy/org/gradle/sample/BuildLogicFunctionalTest.groovy

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)

Page 331 of 573

List<File> pluginClasspath

def setup() {
 buildFile = testProjectDir.newFile()'build.gradle'

 def pluginClasspathResource = getClass().classLoader.findResource()"plugin-classpath.txt"
 (pluginClasspathResource == null) {if
 IllegalStateException()throw new "Did not find plugin classpath resource, run `testClasses` build task."
 }

 pluginClasspath = pluginClasspathResource.readLines().collect { File(it) }new
}

def () {"hello world task prints hello world with pre Gradle 2.8"
 given:
 def classpathString = pluginClasspath
 .collect { it.absolutePath.replace(,) } '\\' '\\\\' // escape backslashes in Windows paths
 .collect { }"'$it'"
 .join()", "

 buildFile << """
 buildscript {
 dependencies {
 classpath files($classpathString)
 }
 }
 apply plugin: "org.gradle.sample.helloworld"
 """

 when:
 def result = GradleRunner.create()
 .withProjectDir(testProjectDir.root)
 .withArguments()'helloWorld'
 .withGradleVersion()"2.7"
 .build()

 then:
 result.output.contains()'Hello world!'
 result.task().outcome == SUCCESS":helloWorld"
}

Note: The code for this example can be found at samples/testKit/testKitSpockClasspath

in the ‘-all’ distribution of Gradle.

43.2.2. Controlling the build environment

The runner executes the test builds in an isolated environment by specifying a dedicated "working directory"

in a directory inside the JVM's temp directory (i.e. the location specified by the systemjava.io.tmpdir

property, typically). Any configuration in the default Gradle user home directory (e.g. /tmp ~/.gradle/gradle.properties

) is not used for test execution. The TestKit does not expose a mechanism for fine grained control of

environment variables etc. Future versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

Page 332 of 573

43.2.3. The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not depend

on all of Gradle's implementation.

By default, the runner will attempt to find a Gradle distribution based on where the classGradleRunner

was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as is the case

when using the dependency declaration.gradleTestKit()

When using the runner as part of tests (e.g. executing the task of a pluginbeing executed by Gradle test

project), the same distribution used to execute the tests will be used by the runner. When using the runner as

part of tests , the same distribution of Gradle that was used when importing thebeing executed by an IDE

project will be used. This means that the plugin will effectively be tested with the same version of Gradle

that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the following GradleRunner

methods:

GradleRunner.withGradleVersion()

GradleRunner.withGradleInstallation()

GradleRunner.withGradleDistribution()

This can potentially be used to test build logic across Gradle versions. The following demonstrates a

cross-version compatibility test written as Groovy Spock test:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion(java.lang.String)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation(java.io.File)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution(java.net.URI)

Page 333 of 573

Example 43.7. Specifying a Gradle version for test execution

BuildLogicFunctionalTest.groovy

import org.gradle.testkit.runner.GradleRunner
 org.gradle.testkit.runner.TaskOutcome.*import static
 org.junit.Ruleimport
 org.junit.rules.TemporaryFolderimport
 spock.lang.Specificationimport
 spock.lang.Unrollimport

 BuildLogicFunctionalTest Specification {class extends
 TemporaryFolder testProjectDir = TemporaryFolder()@Rule final new
 File buildFile

 def setup() {
 buildFile = testProjectDir.newFile()'build.gradle'
 }

 @Unroll
 def () {"can execute hello world task with Gradle version #gradleVersion"
 given:
 buildFile << """
 task helloWorld {
 doLast {
 logger.quiet 'Hello world!'
 }
 }
 """

 when:
 def result = GradleRunner.create()
 .withGradleVersion(gradleVersion)
 .withProjectDir(testProjectDir.root)
 .withArguments()'helloWorld'
 .build()

 then:
 result.output.contains()'Hello world!'
 result.task().outcome == SUCCESS":helloWorld"

 where:
 gradleVersion << [,]'2.6' '2.7'
 }
}

43.2.3.1. Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some runner

features are not supported on earlier versions. In such cases, the runner will throw an exception when

attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Page 334 of 573

Table 43.1. Gradle version compatibility

Feature Minimum

Version

Description

Inspecting executed tasks 2.5 Inspecting the executed tasks, using

 and similarBuildResult.getTasks()

methods.

Plugin classpath injection 2.8 Injecting the code under test via

GradleRunner.withPluginClasspath()

.

Inspecting build output in debug mode 2.9 Inspecting the build's text output when run in

debug mode, using

.BuildResult.getOutput()

43.2.4. Debugging build logic

The runner uses the to execute builds. An implication of this is that the builds are executed in aTooling API

separate process (i.e. not the same process executing the tests). Therefore, executing your in debugtests

mode does not allow you to debug your build logic as you may expect. Any breakpoints set in your IDE will

be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

Setting “ ” system property to for the JVM the org.gradle.testkit.debug true using GradleRunner

(i.e. not the build being executed with the runner);

Calling the method.GradleRunner.withDebug()

The system property approach can be used when it is desirable to enable debugging support without making

an adhoc change to the runner configuration. Most IDEs offer the capability to set JVM system properties

for test execution, and such a feature can be used to set this system property.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput()
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug(boolean)

Part V. Building JVM
projects

Table of Contents
44. Java Quickstart
44.1. The Java plugin
44.2. A basic Java project
44.3. Multi-project Java build
44.4. Where to next?

45. The Java Plugin
45.1. Usage
45.2. Source sets
45.3. Tasks
45.4. Project layout
45.5. Dependency management
45.6. Convention properties
45.7. Working with source sets
45.8. Javadoc
45.9. Clean
45.10. Resources
45.11. CompileJava
45.12. Incremental Java compilation
45.13. Test
45.14. Jar
45.15. Uploading

46. Web Application Quickstart
46.1. Building a WAR file
46.2. Running your web application
46.3. Summary

47. The War Plugin
47.1. Usage
47.2. Tasks
47.3. Project layout
47.4. Dependency management
47.5. Convention properties
47.6. War
47.7. Customizing

48. The Ear Plugin
48.1. Usage
48.2. Tasks
48.3. Project layout
48.4. Dependency management
48.5. Convention properties
48.6. Ear
48.7. Customizing
48.8. Using custom descriptor file

49. The Jetty Plugin
49.1. Usage
49.2. Tasks
49.3. Project layout
49.4. Dependency management
49.5. Convention properties

50. The Application Plugin
50.1. Usage
50.2. Tasks
50.3. Convention properties

51. The Java Library Distribution Plugin
51.1. Usage
51.2. Tasks
51.3. Including other resources in the distribution

52. Groovy Quickstart
52.1. A basic Groovy project
52.2. Summary

53. The Groovy Plugin
53.1. Usage
53.2. Tasks
53.3. Project layout
53.4. Dependency management
53.5. Automatic configuration of groovyClasspath
53.6. Convention properties
53.7. Source set properties
53.8. GroovyCompile

54. The Scala Plugin
54.1. Usage
54.2. Tasks
54.3. Project layout
54.4. Dependency management
54.5. Automatic configuration of scalaClasspath
54.6. Convention properties
54.7. Source set properties
54.8. Compiling in external process
54.9. Incremental compilation
54.10. Eclipse Integration
54.11. IntelliJ IDEA Integration

55. The ANTLR Plugin
55.1. Usage
55.2. Tasks
55.3. Project layout
55.4. Dependency management
55.5. Convention properties
55.6. Source set properties
55.7. Controlling the ANTLR generator process

56. The Checkstyle Plugin
56.1. Usage
56.2. Tasks
56.3. Project layout
56.4. Dependency management
56.5. Configuration

57. The CodeNarc Plugin
57.1. Usage
57.2. Tasks
57.3. Project layout
57.4. Dependency management
57.5. Configuration

58. The FindBugs Plugin
58.1. Usage
58.2. Tasks
58.3. Dependency management
58.4. Configuration

59. The JDepend Plugin
59.1. Usage
59.2. Tasks

59.3. Dependency management
59.4. Configuration

60. The PMD Plugin
60.1. Usage
60.2. Tasks
60.3. Dependency management
60.4. Configuration

61. The JaCoCo Plugin
61.1. Getting Started
61.2. Configuring the JaCoCo Plugin
61.3. JaCoCo Report configuration
61.4. JaCoCo specific task configuration
61.5. Tasks
61.6. Dependency management

62. The Sonar Plugin
62.1. Usage
62.2. Analyzing Multi-Project Builds
62.3. Analyzing Custom Source Sets
62.4. Analyzing languages other than Java
62.5. Setting Custom Sonar Properties
62.6. Configuring Sonar Settings from the Command Line
62.7. Tasks

63. The SonarQube Runner Plugin
63.1. SonarQube Runner version and compatibility
63.2. Getting started
63.3. Configuring the SonarQube Runner
63.4. Specifying the SonarQube Runner version
63.5. Analyzing Multi-Project Builds
63.6. Analyzing Custom Source Sets
63.7. Analyzing languages other than Java
63.8. More on configuring SonarQube properties
63.9. Setting SonarQube Properties from the Command Line
63.10. Controlling the SonarQube Runner process
63.11. Tasks

64. The OSGi Plugin
64.1. Usage
64.2. Implicitly applied plugins
64.3. Tasks
64.4. Dependency management
64.5. Convention object
64.6.

65. The Eclipse Plugins
65.1. Usage
65.2. Tasks
65.3. Configuration
65.4. Customizing the generated files

66. The IDEA Plugin
66.1. Usage
66.2. Tasks
66.3. Configuration
66.4. Customizing the generated files
66.5. Further things to consider

Page 339 of 573

44
Java Quickstart

44.1. The Java plugin
As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to

implement in your build script. Out-of-the-box, however, it doesn't build anything unless you add code to

your build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run

some unit tests, and create a JAR file containing your classes. It would be nice if you didn't have to code all

this up for every project. Luckily, you don't have to. Gradle solves this problem through the use of .plugins

A plugin is an extension to Gradle which configures your project in some way, typically by adding some

pre-configured tasks which together do something useful. Gradle ships with a number of plugins, and you

can easily write your own and share them with others. One such plugin is the . This plugin addsJava plugin

some tasks to your project which will compile and unit test your Java source code, and bundle it into a JAR

file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of

the project, such as where the Java source files are located. If you follow the convention in your project, you

generally don't need to do much in your build script to get a useful build. Gradle allows you to customize

your project if you don't want to or cannot follow the convention in some way. In fact, because support for

Java projects is implemented as a plugin, you don't have to use the plugin at all to build a Java project, if you

don't want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and

multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the

Java plugin to build a Java project.

44.2. A basic Java project
Let's look at a simple example. To use the Java plugin, add the following to your build file:

Page 340 of 573

What tasks are
available?

You can use gradle tasks

to list the tasks of a project. This

will let you see the tasks that the

Java plugin has added to your

project.

Example 44.1. Using the Java plugin

build.gradle

apply plugin: 'java'

Note: The code for this example can be found at in the ‘-all’samples/java/quickstart

distribution of Gradle.

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a

number of tasks to your project.

Gradle expects to find your production source code under src/main/java

and your test source code under . In addition,src/test/java

any files under will be included insrc/main/resources

the JAR file as resources, and any files under src/test/resources

will be included in the classpath used to run the tests. All output

files are created under the directory, with the JAR filebuild

ending up in the directory.build/libs

44.2.1. Building the project

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to

build the project. The most commonly used task is the task, which does a full build of the project.build

When you run , Gradle will compile and test your code, and create a JAR file containinggradle build

your main classes and resources:

Example 44.2. Building a Java project

Output of gradle build

> gradle build
:compileJava
:processResources
:classes
:jar
:assemble
:compileTestJava
:processTestResources
:testClasses
:test
:check
:build

BUILD SUCCESSFUL

Total time: 1 secs

Some other useful tasks are:

clean

Page 341 of 573

Deletes the directory, removing all built files.build

assemble

Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.

For example, if you use the War plugin, this task will also build the WAR file for your project.

check

Compiles and tests your code. Other plugins add more checks to this task. For example, if you use the checkstyle

plugin, this task will also run Checkstyle against your source code.

44.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in

the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a

. A repository can be used for fetching the dependencies of a project, or for publishing therepository

artifacts of a project, or both. For this example, we will use the public Maven repository:

Example 44.3. Adding Maven repository

build.gradle

repositories {
 mavenCentral()
}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time

dependency on commons collections, and that our test classes have a compile-time dependency on junit:

Example 44.4. Adding dependencies

build.gradle

dependencies {
 compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2'
 testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

You can find out more in .Chapter 7, Dependency Management Basics

44.2.3. Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are

usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our

sample. Here we will specify the version number for our Java project, along with the Java version our source

is written in. We also add some attributes to the JAR manifest.

Page 342 of 573

What properties are
available?

You can use gradle properties

to list the properties of a project.

This will allow you to see the

properties added by the Java

plugin, and their default values.

Example 44.5. Customization of MANIFEST.MF

build.gradle

sourceCompatibility = 1.5
version = '1.0'
jar {
 manifest {
 attributes : ,'Implementation-Title' 'Gradle Quickstart'
 : version'Implementation-Version'
 }
}

The tasks which the Java plugin adds are regular tasks, exactly

the same as if they were declared in the build file. This means

you can use any of the mechanisms shown in earlier chapters to

customize these tasks. For example, you can set the properties of

a task, add behaviour to a task, change the dependencies of a

task, or replace a task entirely. In our sample, we will configure

the task, which is of type , to add a system propertytest Test

when the tests are executed:

Example 44.6. Adding a test system property

build.gradle

test {
 systemProperties : 'property' 'value'
}

44.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish

the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will

publish to a local directory. You can also publish to a remote location, or multiple locations.

Example 44.7. Publishing the JAR file

build.gradle

uploadArchives {
 repositories {
 flatDir {
 dirs 'repos'
 }
 }
}

To publish the JAR file, run .gradle uploadArchives

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html

Page 343 of 573

44.2.5. Creating an Eclipse project

To create the Eclipse-specific descriptor files, like , you need to add another plugin to your build.project

file:

Example 44.8. Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Now execute command to generate Eclipse project files. More information about the gradle eclipse eclipse

task can be found in .Chapter 65, The Eclipse Plugins

44.2.6. Summary

Here's the complete build file for our sample:

Example 44.9. Java example - complete build file

build.gradle

apply plugin: 'java'
apply plugin: 'eclipse'

sourceCompatibility = 1.5
version = '1.0'
jar {
 manifest {
 attributes : ,'Implementation-Title' 'Gradle Quickstart'
 : version'Implementation-Version'
 }
}

repositories {
 mavenCentral()
}

dependencies {
 compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2'
 testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

test {
 systemProperties : 'property' 'value'
}

uploadArchives {
 repositories {
 flatDir {
 dirs 'repos'
 }
 }
}

Page 344 of 573

44.3. Multi-project Java build
Now let's look at a typical multi-project build. Below is the layout for the project:

Example 44.10. Multi-project build - hierarchical layout

Build layout

multiproject/
 api/
 services/webservice/
 shared/
 services/shared/

Note: The code for this example can be found at in the ‘-all’samples/java/multiproject

distribution of Gradle.

Here we have four projects. Project produces a JAR file which is shipped to the client to provide themapi

a Java client for your XML webservice. Project is a webapp which returns XML. Project webservice shared

contains code used both by and . Project has code that dependsapi webservice services/shared

on the project.shared

44.3.1. Defining a multi-project build

To define a multi-project build, you need to create a . The settings file lives in the root directorysettings file

of the source tree, and specifies which projects to include in the build. It must be called settings.gradle

. For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 44.11. Multi-project build - settings.gradle file

settings.gradle

include , , , "shared" "api" "services:webservice" "services:shared"

You can find out more about the settings file in .Chapter 24, Multi-project Builds

44.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample,

we will define this common configuration in the root project, using a technique called configuration

. Here, the root project is like a container and the method iterates over theinjection subprojects

elements of this container - the projects in this instance - and injects the specified configuration. This way

we can easily define the manifest content for all archives, and some common dependencies:

Page 345 of 573

Example 44.12. Multi-project build - common configuration

build.gradle

subprojects {
 apply plugin: 'java'
 apply plugin: 'eclipse-wtp'

 repositories {
 mavenCentral()
 }

 dependencies {
 testCompile 'junit:junit:4.12'
 }

 version = '1.0'

 jar {
 manifest.attributes provider: 'gradle'
 }
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration

properties we have seen in the previous section are available in each subproject. So, you can compile, test,

and JAR all the projects by running from the root project directory.gradle build

Also note that these plugins are only applied within the section, not at the root level, so thesubprojects

root build will not expect to find Java source files in the root project, only in the subprojects.

44.3.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one

project is used to compile another project. In the build file we will add a dependency on the api shared

project. Due to this dependency, Gradle will ensure that project always gets built before project shared api

.

Example 44.13. Multi-project build - dependencies between projects

api/build.gradle

dependencies {
 compile project()':shared'
}

See for how to disable this functionality.Section 24.7.1, “Disabling the build of dependency projects”

44.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Page 346 of 573

Example 44.14. Multi-project build - distribution file

api/build.gradle

task dist(type: Zip) {
 dependsOn spiJar
 from 'src/dist'
 into() {'libs'
 from spiJar.archivePath
 from configurations.runtime
 }
}

artifacts {
 archives dist
}

44.4. Where to next?
In this chapter, you have seen how to do some of the things you commonly need to build a Java based

project. This chapter is not exhaustive, and there are many other things you can do with Java projects in

Gradle. You can find out more about the Java plugin in , and you can find moreChapter 45, The Java Plugin

sample Java projects in the directory in the Gradle distribution.samples/java

Otherwise, continue on to .Chapter 7, Dependency Management Basics

Page 347 of 573

45
The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as

the basis for many of the other Gradle plugins.

45.1. Usage
To use the Java plugin, include the following in your build script:

Example 45.1. Using the Java plugin

build.gradle

apply plugin: 'java'

45.2. Source sets
The Java plugin introduces the concept of a . A source set is simply a group of source files whichsource set

are compiled and executed together. These source files may include Java source files and resource files.

Other plugins add the ability to include Groovy and Scala source files in a source set. A source set has an

associated compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For

example, you might use a source set to define an integration test suite, or you might use separate source sets

to define the API and implementation classes of your project.

The Java plugin defines two standard source sets, called and . The source set containsmain test main

your production source code, which is compiled and assembled into a JAR file. The source settest

contains your test source code, which is compiled and executed using JUnit or TestNG. These can be unit

tests, integration tests, acceptance tests, or any combination that is useful to you.

45.3. Tasks
The Java plugin adds a number of tasks to your project, as shown below.

Table 45.1. Java plugin - tasks

Task name Depends on Type Description

Page 348 of 573

compileJava All tasks which produce the

compile classpath. This

includes the task forjar

project dependencies

included in the compile

configuration.

JavaCompile Compiles

production Java

source files

using javac.

processResources - Copy Copies

production

resources into

the production

resources

directory.

classes The task andcompileJava

the processResources

task. Some plugins add

additional compilation tasks.

Task Assembles the

production

classes and

resources

directories.

compileTestJava , plus all taskscompile

which produce the test

compile classpath.

JavaCompile Compiles test

Java source

files using

javac.

processTestResources - Copy Copies test

resources into

the test

resources

directory.

testClasses taskcompileTestJava

and processTestResources

task. Some plugins add

additional test compilation

tasks.

Task Assembles the

test classes and

resources

directories.

jar compile Jar Assembles the

JAR file

javadoc compile Javadoc Generates API

documentation

for the

production Java

source, using

Javadoc

test , ,compile compileTest

plus all tasks which produce

the test runtime classpath.

Test Runs the unit

tests using

JUnit or

TestNG.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html

Page 349 of 573

uploadArchives The tasks which produce the

artifacts in the archives

configuration, including .jar

Upload Uploads

artifacts in the archives

configuration,

including the

JAR file.

clean - Delete Deletes the

project build

directory.

cleanTaskName - Delete Deletes files

created by

specified task. cleanJar

will delete the

JAR file created

by the jar

task, and cleanTest

will delete the

test results

created by the test

task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html

Page 350 of 573

Table 45.2. Java plugin - source set tasks

Task name Depends on Type Description

compile JavaSourceSetAll tasks which produce the source set's compile

classpath.

JavaCompile Compiles

the given

source set's

Java source

files using

javac.

process ResourcesSourceSet- Copy Copies the

given

source set's

resources

into the

resources

directory.

ClassessourceSet The task and the compile JavaSourceSet process ResourcesSourceSet

task. Some plugins add additional compilation

tasks for the source set.

Task Assembles

the given

source set's

classes and

resources

directories.

The Java plugin also adds a number of tasks which form a lifecycle for the project:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html

Page 351 of 573

Table 45.3. Java plugin - lifecycle tasks

Task name Depends on Type Description

assemble All archive tasks in the project,

including . Some pluginsjar

add additional archive tasks to

the project.

Task Assembles all the archives

in the project.

check All verification tasks in the

project, including . Sometest

plugins add additional

verification tasks to the project.

Task Performs all verification

tasks in the project.

build and check assemble Task Performs a full build of the

project.

buildNeeded and build buildNeeded

tasks in all project lib

dependencies of the testRuntime

configuration.

Task Performs a full build of the

project and all projects it

depends on.

buildDependents and build buildDependents

tasks in all projects with a

project lib dependency on this

project in a testRuntime

configuration.

Task Performs a full build of the

project and all projects

which depend on it.

buildConfigName The tasks which produce the

artifacts in configuration

.ConfigName

Task Assembles the artifacts in

the specified configuration.

The task is added by the

Base plugin which is

implicitly applied by the

Java plugin.

uploadConfigName The tasks which uploads the

artifacts in configuration

.ConfigName

Upload Assembles and uploads the

artifacts in the specified

configuration. The task is

added by the Base plugin

which is implicitly applied

by the Java plugin.

The following diagram shows the relationships between these tasks.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Upload.html

Page 352 of 573

Figure 45.1. Java plugin - tasks

45.4. Project layout
The Java plugin assumes the project layout shown below. None of these directories need exist or have

anything in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 45.4. Java plugin - default project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/test/java Test Java source

src/test/resources Test resources

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

45.4.1. Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in more detail

in the following sections. Here is a brief example which changes the main Java and resource source

directories.

Example 45.2. Custom Java source layout

build.gradle

sourceSets {
 main {
 java {
 srcDir 'src/java'
 }
 resources {
 srcDir 'src/resources'
 }
 }
}

Page 353 of 573

45.5. Dependency management
The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns

those configurations to tasks such as and .compileJava test

Table 45.5. Java plugin - dependency configurations

Name Extends Used by tasks Meaning

compile - - Compile time dependencies

compileOnly compile - Compile time only dependencies,

not used at runtime

compileClasspath compileOnly compileJava Compile classpath, used when

compiling source

runtime compile - Runtime dependencies

testCompile compile - Additional dependencies for

compiling tests

testCompileOnly testCompile - Additional dependencies only for

compiling tests, not used at runtime

testCompileClasspath testCompileOnly compileTestJava Test compile classpath, used when

compiling test sources

testRuntime runtime,

testCompile

test Additional dependencies for running

tests only

archives - uploadArchives Artifacts (e.g. jars) produced by this

project

default runtime - The default configuration used by a

project dependency on this project.

Contains the artifacts and

dependencies required by this

project at runtime.

Figure 45.2. Java plugin - dependency configurations

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Page 354 of 573

Table 45.6. Java plugin - source set dependency configurations

Name Extends Used by

tasks

Meaning

CompilesourceSet - - Compile time dependencies for the

given source set

CompileOnlysourceSet CompilesourceSet - Compile time only dependencies for

the given source set, not used at

runtime

CompileClasspathsourceSet CompileOnlysourceSet compile JavaSourceSetCompile classpath, used when

compiling source

RuntimesourceSet CompilesourceSet - Runtime dependencies for the given

source set

45.6. Convention properties
The Java plugin adds a number of convention properties to the project, shown below. You can use these

properties in your build script as though they were properties of the project object.

Table 45.7. Java plugin - directory properties

Property name Type Default value Description

reportsDirName String reports The name of

the directory to

generate

reports into,

relative to the

build directory.

reportsDir File

(read-only)

/buildDir reportsDirName The directory

to generate

reports into.

testResultsDirName String test-results The name of

the directory to

generate test

result .xml

files into,

relative to the

build directory.

testResultsDir File

(read-only)

/buildDir testResultsDirNameThe directory

to generate test

result .xml

files into.

Page 355 of 573

testReportDirName String tests The name of

the directory to

generate the

test report into,

relative to the

reports

directory.

testReportDir File

(read-only)

/reportsDir testReportDirNameThe directory

to generate the

test report into.

libsDirName String libs The name of

the directory to

generate

libraries into,

relative to the

build directory.

libsDir File

(read-only)

/buildDir libsDirName The directory

to generate

libraries into.

distsDirName String distributions The name of

the directory to

generate

distributions

into, relative to

the build

directory.

distsDir File

(read-only)

/buildDir distsDirName The directory

to generate

distributions

into.

docsDirName String docs The name of

the directory to

generate

documentation

into, relative to

the build

directory.

docsDir File

(read-only)

/buildDir docsDirName The directory

to generate

documentation

into.

Page 356 of 573

dependencyCacheDirName String dependency-cache The name of

the directory to

use to cache

source

dependency

information,

relative to the

build directory.

dependencyCacheDir File

(read-only)

/buildDir dependencyCacheDirNameThe directory

to use to cache

source

dependency

information.

Table 45.8. Java plugin - other properties

Property name Type Default value Description

sourceSets SourceSetContainer

(read-only)

Not null Contains the

project's

source sets.

sourceCompatibility JavaVersion. Can also

set using a String or a

Number, e.g. or '1.5' 1.5

.

version of the current JVM

in use

Java version

compatibility

to use when

compiling

Java source.

targetCompatibility JavaVersion. Can also

set using a String or

Number, e.g. or '1.5' 1.5

.

sourceCompatibility Java version

to generate

classes for.

archivesBaseName String projectName The

basename to

use for

archives,

such as JAR

or ZIP files.

manifest Manifest an empty manifest The manifest

to include in

all JAR files.

These properties are provided by convention objects of type , and JavaPluginConvention

.BasePluginConvention

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.BasePluginConvention.html

Page 357 of 573

45.7. Working with source sets
You can access the source sets of a project using the property. This is a container for thesourceSets

project's source sets, of type . There is also a script block,SourceSetContainer sourceSets { }

which you can pass a closure to configure the source set container. The source set container works pretty

much the same way as other containers, such as .tasks

Example 45.3. Accessing a source set

build.gradle

// Various ways to access the main source set
println sourceSets.main.output.classesDir
println sourceSets[].output.classesDir'main'
sourceSets {
 println main.output.classesDir
}
sourceSets {
 main {
 println output.classesDir
 }
}

// Iterate over the source sets
sourceSets.all {
 println name
}

To configure an existing source set, you simply use one of the above access methods to set the properties of

the source set. The properties are described below. Here is an example which configures the main Java and

resources directories:

Example 45.4. Configuring the source directories of a source set

build.gradle

sourceSets {
 main {
 java {
 srcDir 'src/java'
 }
 resources {
 srcDir 'src/resources'
 }
 }
}

45.7.1. Source set properties

The following table lists some of the important properties of a source set. You can find more details in the

API documentation for .SourceSet

Table 45.9. Java plugin - source set properties

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.SourceSet.html

Page 358 of 573

Property name Type Default value Description

name (read-only)String Not null The name of

the source

set, used to

identify it.

output SourceSetOutput

(read-only)

Not null The output

files of the

source set,

containing

its compiled

classes and

resources.

output.classesDir File /classes/buildDir nameThe

directory to

generate the

classes of

this source

set into.

output.resourcesDir File /resources/buildDir nameThe

directory to

generate the

resources of

this source

set into.

compileClasspath FileCollection compileSourceSet

configuration.

The

classpath to

use when

compiling

the source

files of this

source set.

runtimeClasspath FileCollection + output runtimeSourceSet

configuration.

The

classpath to

use when

executing

the classes of

this source

set.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html

Page 359 of 573

java SourceDirectorySet

(read-only)

Not null The Java

source files

of this

source set.

Contains

only .java

files found in

the Java

source

directories,

and excludes

all other

files.

java.srcDirs . Can setSet<File>

using anything described

in Section 18.5,

“Specifying a set of input

.files”

[/src/ /java]projectDir nameThe source

directories

containing

the Java

source files

of this

source set.

resources SourceDirectorySet

(read-only)

Not null The

resources of

this source

set. Contains

only

resources,

and excludes

any .java

files found in

the resource

source

directories.

Other

plugins, such

as the

Groovy

plugin,

exclude

additional

types of files

from this

collection.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html

Page 360 of 573

resources.srcDirs . Can setSet<File>

using anything described

in Section 18.5,

“Specifying a set of input

.files”

[/src/ /resources]projectDir nameThe source

directories

containing

the resources

of this

source set.

allJava SourceDirectorySet

(read-only)

java All .java

files of this

source set.

Some

plugins, such

as the

Groovy

plugin, add

additional

Java source

files to this

collection.

allSource SourceDirectorySet

(read-only)

resources + java All source

files of this

source set.

This include

all resource

files and all

Java source

files. Some

plugins, such

as the

Groovy

plugin, add

additional

source files

to this

collection.

45.7.2. Defining new source sets

To define a new source set, you simply reference it in the block. Here's an example:sourceSets { }

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html

Page 361 of 573

Example 45.5. Defining a source set

build.gradle

sourceSets {
 intTest
}

When you define a new source set, the Java plugin adds some dependency configurations for the source set,

as shown in . You can use theseTable 45.6, “Java plugin - source set dependency configurations”

configurations to define the compile and runtime dependencies of the source set.

Example 45.6. Defining source set dependencies

build.gradle

sourceSets {
 intTest
}

dependencies {
 intTestCompile 'junit:junit:4.12'
 intTestRuntime 'org.ow2.asm:asm-all:4.0'
}

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in

. For example, for a source set called , compiling theTable 45.2, “Java plugin - source set tasks” intTest

classes for this source set is done by running .gradle intTestClasses

Example 45.7. Compiling a source set

Output of gradle intTestClasses

> gradle intTestClasses
:compileIntTestJava
:processIntTestResources
:intTestClasses

BUILD SUCCESSFUL

Total time: 1 secs

45.7.3. Some source set examples

Adding a JAR containing the classes of a source set:

Example 45.8. Assembling a JAR for a source set

build.gradle

task intTestJar(type: Jar) {
 from sourceSets.intTest.output
}

Page 362 of 573

Generating Javadoc for a source set:

Example 45.9. Generating the Javadoc for a source set

build.gradle

task intTestJavadoc(type: Javadoc) {
 source sourceSets.intTest.allJava
}

Adding a test suite to run the tests in a source set:

Example 45.10. Running tests in a source set

build.gradle

task intTest(type: Test) {
 testClassesDir = sourceSets.intTest.output.classesDir
 classpath = sourceSets.intTest.runtimeClasspath
}

45.8. Javadoc
The task is an instance of . It supports the core Javadoc options and the options of thejavadoc Javadoc

standard doclet described in the of the Javadoc executable. For a complete list ofreference documentation

supported Javadoc options consult the API documentation of the following classes:

 and .CoreJavadocOptions StandardJavadocDocletOptions

Table 45.10. Java plugin - Javadoc properties

Task Property Type Default Value

classpath FileCollection sourceSets.main.output + sourceSets.main.compileClasspath

source FileTree. Can set using

anything described in

Section 18.5, “Specifying a

.set of input files”

sourceSets.main.allJava

destinationDir File /javadocdocsDir

title String The name and version of the project

45.9. Clean
The task is an instance of . It simply removes the directory denoted by its property.clean Delete dir

Table 45.11. Java plugin - Clean properties

Task Property Type Default Value

dir File buildDir

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html

Page 363 of 573

45.10. Resources
The Java plugin uses the task for resource handling. It adds an instance for each source set in theCopy

project. You can find out more about the copy task in .Section 18.6, “Copying files”

Table 45.12. Java plugin - ProcessResources properties

Task Property Type Default Value

srcDirs Object. Can set using anything described

in Section 18.5, “Specifying a set of input

.files”

.resourcessourceSet

destinationDir File. Can set using anything described in

.Section 18.1, “Locating files”

.output.resourcesDirsourceSet

45.11. CompileJava
The Java plugin adds a instance for each source set in the project. Some of the mostJavaCompile

common configuration options are shown below.

Table 45.13. Java plugin - Compile properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source FileTree. Can set using anything described

in .Section 18.5, “Specifying a set of input files”

.javasourceSet

destinationDir File. .output.classesDirsourceSet

By default, the Java compiler runs in the Gradle process. Setting to causesoptions.fork true

compilation to occur in a separate process. In the case of the Ant javac task, this means that a new process

will be forked for each compile task, which can slow down compilation. Conversely, Gradle's direct

compiler integration (see above) will reuse the same compiler process as much as possible. In both cases, all

fork options specified with will be honored.options.forkOptions

45.12. Incremental Java compilation
Starting with Gradle 2.1, it is possible to compile Java incrementally. This feature is still incubating. See the

 task for information on how to enable it.JavaCompile

Main goals for incremental compilations are:

Avoid wasting time compiling source classes that don't have to be compiled. This means faster builds,

especially when a change to a source class or a jar does not incur recompilation of many source classes

that depend on the changed input.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Page 364 of 573

Change as few output classes as possible. Classes that don't need to be recompiled remain unchanged in

the output directory. An example scenario when this is really useful is using JRebel - the fewer output

classes are changed the quicker the jvm can use refreshed classes.

The incremental compilation at a high level:

The detection of the correct set of stale classes is reliable at some expense of speed. The algorithm uses

bytecode analysis and deals gracefully with compiler optimizations (inlining of non-private constants),

transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly

compile everything to avoid problems with constants inlined by the compiler. Down the road we will

tune the algorithm and caching so that incremental Java compilation can be a default setting for every

compile task.

To make incremental compilation fast, we cache class analysis results and jar snapshots. The initial

incremental compilation can be slower due to the cold caches.

45.13. Test
The task is an instance of . It automatically detects and executes all unit tests in the test Test test

source set. It also generates a report once test execution is complete. JUnit and TestNG are both supported.

Have a look at for the complete API.Test

45.13.1. Test execution

Tests are executed in a separate JVM, isolated from the main build process. The task's API allows youTest

some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such

as system properties, JVM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test execution by

running multiple test processes concurrently. Each test process executes only a single test at a time, so you

generally don't need to do anything special to your tests to take advantage of this. The maxParallelForks

property specifies the maximum number of test processes to run at any given time. The default is 1, that is,

do not execute the tests in parallel.

The test process sets the system property to a unique identifier for that testorg.gradle.test.worker

process, which you can use, for example, in files names or other resource identifiers.

You can specify that test processes should be restarted after it has executed a certain number of test classes.

This can be a useful alternative to giving your test process a very large heap. The propertyforkEvery

specifies the maximum number of test classes to execute in a test process. The default is to execute an

unlimited number of tests in each test process.

The task has an property to control the behavior when tests fail. The task alwaysignoreFailures Test

executes every test that it detects. It stops the build afterwards if is false and there areignoreFailures

failing tests. The default value of is false.ignoreFailures

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html

Page 365 of 573

The property allows you to configure which test events are going to be logged and at whichtestLogging

detail level. By default, a concise message will be logged for every failed test. See

 for how to tune test logging to your preferences.TestLoggingContainer

45.13.2. Debugging

The test task provides a property that can be set to launch to make the JVM wait for aTest.getDebug()

debugger to attach to port 5005 before proceeding with test execution.

This can also be enabled at invocation time via the task option (since Gradle 1.12).--debug-jvm

45.13.3. Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern.

Filtering is a different mechanism than test class inclusion / exclusion that will be described in the next few

paragraphs (, and friends). The latter is based on files, e.g. the physical-Dtest.single test.include

location of the test implementation class. File-level test selection does not support many interesting

scenarios that are possible with test-level filtering. Some of them Gradle handles now and some will be

satisfied in future releases:

Filtering at the level of specific test methods; executing a single test method

Filtering based on custom annotations (future)

Filtering based on test hierarchy; executing all tests that extend ceratain base class (future)

Filtering based on some custom runtime rule, e.g. particular value of a system property or some static

state (future)

Test filtering feature has following characteristic:

Fully qualified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest”,

“org.gradle.SomeTest.someMethod”

Wildcard '*' is supported for matching any characters

Command line option “--tests” is provided to conveniently set the test filter. Especially useful for the

classic 'single test method execution' use case. When the command line option is used, the inclusion

filters declared in the build script are ignored.

Gradle tries to filter the tests given the limitations of the test framework API. Some advanced, synthetic

tests may not be fully compatible with filtering. However, the vast majority of tests and use cases should

be handled neatly.

Test filtering supersedes the file-based test selection. The latter may be completely replaced in future.

We will grow the the test filtering api and add more kinds of filters.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

Page 366 of 573

Example 45.11. Filtering tests in the build script

build.gradle

test {
 filter {
 //include specific method in any of the tests
 includeTestsMatching "*UiCheck"

 //include all tests from package
 includeTestsMatching "org.gradle.internal.*"

 //include all integration tests
 includeTestsMatching "*IntegTest"
 }
}

For more details and examples please see the reference.TestFilter

Some examples of using the command line option:

gradle test --tests org.gradle.SomeTest.someSpecificFeature

gradle test --tests *SomeTest.someSpecificFeature

gradle test --tests *SomeSpecificTest

gradle test --tests *SomeSpecificTestSuite

gradle test --tests all.in.specific.package*

gradle test --tests *IntegTest

gradle test --tests *IntegTest*ui*

gradle test --tests "com.example.MyTestSuite"

gradle test --tests "com.example.ParameterizedTest"

gradle test --tests "*ParameterizedTest.foo*"

gradle test --tests "*ParameterizedTest.*[2]"

gradle someTestTask --tests *UiTest someOtherTestTask --tests *WebTest*ui

45.13.4. Single test execution via System Properties

This mechanism has been superseded by 'Test Filtering', described above.

Setting a system property of = will only execute tests thattaskName.single testNamePattern

match the specified . The can be a full multi-project path liketestNamePattern taskName

“:sub1:sub2:test” or just the task name. The will be used to form an include patterntestNamePattern

of “**/testNamePattern*.class”;. If no tests with this pattern can be found an exception is thrown. This is to

shield you from false security. If tests of more than one subproject are executed, the pattern is applied to

each subproject. An exception is thrown if no tests can be found for a particular subproject. In such a case

you can use the path notation of the pattern, so that the pattern is applied only to the test task of a specific

subproject. Alternatively you can specify the fully qualified task name to be executed. You can also specify

multiple patterns. Examples:

gradle -Dtest.single=ThisUniquelyNamedTest test

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/testing/TestFilter.html

Page 367 of 573

gradle -Dtest.single=a/b/ test

gradle -DintegTest.single=*IntegrationTest integTest

gradle -Dtest.single=:proj1:test:Customer build

gradle -DintegTest.single=c/d/ :proj1:integTest

45.13.5. Test detection

The task detects which classes are test classes by inspecting the compiled test classes. By default itTest

scans all files. You can set custom includes / excludes, only those classes will be scanned..class

Depending on the test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the

class is considered to be a JUnit test class:

Class or a super class extends or TestCase GroovyTestCase

Class or a super class is annotated with @RunWith

Class or a super class contain a method annotated with @Test

When using TestNG, we scan for methods annotated with .@Test

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the test

classpath.

If you don't want to use test class detection, you can disable it by setting to false.scanForTestClasses

This will make the test task only use includes / excludes to find test classes. If isscanForTestClasses

false and no include / exclude patterns are specified, the defaults are “ ”, “**/*Tests.class **/*Test.class

” and “ ” for include and exclude, respectively.**/Abstract*.class

45.13.6. Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories. The []22 test

task allows the specification of the JUnit categories you want to include and exclude.

Example 45.12. JUnit Categories

build.gradle

test {
 useJUnit {
 includeCategories 'org.gradle.junit.CategoryA'
 excludeCategories 'org.gradle.junit.CategoryB'
 }
}

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups. []23

The test groups that should be included or excluded from the test execution can be configured in the test

task.

Page 368 of 573

Example 45.13. Grouping TestNG tests

build.gradle

test {
 useTestNG {
 excludeGroups 'integrationTests'
 includeGroups 'unitTests'
 }
}

45.13.7. Test execution order in TestNG

TestNG allows explicit control of the execution order of tests.

The property controls whether tests are executed in deterministic order. Preserving thepreserveOrder

order guarantees that the complete test (including and) is run in a test thread@BeforeXXX @AfterXXX

before the next test is run. While preserving the order of tests is the default behavior when directly working

with files, the , that is used for running tests programmatically, as well astestng.xml TestNG API

Gradle's TestNG integration execute tests in unpredictable order by default. Preserving the order of tests[]24

was introduced with TestNG version 5.14.5. Setting the property to for an olderpreserveOrder true

TestNG version will cause the build to fail.

Example 45.14. Preserving order of TestNG tests

build.gradle

test {
 useTestNG {
 preserveOrder true
 }
}

The property controls whether tests should be grouped by instances. Grouping bygroupByInstance

instances will result in resolving test method dependencies for each instance instead of running the

dependees of all instances before running the dependants. The default behavior is not to group tests by

instances. Grouping tests by instances was introduced with TestNG version 6.1. Setting the []25 groupByInstances

property to for an older TestNG version will cause the build to fail.true

Example 45.15. Grouping TestNG tests by instances

build.gradle

test {
 useTestNG {
 groupByInstances true
 }
}

45.13.8. Test reporting

The task generates the following results by default.Test

http://testng.org/javadocs/org/testng/TestNG.html

Page 369 of 573

An HTML test report.

The results in an XML format that is compatible with the Ant JUnit report task. This format is supported

by many other tools, such as CI servers.

Results in an efficient binary format. The task generates the other results from these binary results.

There is also a stand-alone task type which can generate the HTML test report from theTestReport

binary results generated by one or more task instances. To use this task type, you need to define a Test destinationDir

and the test results to include in the report. Here is a sample which generates a combined report for the unit

tests from subprojects:

Example 45.16. Creating a unit test report for subprojects

build.gradle

subprojects {
 apply plugin: 'java'

 // Disable the test report for the individual test task
 test {
 reports.html.enabled = false
 }
}

task testReport(type: TestReport) {
 destinationDir = file()"$buildDir/reports/allTests"
 // Include the results from the `test` task in all subprojects
 reportOn subprojects*.test
}

You should note that the type combines the results from multiple test tasks and needs toTestReport

aggregate the results of individual test classes. This means that if a given test class is executed by multiple

test tasks, then the test report will include executions of that class, but it can be hard to distinguish individual

executions of that class and their output.

45.13.8.1. TestNG parameterized methods and reporting

TestNG supports , allowing a particular test method to be executed multipleparameterizing test methods

times with different inputs. Gradle includes the parameter values in its reporting of the test method

execution.

Given a parameterized test method named that takes two parameters, it will be reportedaTestMethod

with the name: . ThisaTestMethod(toStringValueOfParam1, toStringValueOfParam2)

makes identifying the parameter values for a particular iteration easy.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.TestReport.html
http://testng.org/doc/documentation-main.html#parameters

Page 370 of 573

45.13.9. Convention values

Table 45.14. Java plugin - test properties

Task Property Type Default Value

testClassesDir File sourceSets.test.output.classesDir

classpath FileCollection sourceSets.test.runtimeClasspath

testResultsDir File testResultsDir

testReportDir File testReportDir

testSrcDirs List<File> sourceSets.test.java.srcDirs

45.14. Jar
The task creates a JAR file containing the class files and resources of the project. The JAR file isjar

declared as an artifact in the dependency configuration. This means that the JAR is available inarchives

the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part

of the dependency descriptor. You can learn more about how to work with archives in Section 18.8,

 and artifact configurations in .“Creating archives” Chapter 30, Publishing artifacts

45.14.1. Manifest

Each jar or war object has a property with a separate instance of . When the archivemanifest Manifest

is generated, a corresponding file is written into the archive.MANIFEST.MF

Example 45.17. Customization of MANIFEST.MF

build.gradle

jar {
 manifest {
 attributes(: ,"Implementation-Title" "Gradle"
 : version)"Implementation-Version"
 }
}

You can create stand alone instances of a . You can use that for example, to share manifestManifest

information between jars.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html

Page 371 of 573

Example 45.18. Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {
 attributes(: ,"Implementation-Title" "Gradle"
 : version)"Implementation-Version"
}
task fooJar(type: Jar) {
 manifest = project.manifest {
 from sharedManifest
 }
}

You can merge other manifests into any object. The other manifests might be either describedManifest

by a file path or, like in the example above, by a reference to another object.Manifest

Manifests are merged in the order they are declared by the statement. If the base manifest and thefrom

merged manifest both define values for the same key, the merged manifest wins by default. You can fully

customize the merge behavior by adding actions in which you have access to a eachEntry

 instance for each entry of the resulting manifest. The merge is notManifestMergeDetails

immediately triggered by the from statement. It is done lazily, either when generating the jar, or by calling writeTo

or effectiveManifest

You can easily write a manifest to disk.

Example 45.19. Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {
 manifest {
 attributes key1: 'value1'
 from sharedManifest, 'src/config/basemanifest.txt'
 from(,'src/config/javabasemanifest.txt'
) {'src/config/libbasemanifest.txt'
 eachEntry { details ->
 (details.baseValue != details.mergeValue) {if
 details.value = baseValue
 }
 (details.key ==) {if 'foo'
 details.exclude()
 }
 }
 }
 }
}

build.gradle

jar.manifest.writeTo()"$buildDir/mymanifest.mf"

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

Page 372 of 573

45.15. Uploading
How to upload your archives is described in .Chapter 30, Publishing artifacts

[] 22 The JUnit wiki contains a detailed description on how to work with JUnit categories:

.https://github.com/junit-team/junit/wiki/Categories

[] 23 The TestNG documentation contains more details about test groups:

.http://testng.org/doc/documentation-main.html#test-groups

[] 24 The TestNG documentation contains more details about test ordering when working with testng.xml

files: .http://testng.org/doc/documentation-main.html#testng-xml

[] 25 The TestNG documentation contains more details about grouping tests by instances:

.http://testng.org/doc/documentation-main.html#dependencies-with-annotations

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#dependencies-with-annotations

Page 373 of 573

Groovy web
applications

You can combine multiple

plugins in a single project, so

you can use the War and

Groovy plugins together to

build a Groovy based web

application. The appropriate

46
Web Application Quickstart

This chapter is a work in progress.

This chapter introduces the Gradle support for web applications. Gradle provides two plugins for web

application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to

build a WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web

application to an embedded Jetty web container.

46.1. Building a WAR file
To build a WAR file, you apply the War plugin to your project:

Example 46.1. War plugin

build.gradle

apply plugin: 'war'

Note: The code for this example can be found at insamples/webApplication/quickstart

the ‘-all’ distribution of Gradle.

This also applies the Java plugin to your project. Running will compile, test and WARgradle build

your project. Gradle will look for the source files to include in the WAR file in . Yoursrc/main/webapp

compiled classes and their runtime dependencies are also included in the WAR file, in the WEB-INF/classes

and directories, respectively.WEB-INF/lib

46.2. Running your web
application

To run your web application, you apply the Jetty plugin to your

project:

Page 374 of 573

Groovy libraries will be added

to the WAR file for you.

Example 46.2. Running web application with Jetty plugin

build.gradle

apply plugin: 'jetty'

This also applies the War plugin to your project. Running will run your webgradle jettyRun

application in an embedded Jetty web container. Running will build the WARgradle jettyRunWar

file, and then run it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and reload.

46.3. Summary
You can find out more about the War plugin in and the Jetty plugin in Chapter 47, The War Plugin

. You can find more sample Java projects in the Chapter 49, The Jetty Plugin samples/webApplication

directory in the Gradle distribution.

Page 375 of 573

47
The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It

disables the default JAR archive generation of the Java plugin and adds a default WAR archive task.

47.1. Usage
To use the War plugin, include the following in your build script:

Example 47.1. Using the War plugin

build.gradle

apply plugin: 'war'

47.2. Tasks
The War plugin adds the following tasks to the project.

Table 47.1. War plugin - tasks

Task name Depends on Type Description

war compile War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 47.2. War plugin - additional task dependencies

Task name Depends on

assemble war

Figure 47.1. War plugin - tasks

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.War.html

Page 376 of 573

47.3. Project layout
Table 47.3. War plugin - project layout

Directory Meaning

src/main/webapp Web application sources

47.4. Dependency management
The War plugin adds two dependency configurations named and providedCompile providedRuntime

. Those two configurations have the same scope as the respective and configurations,compile runtime

except that they are not added to the WAR archive. It is important to note that those provided

configurations work transitively. Let's say you add commons-httpclient:commons-httpclient:3.0

to any of the provided configurations. This dependency has a dependency on . Becausecommons-codec

this is a “provided” configuration, this means that neither of these dependencies will be added to your WAR,

even if the library is an explicit dependency of your configuration. If youcommons-codec compile

don't want this transitive behavior, simply declare your dependencies like provided commons-httpclient:commons-httpclient:3.0@jar

.

47.5. Convention properties
Table 47.4. War plugin - directory properties

Property name Type Default value Description

webAppDirName String src/main/webapp The name of the web application

source directory, relative to the project

directory.

webAppDir File

(read-only)

/projectDir webAppDirNameThe web application source directory.

These properties are provided by a convention object.WarPluginConvention

47.6. War
The default behavior of the War task is to copy the content of to the root of thesrc/main/webapp

archive. Your directory may of course contain a sub-directory, which may contain a webapp WEB-INF web.xml

file. Your compiled classes are compiled to . All the dependencies of the WEB-INF/classes runtime [

 configuration are copied to .]26 WEB-INF/lib

The class in the API documentation has additional useful information.War

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.War.html

Page 377 of 573

47.7. Customizing
Here is an example with the most important customization options:

Example 47.2. Customization of war plugin

build.gradle

configurations {
 moreLibs
}

repositories {
 flatDir { dirs }"lib"
 mavenCentral()
}

dependencies {
 compile module() {":compile:1.0"
 dependency ":compile-transitive-1.0@jar"
 dependency ":providedCompile-transitive:1.0@jar"
 }
 providedCompile "javax.servlet:servlet-api:2.5"
 providedCompile module() {":providedCompile:1.0"
 dependency ":providedCompile-transitive:1.0@jar"
 }
 runtime ":runtime:1.0"
 providedRuntime ":providedRuntime:1.0@jar"
 testCompile "junit:junit:4.12"
 moreLibs ":otherLib:1.0"
}

war {
 from 'src/rootContent' // adds a file-set to the root of the archive
 webInf { from } 'src/additionalWebInf' // adds a file-set to the WEB-INF dir.
 classpath fileTree() 'additionalLibs' // adds a file-set to the WEB-INF/lib dir.
 classpath configurations.moreLibs // adds a configuration to the WEB-INF/lib dir.
 webXml = file() 'src/someWeb.xml' // copies a file to WEB-INF/web.xml
}

Of course one can configure the different file-sets with a closure to define excludes and includes.

[] 26 The configuration extends the configuration.runtime compile

Page 378 of 573

48
The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task.

It doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR

archive generation.

48.1. Usage
To use the Ear plugin, include the following in your build script:

Example 48.1. Using the Ear plugin

build.gradle

apply plugin: 'ear'

48.2. Tasks
The Ear plugin adds the following tasks to the project.

Table 48.1. Ear plugin - tasks

Task

name

Depends on Type Description

ear (only if the Java plugin is alsocompile

applied)

Ear Assembles the application EAR

file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 48.2. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 379 of 573

48.3. Project layout
Table 48.3. Ear plugin - project layout

Directory Meaning

src/main/application Ear resources, such as a META-INF directory

48.4. Dependency management
The Ear plugin adds two dependency configurations: and . All dependencies in the deploy earlib deploy

configuration are placed in the root of the EAR archive, and are transitive. All dependencies in the not earlib

configuration are placed in the 'lib' directory in the EAR archive and transitive.are

48.5. Convention properties
Table 48.4. Ear plugin - directory properties

Property name Type Default value Description

appDirName String src/main/application The name of the application source

directory, relative to the project

directory.

libDirName String lib The name of the lib directory inside

the generated EAR.

deploymentDescriptor org.gradle.plugins.

ear.descriptor.

DeploymentDescriptor

A deployment descriptor with

sensible defaults named application.xml

Metadata to generate a deployment

descriptor file, e.g. application.xml

. If this file already exists in the appDirName/META-INF

then the existing file contents will

be used and the explicit

configuration in the ear.deploymentDescriptor

will be ignored.

These properties are provided by a convention object.EarPluginConvention

48.6. Ear
The default behavior of the Ear task is to copy the content of to the root of thesrc/main/application

archive. If your directory doesn't contain a deploymentapplication META-INF/application.xml

descriptor then one will be generated for you.

The class in the API documentation has additional useful information.Ear

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.EarPluginConvention.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 380 of 573

48.7. Customizing
Here is an example with the most important customization options:

Example 48.2. Customization of ear plugin

build.gradle

apply plugin: 'ear'
apply plugin: 'java'

repositories { mavenCentral() }

dependencies {
 // The following dependencies will be the ear modules and
 // will be placed in the ear root
 deploy project()':war'

 // The following dependencies will become ear libs and will
 // be placed in a dir configured via the libDirName property
 earlib group: , name: , version: , ext: 'log4j' 'log4j' '1.2.15' 'jar'
}

ear {
 appDirName 'src/main/app' // use application metadata found in this folder
 // put dependent libraries into APP-INF/lib inside the generated EAR
 libDirName 'APP-INF/lib'
 deploymentDescriptor { // custom entries for application.xml:
// fileName = "application.xml" // same as the default value
// version = "6" // same as the default value
 applicationName = "customear"
 initializeInOrder = true
 displayName = "Custom Ear" // defaults to project.name
 // defaults to project.description if not set
 description = "My customized EAR for the Gradle documentation"
// libraryDirectory = "APP-INF/lib" // not needed, above libDirName setting does this
// module("my.jar", "java") // won't deploy as my.jar isn't deploy dependency
// webModule("my.war", "/") // won't deploy as my.war isn't deploy dependency
 securityRole "admin"
 securityRole "superadmin"
 withXml { provider -> // add a custom node to the XML
 provider.asNode().appendNode(,)"data-source" "my/data/source"
 }
 }
}

You can also use customization options that the task provides, such as and .Ear from metaInf

48.8. Using custom descriptor file
You may already have appropriate settings in a file and want to use that instead ofapplication.xml

configuring the section of the build script. To accommodate that goal,ear.deploymentDescriptor

place the in the right place inside your source folders (see the META-INF/application.xml appDirName

property). The file contents will be used and the explicit configuration in the ear.deploymentDescriptor

will be ignored.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 381 of 573

49
The Jetty Plugin

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web application to a

Jetty web container embedded in the build.

49.1. Usage
To use the Jetty plugin, include the following in your build script:

Example 49.1. Using the Jetty plugin

build.gradle

apply plugin: 'jetty'

49.2. Tasks
The Jetty plugin defines the following tasks:

Table 49.1. Jetty plugin - tasks

Task name Depends

on

Type Description

jettyRun compile JettyRun Starts a Jetty instance and deploys the exploded

web application to it.

jettyRunWar war JettyRunWar Starts a Jetty instance and deploys the WAR to

it.

jettyStop - JettyStop Stops the Jetty instance.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.jetty.JettyStop.html

Page 382 of 573

Figure 49.1. Jetty plugin - tasks

49.3. Project layout
The Jetty plugin uses the same layout as the War plugin.

49.4. Dependency management
The Jetty plugin does not define any dependency configurations.

49.5. Convention properties
The Jetty plugin defines the following convention properties:

Table 49.2. Jetty plugin - properties

Property name Type Default value Description

contextPath String WAR file base

name

The application deployment location within the

Jetty container.

httpPort Integer 8080 The TCP port which Jetty should listen for HTTP

requests on.

stopPort Integer null The TCP port which Jetty should listen for admin

requests on.

stopKey String null The key to pass to Jetty when requesting it to

stop.

These properties are provided by a convention object.JettyPluginConvention

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.jetty.JettyPluginConvention.html

Page 383 of 573

50
The Application Plugin

The Application plugin facilitates creating an executable JVM application. It makes it easy to start the

application locally during development, and to packaging the application as a TAR and/or ZIP including

operating system specific start scripts.

Applying the Application plugin also implicitly applies the . The source set is effectivelyJava plugin main

the “application”.

Applying the Application plugin also implicitly applies the . A distribution isDistribution plugin main

created that packages up the application, including code dependencies and generated start scripts.

50.1. Usage
To use the application plugin, include the following in your build script:

Example 50.1. Using the application plugin

build.gradle

apply plugin: 'application'

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry point) of the

application.

Example 50.2. Configure the application main class

build.gradle

mainClassName = "org.gradle.sample.Main"

You can run the application by executing the task (type:). This will compile the mainrun JavaExec

source set, and launch a new JVM with its classes (along with all runtime dependencies) as the classpath and

using the specified main class. You can launch the application in debug mode with gradle run --debug-jvm

(see).JavaExec.setDebug()

If your application requires a specific set of JVM settings or system properties, you can configure the applicationDefaultJvmArgs

property. These JVM arguments are applied to the task and also considered in the generated startrun

scripts of your distribution.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug(boolean)

Page 384 of 573

Example 50.3. Configure default JVM settings

build.gradle

applicationDefaultJvmArgs = []"-Dgreeting.language=en"

50.1.1. The distribution

A distribution of the application can be created, by way of the (which is automaticallyDistribution plugin

applied). A distribution is created with the following content:main

Table 50.1. Distribution content

Location Content

(root dir) src/dist

lib All runtime dependencies and main source set class files.

bin Start scripts (generated by task).createStartScripts

Static files to be added to the distribution can be simply added to . More advanced customizationsrc/dist

can be done by configuring the exposed by the main distribution.CopySpec

Example 50.4. Include output from other tasks in the application distribution

build.gradle

task createDocs {
 def docs = file()"$buildDir/docs"
 outputs.dir docs
 doLast {
 docs.mkdirs()
 File(docs,).write()new "readme.txt" "Read me!"
 }
}

distributions {
 main {
 contents {
 from(createDocs) {
 into "docs"
 }
 }
 }
}

By specifying that the distribution should include the task's output files (see Section 17.9.1, “Declaring a

), Gradle knows that the task that produces the files must be invoked before thetask's inputs and outputs”

distribution can be assembled and will take care of this for you.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/CopySpec.html

Page 385 of 573

Example 50.5. Automatically creating files for distribution

Output of gradle distZip

> gradle distZip
:createDocs
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:startScripts
:distZip

BUILD SUCCESSFUL

Total time: 1 secs

You can run to create an image of the application in gradle installDist build/install/projectName

. You can run to create a ZIP containing the distribution, togradle distZip gradle distTar

create an application TAR or to build both.gradle assemble

50.1.2. Customizing start script generation

The application plugin can generate Unix (suitable for Linux, Mac OS X etc.) and Windows start scripts out

of the box. The start scripts launch a JVM with the specified settings defined as part of the original build and

runtime environment (e.g. env var). The default script templates are based on the same scriptsJAVA_OPTS

used to launch Gradle itself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of

 for more details and customization examples.CreateStartScripts

50.2. Tasks
The Application plugin adds the following tasks to the project.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html

Page 386 of 573

Table 50.2. Application plugin - tasks

Task name Depends on Type Description

run classes JavaExec Starts the application.

startScripts jar CreateStartScripts Creates OS specific scripts to

run the project as a JVM

application.

installDist , jar startScriptsSync Installs the application into a

specified directory.

distZip , jar startScriptsZip Creates a full distribution

ZIP archive including

runtime libraries and OS

specific scripts.

distTar , jar startScriptsTar Creates a full distribution

TAR archive including

runtime libraries and OS

specific scripts.

50.3. Convention properties
The application plugin adds some properties to the project, which you can use to configure its behaviour.

See the class in the API documentation.Project

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html

Page 387 of 573

51
The Java Library Distribution Plugin

The Java library distribution plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The

distribution contains the JAR file for the library and its dependencies.

51.1. Usage
To use the Java library distribution plugin, include the following in your build script:

Example 51.1. Using the Java library distribution plugin

build.gradle

apply plugin: 'java-library-distribution'

To define the name for the distribution you have to set the property as shown below:baseName

Example 51.2. Configure the distribution name

build.gradle

distributions {
 main{
 baseName = 'my-name'
 }
}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies

of the library. All files stored in will be added to the root of the archive distribution. Yousrc/main/dist

can run “ ” to create a ZIP file containing the distribution.gradle distZip

51.2. Tasks
The Java library distribution plugin adds the following tasks to the project.

Page 388 of 573

Table 51.1. Java library distribution plugin - tasks

Task

name

Depends

on

Type Description

distZip jar Zip Creates a full distribution ZIP archive including runtime

libraries.

51.3. Including other resources in the distribution
All of the files from the directory are copied. To include any static files in the distribution,src/dist

simply arrange them in the directory, or add them to the content of the distribution.src/dist

Example 51.3. Include files in the distribution

build.gradle

distributions {
 main {
 baseName = 'my-name'
 contents {
 from { }'src/dist'
 }
 }
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html

Page 389 of 573

52
Groovy Quickstart

To build a Groovy project, you use the . This plugin extends the Java plugin to add GroovyGroovy plugin

compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or

a mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have

already seen in .Chapter 44, Java Quickstart

52.1. A basic Groovy project
Let's look at an example. To use the Groovy plugin, add the following to your build file:

Example 52.1. Groovy plugin

build.gradle

apply plugin: 'groovy'

Note: The code for this example can be found at in the ‘-all’samples/groovy/quickstart

distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin

extends the task to look for source files in directory , and the compile src/main/groovy compileTest

task to look for test source files in directory . The compile tasks use joint compilationsrc/test/groovy

for these directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the

Groovy libraries. You do this by adding a dependency to the configuration. The groovy compile

configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling

Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Example 52.2. Dependency on Groovy

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.4'
}

Page 390 of 573

Here is our complete build file:

Example 52.3. Groovy example - complete build file

build.gradle

apply plugin: 'eclipse'
apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.4'
 testCompile 'junit:junit:4.12'
}

Running will compile, test and JAR your project.gradle build

52.2. Summary
This chapter describes a very simple Groovy project. Usually, a real project will require more than this.

Because a Groovy project a Java project, whatever you can do with a Java project, you can also do with ais

Groovy project.

You can find out more about the Groovy plugin in , and you can find moreChapter 53, The Groovy Plugin

sample Groovy projects in the directory in the Gradle distribution.samples/groovy

Page 391 of 573

53
The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy

code, mixed Groovy and Java code, and even pure Java code (although we don't necessarily recommend to

use it for the latter). The plugin supports , which allows you to freely mix and matchjoint compilation

Groovy and Java code, with dependencies in both directions. For example, a Groovy class can extend a Java

class that in turn extends a Groovy class. This makes it possible to use the best language for the job, and to

rewrite any class in the other language if needed.

53.1. Usage
To use the Groovy plugin, include the following in your build script:

Example 53.1. Using the Groovy plugin

build.gradle

apply plugin: 'groovy'

53.2. Tasks
The Groovy plugin adds the following tasks to the project.

Table 53.1. Groovy plugin - tasks

Task name Depends on Type Description

compileGroovy compileJava GroovyCompile Compiles production

Groovy source files.

compileTestGroovy compileTestJava GroovyCompile Compiles test Groovy

source files.

compile GroovySourceSet compile JavaSourceSet GroovyCompile Compiles the given

source set's Groovy

source files.

groovydoc - Groovydoc Generates API

documentation for the

production Groovy

source files.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Page 392 of 573

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 53.2. Groovy plugin - additional task dependencies

Task name Depends on

classes compileGroovy

testClasses compileTestGroovy

sourceSetClasses compile GroovySourceSet

Figure 53.1. Groovy plugin - tasks

53.3. Project layout
The Groovy plugin assumes the project layout shown in . AllTable 53.3, “Groovy plugin - project layout”

the Groovy source directories can contain Groovy Java code. The Java source directories may onlyand

contain Java source code. None of these directories need to exist or have anything in them; the Groovy[]27

plugin will simply compile whatever it finds.

Page 393 of 573

Table 53.3. Groovy plugin - project layout

Directory Meaning

src/main/java Production Java

source

src/main/resources Production

resources

src/main/groovy Production Groovy sources. May also contain Java

sources for joint compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/groovy Test Groovy sources. May also contain Java

sources for joint compilation.

src/ /javasourceSet Java source for

the given source

set

src/ /resourcessourceSet Resources for the

given source set

src/ /groovysourceSet Groovy sources for the given source set. May also

contain Java sources for joint compilation.

53.3.1. Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production

and test sources.

Example 53.2. Custom Groovy source layout

build.gradle

sourceSets {
 main {
 groovy {
 srcDirs = []'src/groovy'
 }
 }

 test {
 groovy {
 srcDirs = []'test/groovy'
 }
 }
}

Page 394 of 573

53.4. Dependency management
Because Gradle's build language is based on Groovy, and parts of Gradle are implemented in Groovy,

Gradle already ships with a Groovy library (2.4.4 as of Gradle 2.8). Nevertheless, Groovy projects need to

explicitly declare a Groovy dependency. This dependency will then be used on compile and runtime class

paths. It will also be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the compile

configuration:

Example 53.3. Configuration of Groovy dependency

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.4'
}

If Groovy is only used for test code, the Groovy dependency should be added to the testCompile

configuration:

Example 53.4. Configuration of Groovy test dependency

build.gradle

dependencies {
 testCompile "org.codehaus.groovy:groovy:2.4.4"
}

To use the Groovy library that ships with Gradle, declare a dependency. Note thatlocalGroovy()

different Gradle versions ship with different Groovy versions; as such, using is less safelocalGroovy()

then declaring a regular Groovy dependency.

Example 53.5. Configuration of bundled Groovy dependency

build.gradle

dependencies {
 compile localGroovy()
}

The Groovy library doesn't necessarily have to come from a remote repository. It could also come from a

local directory, perhaps checked in to source control:lib

Page 395 of 573

Example 53.6. Configuration of Groovy file dependency

build.gradle

repositories {
 flatDir { dirs }'lib'
}

dependencies {
 compile module() {'org.codehaus.groovy:groovy:2.4.4'
 dependency()'asm:asm-all:2.2.3'
 dependency()'antlr:antlr:2.7.7'
 dependency()'commons-cli:commons-cli:1.2'
 module() {'org.apache.ant:ant:1.9.4'
 dependencies(,'org.apache.ant:ant-junit:1.9.4@jar'
)'org.apache.ant:ant-launcher:1.9.4'
 }
 }
}

The “ ” reference may be new to you. See for moremodule Chapter 23, Dependency Management

information about this and other information about dependency management.

53.5. Automatic configuration of groovyClasspath
The and tasks consume Groovy code in two ways: on their ,GroovyCompile Groovydoc classpath

and on their . The former is used to locate classes referenced by the source code, andgroovyClasspath

will typically contain the Groovy library along with other libraries. The latter is used to load and execute the

Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its

dependencies.

Unless a task's is configured explicitly, the Groovy (base) plugin will try to infer itgroovyClasspath

from the task's . This is done as follows:classpath

If a Jar is found on , that jar will be added to groovy-all(-indy) classpath groovyClasspath

.

If a jar is found on , and the project has at least one repository declared,groovy(-indy) classpath

a corresponding repository dependency will be added to .groovy(-indy) groovyClasspath

Otherwise, execution of the task will fail with a message saying that could not begroovyClasspath

inferred.

Note that the “ ” variation of each jar refers to the version with support.-indy invokedynamic

53.6. Convention properties
The Groovy plugin does not add any convention properties to the project.

Page 396 of 573

53.7. Source set properties
The Groovy plugin adds the following convention properties to each source set in the project. You can use

these properties in your build script as though they were properties of the source set object.

Table 53.4. Groovy plugin - source set properties

Property name Type Default value Description

groovy SourceDirectorySet

(read-only)

Not null The Groovy source files of

this source set. Contains all .groovy

and files found in the.java

Groovy source directories,

and excludes all other types

of files.

groovy.srcDirs . Can setSet<File>

using anything described

in Section 18.5,

“Specifying a set of input

.files”

[/src/ /groovy]projectDir nameThe source directories

containing the Groovy source

files of this source set. May

also contain Java source files

for joint compilation.

allGroovy (read-only)FileTree Not null All Groovy source files of

this source set. Contains only

the files found in.groovy

the Groovy source

directories.

These properties are provided by a convention object of type .GroovySourceSet

The Groovy plugin also modifies some source set properties:

Table 53.5. Groovy plugin - source set properties

Property name Change

allJava Adds all files found in the Groovy source directories..java

allSource Adds all source files found in the Groovy source directories.

53.8. GroovyCompile
The Groovy plugin adds a task for each source set in the project. The task type extendsGroovyCompile

the task (see). The task supports mostJavaCompile Section 45.11, “CompileJava” GroovyCompile

configuration options of the official Groovy compiler.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Page 397 of 573

Table 53.6. Groovy plugin - GroovyCompile properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source FileTree. Can set using anything

described in Section 18.5, “Specifying

.a set of input files”

.groovysourceSet

destinationDir File. .output.classesDirsourceSet

groovyClasspath FileCollection groovy configuration if

non-empty; Groovy library found

on otherwiseclasspath

[] 27 We are using the same conventions as introduced by Russel Winder's Gant tool (

).http://gant.codehaus.org

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://gant.codehaus.org

Page 398 of 573

54
The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code,

mixed Scala and Java code, and even pure Java code (although we don't necessarily recommend to use it for

the latter). The plugin supports , which allows you to freely mix and match Scala and Javajoint compilation

code, with dependencies in both directions. For example, a Scala class can extend a Java class that in turn

extends a Scala class. This makes it possible to use the best language for the job, and to rewrite any class in

the other language if needed.

54.1. Usage
To use the Scala plugin, include the following in your build script:

Example 54.1. Using the Scala plugin

build.gradle

apply plugin: 'scala'

54.2. Tasks
The Scala plugin adds the following tasks to the project.

Table 54.1. Scala plugin - tasks

Task name Depends on Type Description

compileScala compileJava ScalaCompile Compiles production Scala

source files.

compileTestScala compileTestJava ScalaCompile Compiles test Scala source

files.

compile ScalaSourceSet compile JavaSourceSet ScalaCompile Compiles the given source

set's Scala source files.

scaladoc - ScalaDoc Generates API

documentation for the

production Scala source

files.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Page 399 of 573

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table 54.2. Scala plugin - additional task dependencies

Task name Depends on

classes compileScala

testClasses compileTestScala

ClassessourceSet compile ScalaSourceSet

Figure 54.1. Scala plugin - tasks

54.3. Project layout
The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala

 Java code. The Java source directories may only contain Java source code. None of these directoriesand

need to exist or have anything in them; the Scala plugin will simply compile whatever it finds.

Page 400 of 573

Table 54.3. Scala plugin - project layout

Directory Meaning

src/main/java Production Java

source

src/main/resources Production

resources

src/main/scala Production Scala sources. May also contain Java

sources for joint compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/scala Test Scala sources. May also contain Java sources

for joint compilation.

src/ /javasourceSet Java source for the

given source set

src/ /resourcessourceSet Resources for the

given source set

src/ /scalasourceSet Scala sources for the given source set. May also

contain Java sources for joint compilation.

54.3.1. Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and

test sources.

Example 54.2. Custom Scala source layout

build.gradle

sourceSets {
 main {
 scala {
 srcDirs = []'src/scala'
 }
 }
 test {
 scala {
 srcDirs = []'test/scala'
 }
 }
}

54.4. Dependency management
Scala projects need to declare a dependency. This dependency will then be used onscala-library

compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool,

respectively. []28

Page 401 of 573

If Scala is used for production code, the dependency should be added to the scala-library compile

configuration:

Example 54.3. Declaring a Scala dependency for production code

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.scala-lang:scala-library:2.11.1'
}

If Scala is only used for test code, the dependency should be added to the scala-library testCompile

configuration:

Example 54.4. Declaring a Scala dependency for test code

build.gradle

dependencies {
 testCompile "org.scala-lang:scala-library:2.11.1"
}

54.5. Automatic configuration of scalaClasspath
The and tasks consume Scala code in two ways: on their , andScalaCompile ScalaDoc classpath

on their . The former is used to locate classes referenced by the source code, and willscalaClasspath

typically contain along with other libraries. The latter is used to load and execute thescala-library

Scala compiler and Scaladoc tool, respectively, and should only contain the library andscala-compiler

its dependencies.

Unless a task's is configured explicitly, the Scala (base) plugin will try to infer it fromscalaClasspath

the task's . This is done as follows:classpath

If a Jar is found on , and the project has at least one repositoryscala-library classpath

declared, a corresponding repository dependency will be added to scala-compiler scalaClasspath

.

Otherwise, execution of the task will fail with a message saying that could not bescalaClasspath

inferred.

54.6. Convention properties
The Scala plugin does not add any convention properties to the project.

Page 402 of 573

54.7. Source set properties
The Scala plugin adds the following convention properties to each source set in the project. You can use

these properties in your build script as though they were properties of the source set object.

Table 54.4. Scala plugin - source set properties

Property name Type Default value Description

scala SourceDirectorySet

(read-only)

Not null The Scala source files of this

source set. Contains all .scala

and files found in the.java

Scala source directories, and

excludes all other types of

files.

scala.srcDirs . Can setSet<File>

using anything described

in Section 18.5,

“Specifying a set of input

.files”

[/src/ /scala]projectDir nameThe source directories

containing the Scala source

files of this source set. May

also contain Java source files

for joint compilation.

allScala (read-only)FileTree Not null All Scala source files of this

source set. Contains only the .scala

files found in the Scala source

directories.

These convention properties are provided by a convention object of type .ScalaSourceSet

The Scala plugin also modifies some source set properties:

Table 54.5. Scala plugin - source set properties

Property name Change

allJava Adds all files found in the Scala source directories..java

allSource Adds all source files found in the Scala source directories.

54.8. Compiling in external process
Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the JVM. To adjust memory settings,

configure the property as needed:scalaCompileOptions.forkOptions

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.ScalaSourceSet.html

Page 403 of 573

Example 54.5. Adjusting memory settings

build.gradle

tasks.withType(ScalaCompile) {
 configure(scalaCompileOptions.forkOptions) {
 memoryMaximumSize = '1g'
 jvmArgs = []'-XX:MaxPermSize=512m'
 }
}

54.9. Incremental compilation
By compiling only classes whose source code has changed since the previous compilation, and classes

affected by these changes, incremental compilation can significantly reduce Scala compilation time. It is

particularly effective when frequently compiling small code increments, as is often done at development

time.

The Scala plugin defaults to incremental compilation by integrating with , a standalone version of 'sZinc sbt

incremental Scala compiler. If you want to disable the incremental compilation, set inforce = true

your build file:

Example 54.6. Forcing all code to be compiled

build.gradle

tasks.withType(ScalaCompile) {
 scalaCompileOptions.with {
 force = true
 }
}

 This will only cause all classes to be recompiled if at least one input source file has changed. If thereNote:

are no changes to the source files, the task will still be considered as usual.compileScala UP-TO-DATE

The Scala plugin adds a configuration named to resolve the Zinc library and its dependencies. Gradlezinc

will have a default version of the Zinc library, but if you want to override the Zinc version that Gradle uses,

add an explicit dependency like . Gradle will support version“com.typesafe.zinc:zinc:0.3.6”

0.3.0 of Zinc and above, although due to a regression in the Zinc library, versions 0.3.2 through 0.3.5.2

cannot be used. Regardless of which Zinc version is used, Zinc will always use the Scala compiler found on

the configuration.scalaTools

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all Java and

Scala code under will participate in joint compilation. Even Java code will be compiledsrc/main/scala

incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are

stored in the file designated by scalaCompileOptions.incrementalOptions.analysisFile

(which has a sensible default). In a multi-project build, analysis files are passed on to downstream ScalaCompile

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

Page 404 of 573

tasks to enable incremental compilation across project boundaries. For tasks added by theScalaCompile

Scala plugin, no configuration is necessary to make this work. For other tasks that youScalaCompile

might add, the property needsscalaCompileOptions.incrementalOptions.publishedCode

to be configured to point to the classes folder or Jar archive by which the code is passed on to compile class

paths of downstream tasks. Note that if is not set correctly,ScalaCompile publishedCode

downstream tasks may not recompile code affected by upstream changes, leading to incorrect compilation

results.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle's own

compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. This is expected

to yield another significant speedup for Scala compilation.

54.10. Eclipse Integration
When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project

work with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and dependency container.

54.11. IntelliJ IDEA Integration
When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work

with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+) and a Scala

compiler library that matches the Scala version on the project's class path. The Scala plugin is backwards

compatible with earlier versions of IntelliJ IDEA and it is possible to add a Scala facet instead of the default

Scala SDK by configuring on .targetVersion IdeaModel

Example 54.7. Explicitly specify a target IntelliJ IDEA version

build.gradle

idea {
 targetVersion = "13"
}

[] 28 See .Section 54.5, “Automatic configuration of scalaClasspath”

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html

Page 405 of 573

55
The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsers using .ANTLR

The ANTLR plugin supports ANTLR version 2, 3 and 4.

55.1. Usage
To use the ANTLR plugin, include the following in your build script:

Example 55.1. Using the ANTLR plugin

build.gradle

apply plugin: 'antlr'

55.2. Tasks
The ANTLR plugin adds a number of tasks to your project, as shown below.

Table 55.1. ANTLR plugin - tasks

Task name Depends

on

Type Description

generateGrammarSource - AntlrTask Generates the source files for all

production ANTLR grammars.

generateTestGrammarSource - AntlrTask Generates the source files for all

test ANTLR grammars.

generate GrammarSourceSourceSet - AntlrTask Generates the source files for all

ANTLR grammars for the given

source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

http://www.antlr.org/
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Page 406 of 573

Table 55.2. ANTLR plugin - additional task dependencies

Task name Depends on

compileJava generateGrammarSource

compileTestJava generateTestGrammarSource

compile JavaSourceSet generate GrammarSourceSourceSet

55.3. Project layout
Table 55.3. ANTLR plugin - project layout

Directory Meaning

src/main/antlr Production ANTLR grammar files. If the ANTLR grammar is organized in

packages, the structure in the antlr folder should reflect the package structure.

This ensures that the generated sources end up in the correct target subfolder.

src/test/antlr Test ANTLR grammar files.

src/ /antlrsourceSet ANTLR grammar files for the given source set.

55.4. Dependency management
The ANTLR plugin adds an dependency configuration which provides the ANTLR implementationantlr

to use. The following example shows how to use ANTLR version 3.

Example 55.2. Declare ANTLR version

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3
 // antlr "org.antlr:antlr4:4.5" // use ANTLR version 4
}

If no dependency is declared, will be used as the default. To use a differentantlr:antlr:2.7.7

ANTLR version add the appropriate dependency to the dependency configuration as above.antlr

55.5. Convention properties
The ANTLR plugin does not add any convention properties.

Page 407 of 573

55.6. Source set properties
The ANTLR plugin adds the following properties to each source set in the project.

Table 55.4. ANTLR plugin - source set properties

Property name Type Default value Description

antlr SourceDirectorySet

(read-only)

Not null The ANTLR grammar files of

this source set. Contains all .g

or files found in the.g4

ANTLR source directories,

and excludes all other types of

files.

antlr.srcDirs . Can setSet<File>

using anything described

in Section 18.5,

“Specifying a set of input

.files”

[/src/ /antlr]projectDir nameThe source directories

containing the ANTLR

grammar files of this source

set.

55.7. Controlling the ANTLR generator process
The ANTLR tool is executed in a forked process. This allows fine grained control over memory settings for

the ANTLR process. To set the heap size of a ANTLR process, the property of maxHeapSize

 can be used. To pass additional command-line arguments, append to the AntlrTask arguments

property of .AntlrTask

Example 55.3. setting custom max heap size and extra arguments for ANTLR

build.gradle

generateGrammarSource {
 maxHeapSize = "64m"
 arguments += [,]"-visitor" "-long-messages"
}

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Page 408 of 573

56
The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using andCheckstyle

generates reports from these checks.

56.1. Usage
To use the Checkstyle plugin, include the following in your build script:

Example 56.1. Using the Checkstyle plugin

build.gradle

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

56.2. Tasks
The Checkstyle plugin adds the following tasks to the project:

Table 56.1. Checkstyle plugin - tasks

Task name Depends on Type Description

checkstyleMain classes Checkstyle Runs Checkstyle against the production

Java source files.

checkstyleTest testClasses Checkstyle Runs Checkstyle against the test Java

source files.

checkstyleSourceSet ClassessourceSet Checkstyle Runs Checkstyle against the given

source set's Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Page 409 of 573

Table 56.2. Checkstyle plugin - additional task dependencies

Task name Depends on

check All Checkstyle tasks, including and .checkstyleMain checkstyleTest

56.3. Project layout
The Checkstyle plugin expects the following project layout:

Table 56.3. Checkstyle plugin - project layout

File Meaning

config/checkstyle/checkstyle.xml Checkstyle configuration file

56.4. Dependency management
The Checkstyle plugin adds the following dependency configurations:

Table 56.4. Checkstyle plugin - dependency configurations

Name Meaning

checkstyle The Checkstyle libraries to use

56.5. Configuration
See the class in the API documentation.CheckstyleExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

Page 410 of 573

57
The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using andCodeNarc

generates reports from these checks.

57.1. Usage
To use the CodeNarc plugin, include the following in your build script:

Example 57.1. Using the CodeNarc plugin

build.gradle

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

57.2. Tasks
The CodeNarc plugin adds the following tasks to the project:

Table 57.1. CodeNarc plugin - tasks

Task name Depends

on

Type Description

codenarcMain - CodeNarc Runs CodeNarc against the production Groovy

source files.

codenarcTest - CodeNarc Runs CodeNarc against the test Groovy source

files.

codenarcSourceSet- CodeNarc Runs CodeNarc against the given source set's

Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Page 411 of 573

Table 57.2. CodeNarc plugin - additional task dependencies

Task name Depends on

check All CodeNarc tasks, including and .codenarcMain codenarcTest

57.3. Project layout
The CodeNarc plugin expects the following project layout:

Table 57.3. CodeNarc plugin - project layout

File Meaning

config/codenarc/codenarc.xml CodeNarc configuration file

57.4. Dependency management
The CodeNarc plugin adds the following dependency configurations:

Table 57.4. CodeNarc plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

57.5. Configuration
See the class in the API documentation.CodeNarcExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

Page 412 of 573

58
The FindBugs Plugin

The FindBugs plugin performs quality checks on your project's Java source files using andFindBugs

generates reports from these checks.

58.1. Usage
To use the FindBugs plugin, include the following in your build script:

Example 58.1. Using the FindBugs plugin

build.gradle

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

58.2. Tasks
The FindBugs plugin adds the following tasks to the project:

Table 58.1. FindBugs plugin - tasks

Task name Depends on Type Description

findbugsMain classes FindBugs Runs FindBugs against the production Java

source files.

findbugsTest testClasses FindBugs Runs FindBugs against the test Java source

files.

findbugsSourceSet ClassessourceSet FindBugs Runs FindBugs against the given source

set's Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

http://findbugs.sourceforge.net
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.FindBugs.html

Page 413 of 573

Table 58.2. FindBugs plugin - additional task dependencies

Task name Depends on

check All FindBugs tasks, including and .findbugsMain findbugsTest

58.3. Dependency management
The FindBugs plugin adds the following dependency configurations:

Table 58.3. FindBugs plugin - dependency configurations

Name Meaning

findbugs The FindBugs libraries to use

58.4. Configuration
See the class in the API documentation.FindBugsExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html

Page 414 of 573

59
The JDepend Plugin

The JDepend plugin performs quality checks on your project's source files using and generatesJDepend

reports from these checks.

59.1. Usage
To use the JDepend plugin, include the following in your build script:

Example 59.1. Using the JDepend plugin

build.gradle

apply plugin: 'jdepend'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

59.2. Tasks
The JDepend plugin adds the following tasks to the project:

Table 59.1. JDepend plugin - tasks

Task name Depends on Type Description

jdependMain classes JDepend Runs JDepend against the production Java

source files.

jdependTest testClasses JDepend Runs JDepend against the test Java source

files.

jdependSourceSet ClassessourceSet JDepend Runs JDepend against the given source set's

Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.JDepend.html

Page 415 of 573

Table 59.2. JDepend plugin - additional task dependencies

Task name Depends on

check All JDepend tasks, including and .jdependMain jdependTest

59.3. Dependency management
The JDepend plugin adds the following dependency configurations:

Table 59.3. JDepend plugin - dependency configurations

Name Meaning

jdepend The JDepend libraries to use

59.4. Configuration
See the class in the API documentation.JDependExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.JDependExtension.html

Page 416 of 573

60
The PMD Plugin

The PMD plugin performs quality checks on your project's Java source files using and generatesPMD

reports from these checks.

60.1. Usage
To use the PMD plugin, include the following in your build script:

Example 60.1. Using the PMD plugin

build.gradle

apply plugin: 'pmd'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running .gradle check

60.2. Tasks
The PMD plugin adds the following tasks to the project:

Table 60.1. PMD plugin - tasks

Task name Depends

on

Type Description

pmdMain - Pmd Runs PMD against the production Java source files.

pmdTest - Pmd Runs PMD against the test Java source files.

pmdSourceSet - Pmd Runs PMD against the given source set's Java source

files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 60.2. PMD plugin - additional task dependencies

Task name Depends on

check All PMD tasks, including and .pmdMain pmdTest

http://pmd.sourceforge.net
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.Pmd.html

Page 417 of 573

60.3. Dependency management
The PMD plugin adds the following dependency configurations:

Table 60.3. PMD plugin - dependency configurations

Name Meaning

pmd The PMD libraries to use

60.4. Configuration
See the class in the API documentation.PmdExtension

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.quality.PmdExtension.html

Page 418 of 573

61
The JaCoCo Plugin

The JaCoCo plugin is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code via integration with .JaCoCo

61.1. Getting Started
To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example 61.1. Applying the JaCoCo plugin

build.gradle

apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named is created thatjacocoTestReport

depends on the task. The report is available at . Bytest /reports/jacoco/test$buildDir

default, a HTML report is generated.

61.2. Configuring the JaCoCo Plugin
The JaCoCo plugin adds a project extension named of type , whichjacoco JacocoPluginExtension

allows configuring defaults for JaCoCo usage in your build.

Example 61.2. Configuring JaCoCo plugin settings

build.gradle

jacoco {
 toolVersion = "0.7.1.201405082137"
 reportsDir = file()"$buildDir/customJacocoReportDir"
}

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Page 419 of 573

Table 61.1. Gradle defaults for JaCoCo properties

Property Gradle default

reportsDir “ /reports/jacoco”$buildDir

61.3. JaCoCo Report configuration
The task can be used to generate code coverage reports in different formats. It implementsJacocoReport

the standard Gradle type and exposes a report container of type Reporting

.JacocoReportsContainer

Example 61.3. Configuring test task

build.gradle

jacocoTestReport {
 reports {
 xml.enabled false
 csv.enabled false
 html.destination "${buildDir}/jacocoHtml"
 }
}

61.4. JaCoCo specific task configuration
The JaCoCo plugin adds a extension to all tasks of type . This extensionJacocoTaskExtension Test

allows the configuration of the JaCoCo specific properties of the test task.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html

Page 420 of 573

Example 61.4. Configuring test task

build.gradle

test {
 jacoco {
 append = false
 destinationFile = file()"$buildDir/jacoco/jacocoTest.exec"
 classDumpFile = file()"$buildDir/jacoco/classpathdumps"
 }
}

Table 61.2. Default values of the JaCoCo Task extension

Property Gradle default

enabled true

destPath $buildDir/jacoco

append true

includes []

excludes []

excludeClassLoaders []

sessionId auto-generated

dumpOnExit true

output Output.FILE

address -

port -

classDumpPath -

jmx false

While all tasks of type are automatically enhanced to provide coverage information when the Test java

plugin has been applied, any task that implements can be enhanced by the JaCoCoJavaForkOptions

plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the plugin.application

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/process/JavaForkOptions.html

Page 421 of 573

Example 61.5. Using application plugin to generate code coverage data

build.gradle

apply plugin: "application"
apply plugin: "jacoco"

mainClassName = "org.gradle.MyMain"

jacoco {
 applyTo run
}

task applicationCodeCoverageReport(type:JacocoReport){
 executionData run
 sourceSets sourceSets.main
}

Note: The code for this example can be found at insamples/testing/jacoco/application

the ‘-all’ distribution of Gradle.

Example 61.6. Coverage reports generated by applicationCodeCoverageReport

Build layout

application/
 build/
 jacoco/
 run.exec
 reports/jacoco/applicationCodeCoverageReport/html/
 index.html

61.5. Tasks
For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Table 61.3. JaCoCo plugin - tasks

Task name Depends

on

Type Description

jacocoTestReport - JacocoReport Generates code coverage report for the

test task.

61.6. Dependency management
The JaCoCo plugin adds the following dependency configurations:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html

Page 422 of 573

Table 61.4. JaCoCo plugin - dependency configurations

Name Meaning

jacocoAnt The JaCoCo Ant library used for running the and JacocoReport JacocoMerge

tasks.

jacocoAgent The JaCoCo agent library used for instrumenting the code under test.

Page 423 of 573

62
The Sonar Plugin

This plugin has been deprecated and superseded by the . This pluginofficial plugin from SonarQube

will be removed in Gradle 3.0.

The Sonar plugin provides integration with , a web-based platform for monitoring code quality. TheSonar

plugin adds a task that analyzes the project to which the plugin is applied, as well as itssonarAnalyze

subprojects. The results are stored in the Sonar database. The plugin is based on the andSonar Runner

requires Sonar 2.11 or higher.

The task is a standalone task that needs to be executed explicitly and doesn't depend onsonarAnalyze

any other tasks. Apart from source code, the task also analyzes class files and test result files (if available).

For best results, it is therefore recommended to run a full build before the analysis. In a typical setup,

analysis would be performed once per day on a build server.

62.1. Usage
At a minimum, the Sonar plugin has to be applied to the project.

Example 62.1. Applying the Sonar plugin

build.gradle

apply plugin: "sonar"

Unless Sonar is run locally and with default settings, it is necessary to configure connection settings for the

Sonar server and database.

http://docs.sonarqube.org/display/SONAR/Analyzing+with+Gradle
http://www.sonarsource.org
http://docs.codehaus.org/display/SONAR/Analyzing+with+Sonar+Runner

Page 424 of 573

Example 62.2. Configuring Sonar connection settings

build.gradle

sonar {
 server {
 url = "http://my.server.com"
 }
 database {
 url = "jdbc:mysql://my.server.com/sonar"
 driverClassName = "com.mysql.jdbc.Driver"
 username = "Fred Flintstone"
 password = "very clever"
 }
}

Alternatively, some or all connection settings can be set from the command line (see Section 62.6,

).“Configuring Sonar Settings from the Command Line”

Project settings determine how the project is going to be analyzed. The default configuration works well for

analyzing standard Java projects and can be customized in many ways.

Example 62.3. Configuring Sonar project settings

build.gradle

sonar {
 project {
 coberturaReportPath = file()"$buildDir/cobertura.xml"
 }
}

The , , , and blocks in the examples above configure objects of type sonar server database project

, , , and , respectively. See theirSonarRootModel SonarServer SonarDatabase SonarProject

API documentation for further information.

62.2. Analyzing Multi-Project Builds
The Sonar plugin is capable of analyzing a whole project hierarchy at once. This yields a hierarchical view

in the Sonar web interface with aggregated metrics and the ability to drill down into subprojects. It is also

faster than analyzing each project separately.

To analyze a project hierarchy, the Sonar plugin needs to be applied to the top-most project of the hierarchy.

Typically (but not necessarily) this will be the root project. The block in that project configures ansonar

object of type . It holds all global configuration, most importantly server and databaseSonarRootModel

connection settings.

http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarServer.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarDatabase.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html

Page 425 of 573

Example 62.4. Global configuration in a multi-project build

build.gradle

apply plugin: "sonar"

sonar {
 server {
 url = "http://my.server.com"
 }
 database {
 url = "jdbc:mysql://my.server.com/sonar"
 driverClassName = "com.mysql.jdbc.Driver"
 username = "Fred Flintstone"
 password = "very clever"
 }
}

Each project in the hierarchy has its own project configuration. Common values can be set from a parent

build script.

Example 62.5. Common project configuration in a multi-project build

build.gradle

subprojects {
 sonar {
 project {
 sourceEncoding = "UTF-8"
 }
 }
}

The block in a subproject configures an object of type .sonar SonarProjectModel

Projects can also be configured individually. For example, setting the property to prevents askip true

project (and its subprojects) from being analyzed. Skipped projects will not be displayed in the Sonar web

interface.

Example 62.6. Individual project configuration in a multi-project build

build.gradle

project() {":project1"
 sonar {
 project {
 skip = true
 }
 }
}

Another typical per-project configuration is the programming language to be analyzed. Note that Sonar can

only analyze one language per project.

http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProjectModel.html

Page 426 of 573

Example 62.7. Configuring the language to be analyzed

build.gradle

project() {":project2"
 sonar {
 project {
 language = "groovy"
 }
 }
}

When setting only a single property at a time, the equivalent property syntax is more succinct:

Example 62.8. Using property syntax

build.gradle

project().sonar.project.language = ":project2" "groovy"

62.3. Analyzing Custom Source Sets
By default, the Sonar plugin will analyze the production sources in the source set and the test sourcesmain

in the source set. This works independent of the project's source directory layout. Additional sourcetest

sets can be added as needed.

Example 62.9. Analyzing custom source sets

build.gradle

sonar.project {
 sourceDirs += sourceSets.custom.allSource.srcDirs
 testDirs += sourceSets.integTest.allSource.srcDirs
}

62.4. Analyzing languages other than Java
To analyze code written in a language other than Java, install the corresponding , and set Sonar plugin sonar.project.language

accordingly:

Example 62.10. Analyzing languages other than Java

build.gradle

sonar.project {
 language = "grvy" // set language to Groovy
}

As of Sonar 3.4, only one language per project can be analyzed. You can, however, set a different language

for each project in a multi-project build.

http://www.sonarsource.com/products/plugins/languages/

Page 427 of 573

62.5. Setting Custom Sonar Properties
Eventually, most configuration is passed to the Sonar code analyzer in the form of key-value pairs known as

Sonar properties. The annotations in the API documentation show how properties of theSonarProperty

plugin's object model get mapped to the corresponding Sonar properties. The Sonar plugin offers hooks to

post-process Sonar properties before they get passed to the code analyzer. The same hooks can be used to

add additional properties which aren't covered by the plugin's object model.

For global Sonar properties, use the hook on :withGlobalProperties SonarRootModel

Example 62.11. Setting custom global properties

build.gradle

sonar.withGlobalProperties { props ->
 props[] = "some.global.property" "some value"
 // non-String values are automatically converted to Strings
 props[] = [, ,]"other.global.property" "foo" "bar" "baz"
}

For per-project Sonar properties, use the hook on :withProjectProperties SonarProject

Example 62.12. Setting custom project properties

build.gradle

sonar.project.withProjectProperties { props ->
 props[] = "some.project.property" "some value"
 // non-String values are automatically converted to Strings
 props[] = [, ,]"other.project.property" "foo" "bar" "baz"
}

A list of available Sonar properties can be found in the . Note that for most of theseSonar documentation

properties, the Sonar plugin's object model has an equivalent property, and it isn't necessary to use a

 or hook. For configuring a third-party SonarwithGlobalProperties withProjectProperties

plugin, consult the plugin's documentation.

62.6. Configuring Sonar Settings from the
Command Line

The following properties can alternatively be set from the command line, as task parameters of the sonarAnalyze

task. A task parameter will override any corresponding value set in the build script.

server.url

database.url

database.driverClassName

database.username

database.password

http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProperty.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://docs.codehaus.org/display/SONAR/Analysis+Parameters

Page 428 of 573

showSql

showSqlResults

verbose

forceAnalysis

Here is a complete example:

gradle sonarAnalyze --server.url=http://sonar.mycompany.com

--database.password=myPassword --verbose

If you need to set other properties from the command line, you can use system properties to do so:

Example 62.13. Implementing custom command line properties

build.gradle

sonar.project {
 language = System.getProperty(,)"sonar.language" "java"
}

However, keep in mind that it is usually best to keep configuration in the build script and under source

control.

62.7. Tasks
The Sonar plugin adds the following tasks to the project.

Table 62.1. Sonar plugin - tasks

Task name Depends

on

Type Description

sonarAnalyze - SonarAnalyze Analyzes a project hierarchy and stores the

results in the Sonar database.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.sonar.SonarAnalyze.html

Page 429 of 573

63
The SonarQube Runner Plugin

This plugin has been deprecated and superseded by the . This pluginofficial plugin from SonarQube

will be removed in Gradle 3.0.

The SonarQube Runner plugin provides integration with , a web-based platform for monitoringSonarQube

code quality. It is based on the , a SonarQube library that starts source code analysis,SonarQube Runner API

and optionally publish all collected information to the SonarQube server. Compared to using the standalone

SonarQube Runner CLI, the Gradle SonarQube Runner plugin offers the following benefits:

Automatic provisioning of SonarQube Runner

The ability to execute the SonarQube Runner via a regular Gradle task makes it available anywhere

Gradle is available (developer build, CI server, etc.), without the need to manually download, setup, and

maintain a SonarQube Runner installation.

Dynamic configuration from Gradle build scripts

All of Gradle's scripting features can be leveraged to configure SonarQube Runner as needed.

Extensive configuration defaults

Gradle already has much of the information needed for SonarQube to successfully analyze a project. By

preconfiguring the SonarQube Runner properties based on that information, the need for manual

configuration is reduced significantly.

63.1. SonarQube Runner version and
compatibility

The default version of the SonarQube Runner used by the plugin is 2.3, which makes it compatible with

SonarQube 3.0 and higher. For compatibility with SonarQube versions earlier than 3.0, you can configure

the use of an earlier SonarQube Runner version (see Section 63.4, “Specifying the SonarQube Runner

).version”

63.2. Getting started
To get started, apply the SonarQube Runner plugin to the project to be analyzed.

http://docs.sonarqube.org/display/SONAR/Analyzing+with+Gradle
http://www.sonarqube.org/
http://redirect.sonarsource.com/doc/analyzing-with-sq-runner.html

Page 430 of 573

Example 63.1. Applying the SonarQube Runner plugin

build.gradle

apply plugin: "sonar-runner"

Assuming a local SonarQube server with out-of-the-box settings is up and running, no further mandatory

configuration is required. Execute and wait until the build has completed, thengradle sonarRunner

open the web page indicated at the bottom of the SonarQube Runner output. You should now be able to

browse the analysis results.

Before executing the task, all tasks producing output to be analysed by SonarQube need tosonarRunner

be executed. Typically, these are compile tasks, test tasks, and code coverage tasks. To meet these needs, the

plugins adds a task dependency from on if the plugin is applied. Further tasksonarRunner test java

dependencies can be added as needed.

63.3. Configuring the SonarQube Runner
The SonarQube Runner plugin adds a extension to the project and a SonarRunnerRootExtension

 extension to its subprojects, which allows you to configure the SonarQubeSonarRunnerExtension

Runner via key/value pairs known as . A typical base line configuration includesSonarQube properties

connection settings for the SonarQube server and database.

Example 63.2. Configuring SonarQube connection settings

build.gradle

sonarRunner {
 sonarProperties {
 property , "sonar.host.url" "http://my.server.com"
 property , "sonar.jdbc.url" "jdbc:mysql://my.server.com/sonar"
 property , "sonar.jdbc.driverClassName" "com.mysql.jdbc.Driver"
 property , "sonar.jdbc.username" "Fred Flintstone"
 property , "sonar.jdbc.password" "very clever"
 }
}

Alternatively, SonarQube properties can be set from the command line. See Section 62.6, “Configuring

 for more information.Sonar Settings from the Command Line”

For a complete list of standard SonarQube properties, consult the . If you happenSonarQube documentation

to use additional SonarQube plugins, consult their documentation.

In addition to set SonarQube properties, the extension allows theSonarRunnerRootExtension

configuration of the SonarQube Runner version and the of the forked SonarQubeJavaForkOptions

Runner process.

The SonarQube Runner plugin leverages information contained in Gradle's object model to provide smart

defaults for many of the standard SonarQube properties. The defaults are summarized in the tables below.

Notice that additional defaults are provided for projects that have the or plugin applied.java-base java

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://redirect.sonarsource.com/doc/analyzing-with-sq-runner.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/process/JavaForkOptions.html

Page 431 of 573

For some properties (notably server and database connection settings), determining a suitable default is left

to the SonarQube Runner.

Table 63.1. Gradle defaults for standard SonarQube properties

Property Gradle default

sonar.projectKey “$project.group:$project.name” (for root project of analysed hierarchy; left

to SonarQube Runner otherwise)

sonar.projectName project.name

sonar.projectDescription project.description

sonar.projectVersion project.version

sonar.projectBaseDir project.projectDir

sonar.working.directory “$project.buildDir/sonar”

sonar.dynamicAnalysis “reuseReports”

Table 63.2. Additional defaults when plugin is appliedjava-base

Property Gradle default

sonar.java.source project.sourceCompatibility

sonar.java.target project.targetCompatibility

Table 63.3. Additional defaults when plugin is appliedjava

Property Gradle default

sonar.sources sourceSets.main.allSource.srcDirs (filtered to only include existing

directories)

sonar.tests sourceSets.test.allSource.srcDirs (filtered to only include existing

directories)

sonar.binaries sourceSets.main.runtimeClasspath (filtered to only include directories)

sonar.libraries sourceSets.main.runtimeClasspath (filtering to only include files; rt.jar

added if necessary)

sonar.surefire.reportsPath test.testResultsDir (if the directory exists)

sonar.junit.reportsPath test.testResultsDir (if the directory exists)

Table 63.4. Additional defaults when plugin is appliedjacoco

Property Gradle default

sonar.jacoco.reportPath jacoco.destinationFile

Page 432 of 573

63.4. Specifying the SonarQube Runner version
By default, version 2.3 of the SonarQube Runner is used. To specify an alternative version, set the

 property of the extension ofSonarRunnerRootExtension.getToolVersion() sonarRunner

the project the plugin was applied to to the desired version. This will result in the SonarQube Runner

dependency beingorg.codehaus.sonar.runner:sonar-runner-dist:«toolVersion»

used as the SonarQube Runner.

Example 63.3. Configuring SonarQube runner version

build.gradle

sonarRunner {
 toolVersion = '2.3' // default
}

63.5. Analyzing Multi-Project Builds
The SonarQube Runner is capable of analyzing whole project hierarchies at once. This yields a hierarchical

view in the SonarQube web interface, with aggregated metrics and the ability to drill down into subprojects.

Analyzing a project hierarchy also takes less time than analyzing each project separately.

To analyze a project hierarchy, apply the SonarQube Runner plugin to the root project of the hierarchy.

Typically (but not necessarily) this will be the root project of the Gradle build. Information pertaining to the

analysis as a whole, like server and database connections settings, have to be configured in the sonarRunner

block of this project. Any SonarQube properties set on the command line also apply to this project.

Example 63.4. Global configuration settings

build.gradle

sonarRunner {
 sonarProperties {
 property , "sonar.host.url" "http://my.server.com"
 property , "sonar.jdbc.url" "jdbc:mysql://my.server.com/sonar"
 property , "sonar.jdbc.driverClassName" "com.mysql.jdbc.Driver"
 property , "sonar.jdbc.username" "Fred Flintstone"
 property , "sonar.jdbc.password" "very clever"
 }
}

Configuration shared between subprojects can be configured in a block.subprojects

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion

Page 433 of 573

Example 63.5. Shared configuration settings

build.gradle

subprojects {
 sonarRunner {
 sonarProperties {
 property , "sonar.sourceEncoding" "UTF-8"
 }
 }
}

Project-specific information is configured in the block of the corresponding project.sonarRunner

Example 63.6. Individual configuration settings

build.gradle

project() {":project1"
 sonarRunner {
 sonarProperties {
 property , "sonar.language" "grvy"
 }
 }
}

To skip SonarQube analysis for a particular subproject, set to .sonarRunner.skipProject true

Example 63.7. Skipping analysis of a project

build.gradle

project() {":project2"
 sonarRunner {
 skipProject = true
 }
}

63.6. Analyzing Custom Source Sets
By default, the SonarQube Runner plugin passes on the project's source set as production sources, andmain

the project's source set as test sources. This works regardless of the project's source directory layout.test

Additional source sets can be added as needed.

Example 63.8. Analyzing custom source sets

build.gradle

sonarRunner {
 sonarProperties {
 properties[] += sourceSets.custom.allSource.srcDirs"sonar.sources"
 properties[] += sourceSets.integTest.allSource.srcDirs"sonar.tests"
 }
}

Page 434 of 573

63.7. Analyzing languages other than Java
As of SonarQube 4.2, multi-language projects are supported and each file language will be detected

according to its filename suffix. However, note that your SonarQube server has to have the SonarQube

 that handles that programming language. If you want to enforce a single language for your project,plugin

you'll need to set accordingly.sonar.project.language

Example 63.9. Analyzing languages other than Java

build.gradle

sonarRunner {
 sonarProperties {
 property , "sonar.language" "grvy" // set language to Groovy
 }
}

63.8. More on configuring SonarQube properties
Let's take a closer look at the block. As we have already seensonarRunner.sonarProperties {}

in the examples, the method allows you to set new properties or override existing ones.property()

Furthermore, all properties that have been configured up to this point, including all properties preconfigured

by Gradle, are available via the accessor.properties

Entries in the map can be read and written with the usual Groovy syntax. To facilitate theirproperties

manipulation, values still have their “idiomatic” type (, , etc.). After the sonarProperties blockFile List

has been evaluated, values are converted to Strings as follows: Collection values are (recursively) converted

to comma-separated Strings, and all other values are converted by calling their method.toString()

Because the block is evaluated lazily, properties of Gradle's object model can besonarProperties

safely referenced from within the block, without having to fear that they have not yet been set.

63.9. Setting SonarQube Properties from the
Command Line

SonarQube Properties can also be set from the command line, by setting a system property named exactly

like the Sonar property in question. This can be useful when dealing with sensitive information (e.g.

credentials), environment information, or for ad-hoc configuration.

gradle sonarRunner -Dsonar.host.url=http://sonar.mycompany.com -Dsonar.jdbc.password=myPassword -Dsonar.verbose=true

While certainly useful at times, we do recommend to keep the bulk of the configuration in a

(versioned) build script, readily available to everyone.

http://www.sonarsource.com/products/plugins/languages/
http://www.sonarsource.com/products/plugins/languages/

Page 435 of 573

A SonarQube property value set via a system property overrides any value set in a build script (for the same

property). When analyzing a project hierarchy, values set via system properties apply to the root project of

the analyzed hierarchy. Each system property starting with " will taken into account for the"sonar."

sonar runner setup.

63.10. Controlling the SonarQube Runner process
The SonarQube Runner is executed in a forked process. This allows fine grained control over memory

settings, system properties etc. just for the SonarQube Runner process. The property of the forkOptions sonarRunner

extension of the project that applies the plugin (Usually the but notsonar-runner rootProject

necessarily) allows the process configuration to be specified. This property is not available in the

 extension applied to the subprojects.SonarRunnerExtension

Example 63.10. setting custom SonarQube Runner fork options

build.gradle

sonarRunner {
 forkOptions {
 maxHeapSize = '512m'
 }
}

For a complete reference about the available options, see .JavaForkOptions

63.11. Tasks
The SonarQube Runner plugin adds the following tasks to the project.

Table 63.5. SonarQube Runner plugin - tasks

Task name Depends on Type Description

sonarRunner - SonarRunner Analyzes a project hierarchy with SonarQube.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/process/JavaForkOptions.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.sonar.runner.tasks.SonarRunner.html

Page 436 of 573

64
The OSGi Plugin

The OSGi plugin provides a factory method to create an object. OsgiManifest OsgiManifest

extends . To learn more about generic manifest handling, see . If theManifest Section 45.14.1, “Manifest”

Java plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an OsgiManifest

object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens .BND tool

64.1. Usage
To use the OSGi plugin, include the following in your build script:

Example 64.1. Using the OSGi plugin

build.gradle

apply plugin: 'osgi'

64.2. Implicitly applied plugins
Applies the Java base plugin.

64.3. Tasks
This plugin does not add any tasks.

64.4. Dependency management
TBD

64.5. Convention object
The OSGi plugin adds the following convention object: OsgiPluginConvention

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Bnd/Bnd
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html

Page 437 of 573

64.5.1. Convention properties

The OSGi plugin does not add any convention properties to the project.

64.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the API documentation of the

convention object.

Table 64.1. OSGi methods

Method Return Type Description

osgiManifest() OsgiManifest Returns an OsgiManifest object.

osgiManifest(Closure

cl)

OsgiManifest Returns an OsgiManifest object configured by the

closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they

expose. Based on this the and the values of the OSGi Manifest areImport-Package Export-Package

calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify

version information for the value. Beside the explicit properties of the Import-Package OsgiManifest

object you can add instructions.

Example 64.2. Configuration of OSGi MANIFEST.MF file

build.gradle

jar {
 manifest { // the manifest of the default jar is of type OsgiManifest
 name = 'overwrittenSpecialOsgiName'
 instruction ,'Private-Package'
 ,'org.mycomp.package1'
 'org.mycomp.package2'
 instruction , 'Bundle-Vendor' 'MyCompany'
 instruction , 'Bundle-Description' 'Platform2: Metrics 2 Measures Framework'
 instruction , 'Bundle-DocURL' 'http://www.mycompany.com'
 }
}
task fooJar(type: Jar) {
 manifest = osgiManifest {
 instruction , 'Bundle-Vendor' 'MyCompany'
 }
}

The first argument of the instruction call is the key of the property. The other arguments form the value. To

learn more about the available instructions have a look at the .BND tool

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Bnd/Bnd

Page 438 of 573

65
The Eclipse Plugins

The Eclipse plugins generate files that are used by the , thus making it possible to import theEclipse IDE

project into Eclipse (- -). Both external dependenciesFile Import... Existing Projects into Workspace

(including associated source and Javadoc files) and project dependencies are considered.

Since version 1.0-milestone-4 of Gradle, the WTP-generating code was refactored into a separate plugin

called . So if you are interested in WTP integration then only apply the eclipse-wtp eclipse-wtp

plugin. Otherwise applying the plugin is enough. This change was requested by Eclipse userseclipse

who take advantage of the or plugins, but who don't use Eclipse WTP. Internally, the war ear eclipse-wtp

plugin also applies the plugin so you don't need to apply both of those plugins.eclipse

What exactly the plugin generates depends on which other plugins are used:eclipse

Table 65.1. Eclipse plugin behavior

Plugin Description

None Generates minimal file..project

Java Adds Java configuration to . Generates and JDT settings file..project .classpath

Groovy Adds Groovy configuration to file..project

Scala Adds Scala support to and files..project .classpath

War Adds web application support to file..project

Ear Adds ear application support to file..project

However, the plugin generates all WTP settings files and enhances the eclipse-wtp always .project

file. If a or is applied, will be extended to get a proper packaging structure for thisJava War .classpath

utility library or web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and

removing content from the generated files.

65.1. Usage
To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

http://eclipse.org

Page 439 of 573

Example 65.1. Using the Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Example 65.2. Using the Eclipse WTP plugin

build.gradle

apply plugin: 'eclipse-wtp'

Note: Internally, the plugin also applies the plugin so you don't need to applyeclipse-wtp eclipse

both.

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use are the eclipse

and tasks.cleanEclipse

65.2. Tasks
The Eclipse plugins add the tasks shown below to a project.

Table 65.2. Eclipse plugin - tasks

Task name Depends on Type Description

eclipse all Eclipse

configuration

file

generation

tasks

Task Generates all Eclipse configuration files

cleanEclipse all Eclipse

configuration

file clean

tasks

Delete Removes all Eclipse configuration files

cleanEclipseProject - Delete Removes the file..project

cleanEclipseClasspath - Delete Removes the file..classpath

cleanEclipseJdt - Delete Removes the .settings/org.eclipse.jdt.core.prefs

file.

eclipseProject - GenerateEclipseProject Generates the file..project

eclipseClasspath - GenerateEclipseClasspath Generates the file..classpath

eclipseJdt - GenerateEclipseJdt Generates the .settings/org.eclipse.jdt.core.prefs

file.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html

Page 440 of 573

Table 65.3. Eclipse WTP plugin - additional tasks

Task name Depends

on

Type Description

cleanEclipseWtpComponent - Delete Removes the file..settings/org.eclipse.wst.common.component

cleanEclipseWtpFacet - Delete Removes the .settings/org.eclipse.wst.common.project.facet.core.xml

file.

eclipseWtpComponent - GenerateEclipseWtpComponent Generates the file..settings/org.eclipse.wst.common.component

eclipseWtpFacet - GenerateEclipseWtpFacet Generates the .settings/org.eclipse.wst.common.project.facet.core.xml

file.

65.3. Configuration
Table 65.4. Configuration of the Eclipse plugins

Model Reference name Description

EclipseModel eclipse Top level element that enables

configuration of the Eclipse plugin

in a DSL-friendly fashion.

EclipseProject eclipse.project Allows configuring project

information

EclipseClasspath eclipse.classpath Allows configuring classpath

information.

EclipseJdt eclipse.jdt Allows configuring jdt information

(source/target Java compatibility).

EclipseWtpComponent eclipse.wtp.component Allows configuring wtp component

information only if eclipse-wtp

plugin was applied.

EclipseWtpFacet eclipse.wtp.facet Allows configuring wtp facet

information only if eclipse-wtp

plugin was applied.

65.4. Customizing the generated files
The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL for

configuring model objects that model the Eclipse view of the project. These model objects are then merged

with the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide

lower level hooks for working with domain objects representing the file content before and after merging

with the model configuration. They also provide a very low level hook for working directly with the raw

XML for adjustment before it is persisted, for fine tuning and configuration that the Eclipse and Eclipse

WTP plugins do not model.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

Page 441 of 573

1.

2.

3.

4.

5.

6.

65.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or

overwritten, depending on the particular section. The remaining sections will be left as-is.

65.4.1.1. Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation

task, like “ ” (in that order). If you want to make this the defaultgradle cleanEclipse eclipse

behavior, add “ ” to your build script. This makes ittasks.eclipse.dependsOn(cleanEclipse)

unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be

done for the “ ” file with “.classpath gradle cleanEclipseClasspath eclipseClasspath

”.

65.4.2. Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle.

The generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined

explicitly in the eclipse DSL

The hook is executed with a domain object representing contents of the file to bewhenMerged

persisted

The hook is executed with a raw representation of the XML that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 65.5. Advanced configuration hooks

Model beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

EclipseProject Project Project XmlProvider

EclipseClasspath Classpath Classpath XmlProvider

EclipseJdt Jdt Jdt -

EclipseWtpComponent WtpComponent WtpComponent XmlProvider

EclipseWtpFacet WtpFacet WtpFacet XmlProvider

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html

Page 442 of 573

65.4.2.1. Partial overwrite of existing content

A causes all existing content to be discarded, thereby losing any changes made directlycomplete overwrite

in the IDE. Alternatively, the hook makes it possible to overwrite just certain parts of thebeforeMerged

existing content. The following example removes all existing dependencies from the domainClasspath

object:

Example 65.3. Partial Overwrite for Classpath

build.gradle

eclipse.classpath.file {
 beforeMerged { classpath ->
 classpath.entries.removeAll { entry -> entry.kind == || entry.kind == }'lib' 'var'
 }
}

The resulting file will only contain Gradle-generated dependency entries, but not any other.classpath

dependency entries that may have been present in the original file. (In the case of dependency entries, this is

also the default behavior.) Other sections of the file will be either left as-is or merged. The.classpath

same could be done for the natures in the file:.project

Example 65.4. Partial Overwrite for Project

build.gradle

eclipse.project.file.beforeMerged { project ->
 project.natures.clear()
}

65.4.2.2. Modifying the fully populated domain objects

The hook allows to manipulate the fully populated domain objects. Often this is the preferredwhenMerged

way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:

Example 65.5. Export Dependencies

build.gradle

eclipse.classpath.file {
 whenMerged { classpath ->
 classpath.entries.findAll { entry -> entry.kind == }*.exported = false'lib'
 }
}

Page 443 of 573

65.4.2.3. Modifying the XML representation

The hook allows to manipulate the in-memory XML representation just before the file getswithXml

written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than

manipulating the domain objects. In return, you get total control over the generated file, including sections

not modeled by the domain objects.

Example 65.6. Customizing the XML

build.gradle

apply plugin: 'eclipse-wtp'

eclipse.wtp.facet.file.withXml { provider ->
 provider.asNode().fixed.find { it. == }. = @facet 'jst.java' @facet 'jst2.java'
}

Page 444 of 573

66
The IDEA Plugin

The IDEA plugin generates files that are used by , thus making it possible to open the projectIntelliJ IDEA

from IDEA (-). Both external dependencies (including associated source and JavadocFile Open Project

files) and project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 66.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace file if the

project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of

hooks for adding and removing content from the generated files.

66.1. Usage
To use the IDEA plugin, include this in your build script:

Example 66.1. Using the IDEA plugin

build.gradle

apply plugin: 'idea'

The IDEA plugin adds a number of tasks to your project. The main tasks that you will use are the and idea cleanIdea

tasks.

66.2. Tasks
The IDEA plugin adds the tasks shown below to a project. Notice that the task does not depend onclean

the task. This is because the workspace typically contains a lot of user specificcleanIdeaWorkspace

temporary data and it is not desirable to manipulate it outside IDEA.

http://www.jetbrains.com/idea/

Page 445 of 573

Table 66.2. IDEA plugin - Tasks

Task name Depends on Type Description

idea ideaProject, ideaModule

, ideaWorkspace

- Generates all

IDEA

configuration

files

cleanIdea cleanIdeaProject

, cleanIdeaModule

Delete Removes all

IDEA

configuration

files

cleanIdeaProject - Delete Removes the

IDEA

project file

cleanIdeaModule - Delete Removes the

IDEA

module file

cleanIdeaWorkspace - Delete Removes the

IDEA

workspace

file

ideaProject - GenerateIdeaProject Generates

the .ipr

file. This

task is only

added to the

root project.

ideaModule - GenerateIdeaModule Generates

the .iml

file

ideaWorkspace - GenerateIdeaWorkspace Generates

the .iws

file. This

task is only

added to the

root project.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

Page 446 of 573

1.

2.

3.

4.

66.3. Configuration
Table 66.3. Configuration of the idea plugin

Model Reference name Description

IdeaModel idea Top level element that enables configuration of the idea

plugin in a DSL-friendly fashion

IdeaProject idea.project Allows configuring project information

IdeaModule idea.module Allows configuring module information

IdeaWorkspace idea.workspace Allows configuring the workspace XML

66.4. Customizing the generated files
The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file

can effectively only be manipulated via the hook because its corresponding domain object iswithXml

essentially empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

66.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

66.4.1.1. Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation

task, like “ ” (in that order). If you want to make this the default behavior, addgradle cleanIdea idea

“ ” to your build script. This makes it unnecessary to executetasks.idea.dependsOn(cleanIdea)

the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be

done for the “ ” file with “ ”..iml gradle cleanIdeaModule ideaModule

66.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The

generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined

explicitly in the eclipse DSL

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

Page 447 of 573

4.

5.

6.

The hook is executed with a domain object representing contents of the file to bewhenMerged

persisted

The hook is executed with a raw representation of the XML that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the model types:

Table 66.4. Idea plugin hooks

Model beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

IdeaProject Project Project XmlProvider

IdeaModule Module Module XmlProvider

IdeaWorkspace Workspace Workspace XmlProvider

66.4.2.1. Partial rewrite of existing content

A causes all existing content to be discarded, thereby losing any changes made directly incomplete rewrite

the IDE. The hook makes it possible to overwrite just certain parts of the existing content.beforeMerged

The following example removes all existing dependencies from the domain object:Module

Example 66.2. Partial Rewrite for Module

build.gradle

idea.module.iml {
 beforeMerged { module ->
 module.dependencies.clear()
 }
}

The resulting module file will only contain Gradle-generated dependency entries, but not any other

dependency entries that may have been present in the original file. (In the case of dependency entries, this is

also the default behavior.) Other sections of the module file will be either left as-is or merged. The same

could be done for the module paths in the project file:

Example 66.3. Partial Rewrite for Project

build.gradle

idea.project.ipr {
 beforeMerged { project ->
 project.modulePaths.clear()
 }
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/XmlProvider.html

Page 448 of 573

66.4.2.2. Modifying the fully populated domain objects

The hook allows you to manipulate the fully populated domain objects. Often this is thewhenMerged

preferred way to customize IDEA files. Here is how you would export all the dependencies of an IDEA

module:

Example 66.4. Export Dependencies

build.gradle

idea.module.iml {
 whenMerged { module ->
 module.dependencies*.exported = true
 }
}

66.4.2.3. Modifying the XML representation

The hook allows you to manipulate the in-memory XML representation just before the file getswithXml

written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than

manipulating the domain objects. In return, you get total control over the generated file, including sections

not modeled by the domain objects.

Example 66.5. Customizing the XML

build.gradle

idea.project.ipr {
 withXml { provider ->
 provider.node.component
 .find { it. == }@name 'VcsDirectoryMappings'
 .mapping. = @vcs 'Git'
 }
}

66.5. Further things to consider
The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable

pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths

with this path variable. you can configure this path variable via the “ ” property,idea.pathVariables

so that it can do a proper merge without creating duplicates.

Part VI. The Software model
- Next generation Gradle
builds

Table of Contents
67. Rule based model configuration
67.1. Background
67.2. Motivations for change
67.3. Concepts
67.4. Rule sources
67.5. The model DSL
67.6. The model report
67.7. Limitations and future direction

68. Software model concepts

69. Implementing model rules in a plugin
69.1. Applying additional rules

70. Building Java Libraries
70.1. Features
70.2. Java Software Model
70.3. Usage
70.4. Creating a library
70.5. Source Sets
70.6. Tasks
70.7. Finding out more about your project
70.8. Dependencies
70.9. Defining a Library API
70.10. Platform aware dependency management
70.11. Custom variant resolution
70.12. Testing Java libraries
70.13. Declaring Java toolchains

71. Building Play applications
71.1. Usage
71.2. Limitations
71.3. Software Model
71.4. Project Layout
71.5. Tasks
71.6. Finding out more about your project
71.7. Running a Play application
71.8. Configuring a Play application
71.9. Multi-project Play applications
71.10. Packaging a Play application for distribution
71.11. Resources

72. Building native software
72.1. Features
72.2. Supported languages
72.3. Tool chain support
72.4. Tool chain installation
72.5. Native software model
72.6. Parallel Compilation
72.7. Building a library
72.8. Building an executable
72.9. Tasks
72.10. Finding out more about your project
72.11. Language support
72.12. Configuring the compiler, assembler and linker
72.13. Windows Resources
72.14. Library Dependencies
72.15. Precompiled Headers

72.16. Native Binary Variants
72.17. Tool chains
72.18. Visual Studio IDE integration
72.19. CUnit support
72.20. GoogleTest support

73. Extending the software model
73.1. Concepts
73.2. Components
73.3. Binaries
73.4. Source sets
73.5. Putting it all together
73.6. About internal views

Page 452 of 573

67
Rule based model configuration

Support for rule based configuration is currently . Please be aware that the DSL, APIs andincubating

other configuration may change in later Gradle versions.

This chapter describes and documents what is essentially the foundation for Gradle 3.0 and the next

generation of Gradle builds. It is being incrementally developed during the Gradle 2.x stream. Gradle's

support for building and already uses this configuration model.native software Play Framework applications

Gradle also includes some initial support for building using this configuration model.Java libraries

All of the mechanisms, DSL, API, and techniques discussed here are and are not consideredincubating

stable and subject to change - see). Exposing new features early, duringAppendix C, The Feature Lifecycle

incubation, allows early testing and the incorporation of real world feedback ultimately resulting in a better

Gradle.

The following build script is an example of a rule based build.

Page 453 of 573

Example 67.1. an example of a simple rule based build

build.gradle

@Managed
 Person {interface

 setFirstName(String name)void
 String getFirstName()

 setLastName(String name)void
 String getLastName()
}

 PersonRules RuleSource {class extends
 person(Person p) {}@Model void

 setFirstName(Person p) {@Mutate void
 p.firstName = "John"
 }

 createHelloTask(ModelMap<Task> tasks, Person p) {@Mutate void
 tasks.create() {"hello"
 doLast {
 println "Hello $p.firstName $p.lastName!"
 }
 }
 }
}

apply plugin: PersonRules

model {
 person {
 lastName = "Smith"
 }
}

Note: The code for this example can be found at samples/modelRules/basicRuleSourcePlugin

in the ‘-all’ distribution of Gradle.

Output of gradle hello

> gradle hello
:hello
Hello John Smith!

BUILD SUCCESSFUL

Total time: 1 secs

The rest of this chapter is dedicated to explaining what is going on in this build script, and why Gradle is

moving in this direction.

Page 454 of 573

67.1. Background
Gradle embraces domain modelling as a core tenet. Focusing on the domain model as opposed to the

execution model (like prior generation build tools such as Apache Ant) has many advantages. A strong

domain model communicates the intent (i.e. the what) over the mechanics (i.e. the how). This allows

humans to understand builds at a level that is meaningful to them.

As well as helping humans, a strong domain model also helps the dutiful machines. Plugins can more

effectively collaborate around a strong domain model (e.g. plugins can say something about Java

applications, such as providing conventions). Very importantly, by having a model of the instead ofwhat

the Gradle can make intelligent choices on just how to do the how.how

The move towards “Rule based model configuration” can be summarised as improving Gradle's ability to

model richer domains in a more effective way. It also makes expressing the kinds of models present in

today's Gradle more robust and simpler.

67.2. Motivations for change
Domain modelling in Gradle is not new. The Java plugin's concept is an example of domainSourceSet

modelling, as is the modelling of in the native plugin suite.NativeBinary

One distinguishing characteristic of Gradle compared to other build tools that also embrace modelling is that

Gradle's model is open and collaborative. Gradle is fundamentally a tool for modelling software construction

and then realizing the model, via tasks such as compilation etc.. Different domain plugins (e.g. Java, C++,

Android) provide models that other plugins can collaborate with and build upon.

While Gradle has long employed sophisticated techniques when it comes to realizing the model (i.e. what

we know as building things), the next generation of Gradle builds will employ some of the same techniques

to building of the model itself. By defining build tasks as effectively a graph of dependent functions with

explicit inputs and outputs, Gradle is able to order, cache, parallelize and apply other optimizations to the

work. Using a “graph of tasks” for the production of software is a long established idea, and necessary given

the complexity of software production. The task graph effectively defines the of execution that Gradlerules

must follow. The term “Rule based model configuration” refers to applying the same concepts to building

the model that builds the task graph.

Another motivation is performance and scale. Aspects of the current approach that Gradle takes tokey

modelling the build prevent pervasive parallelism and limit scalability. The software model is being

designed with the requirements of modern software delivery in mind, where immediate responsiveness is

critical for projects large and small.

67.3. Concepts
This section outlines the key concepts of rule based model configuration. Subsequent sections in this chapter

will show the concepts in action.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinary.html

Page 455 of 573

67.3.1. The “model space”

The term “model space” is used to refer to the formal model, addressable by rules.

An analog with existing model is effectively the “project space”. The object is effectively theProject

root of a graph of objects (e.g , etc.). A build script isproject.repositories project.tasks

effectively adding and configuring objects of this graph. For the most part, the “project space” is opaque to

Gradle. It is an arbitrary graph of objects that Gradle only partially understands.

Each project also has its own model space, which is distinct from the project space. A key characteristic of

the “model space” is that Gradle knows much more about it (which is knowledge that can be put to good

use). The objects in the model space are “managed”, to a greater extent than objects in the project space. The

origin, structure, state, collaborators and relationships of objects in the model space are first class constructs.

This is effectively the characteristic that functionally distinguishes the model space from the project space:

the objects of the model space are defined in ways that Gradle can understand them intimately, as opposed

to an object that is the result of running relatively opaque code. A “rule” is effectively a building block of

this definition.

The model space will eventually replace the project space, in so far as it will be the only “space”. However,

during the transition the distinction is helpful.

67.3.2. Model paths

A model path identifies a path through a model space, to an element. A common representation is a

period-delimited set of names. The model path is the path to the element that is the task"tasks"

container. Assuming a task who's name is , the path is the path to this task.hello "tasks.hello"

TBD - more needed here.

67.3.3. Rules

The model space is defined in terms of “rules”. A rule is just a function (in the abstract sense) that either

produces a model element, or acts upon a model element. Every rule has a single subject and zero or more

inputs. Only the subject can be changed by a rule, while the inputs are effectively immutable.

Gradle guarantees that all inputs are fully “realized“ before the rule executes. The process of “realizing” a

model element is effectively executing all the rules for which it is the subject, transitioning it to its final

state. There is a strong analogy here to Gradle's task graph and task execution model. Just as tasks depend on

each other and Gradle ensures that dependencies are satisfied before executing a task, rules effectively

depend on each other (i.e. a rule depends on all rules whose subject is one of the inputs) and Gradle ensures

that all dependencies are satisfied before executing the rule.

Model elements are very often defined in terms of other model elements. For example, a compile task's

configuration can be defined in terms of the configuration of the source set that it is compiling. In this

scenario, the compile task would be the subject of a rule and the source set an input. Such a rule could

configure the task subject based on the source set input without concern for how it was configured, who it

was configured by or when the configuration was specified.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html

Page 456 of 573

There are several ways to declare rules, and in several forms. An explanation of the different forms and

mechanisms along with concrete examples is forthcoming in this chapter.

67.3.4. Managed model elements

Currently, any kind of Java object can be part of the model space. However, there is a difference between

“managed” and “unmanaged” objects.

A “managed” object is transparent and enforces immutability once realized. Being transparent means that its

structure is understood by the rule infrastructure and as such each of its properties are also individual

elements in the model space.

An “unmanaged” object is opaque to the the model space and does not enforce immutability. Over time,

more mechanisms will be available for defining managed model elements culminating in all model elements

being managed in some way.

Managed models can be defined by attaching the annotation to an interface:@Managed

Example 67.2. a managed type

build.gradle

@Managed
 Person {interface

 setFirstName(String name)void
 String getFirstName()

 setLastName(String name)void
 String getLastName()
}

By defining a getter/setter pair, you are effectively declaring a managed property. A managed property is a

property for which Gradle will enforce semantics such as immutability when a node of the model is not the

subject of a rule. Therefore, this example declares properties named and on thefirstName lastName

managed type . These properties will only be writable when the view is mutable, that is to say whenPerson

the is the subject of a (see below the explanation for rules).Person Rule

Properties can be of any scalar type. A scalar type is either:

a primitive type (e.g.) or its boxed type (e.g)int Integer

a or BigInteger BigDecimal

a String

a File

an enumeration type

In addition, properties can also be of any type which is itself managed:

Property type Nullable Example

Page 457 of 573

String Yes
Example 67.3. a String property

build.gradle

void setFirstName(String name)
String getFirstName()

File Yes
Example 67.4. a File property

build.gradle

void setHomeDirectory(File homeDir)
File getHomeDirectory()

, , ,Integer Boolean Byte

, , , Short Float Long Double

Yes
Example 67.5. a Long property

build.gradle

void setId(Long id)
Long getId()

, , , int boolean byte short

, , , float long double

No
Example 67.6. a boolean property

build.gradle

void setEmployed(isEmployed)boolean
 isEmployed()boolean

Example 67.7. an int property

build.gradle

void setAge(age)int
 getAge()int

Another type.managed Only if

read/write Example 67.8. a managed property

build.gradle

void setMother(Person mother)
Person getMother()

Page 458 of 573

An type.enumeration Yes
Example 67.9. an enumeration type property

build.gradle

void setMaritalStatus(MaritalStatus status)
MaritalStatus getMaritalStatus()

A . A managedManagedSet

set supports the creation of

new named model elements,

but not their removal.

Only if

read/write

A or of scalarSet List

types. All classic operations

on collections are supported:

add, remove, clear...

Only if

read/write Example 67.10. a managed set

build.gradle

ModelSet<Person> getChildren()

build.gradle

void setUserGroups(List<String> groups)
List<String> getUserGroups()

If the type of a property is itself a managed type, it is possible to declare only a getter, in which case you are

declaring a read-only property. A read-only property must not be mistaken with an immutable property. A

read-only property will be instantiated by Gradle, and cannot be replaced with another object of the same

type (for example calling a setter). However, the properties of that property can potentially be changed, if,

and only if, the property is the subject of a rule. If it's not the case, the property is immutable, like any

classic read/write managed property.

Managed types can be defined out of interfaces or abstract classes and are usually defined in plugins, which

are written either in Java or Groovy. Please see the annotation for more information on creatingManaged

managed model objects.

67.3.5. Model element types

There are particular types (language types) supported by the model space and can be generalised as follows:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Managed.html

Page 459 of 573

Table 67.2. Type definitions

Type Definition

Scalar A scalar type is considered to be one of the following:

a primitive type (e.g.) or its boxed type (e.g)int Integer

a or BigInteger BigDecimal

a String

a File

an enumeration type

Scalar Collection A java.util.List or java.util.Set containing one of the scalar types

Managed type Any class which is a valid managed model (i.e.annotated with @)Managed

Managed collection A or ModelMap ModelSet

There are various contexts in which these types can be used:

Table 67.3. Model type support

Context Supported types

Creating top level

model elements

Any managed type

FunctionalSourceSet (when the pluginLanguageBasePlugin

has been applied)

Subtypes of which have been registered via LanguageSourceSet

ComponentType

Properties of

managed model

elements

The properties (attributes) of a managed model elements may be one or more

of the following:

A managed type

A type which is annotated with @Unmanaged

A Scalar Collection

A Managed collection containing managed types

A Managed collection containing 's (when theFunctionalSourceSet

 plugin has been applied)LanguageBasePlugin

Subtypes of which have been registered via LanguageSourceSet

ComponentType

67.3.6. Language source sets

s and subtypes of (which have been registered via FunctionalSourceSet LanguageSourceSet

) can be added to the model space via rules or via the model DSL.ComponentType

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Unmanaged.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html

Page 460 of 573

Example 67.11. strongly modelling sources sets

build.gradle

apply plugin: 'java-lang'

//Creating LanguageSourceSets via rules
 LanguageSourceSetRules RuleSource {class extends

 @Model
 mySourceSet(JavaSourceSet javaSource) {void
 javaSource.source.srcDir()"src/main/my"
 }
}
apply plugin: LanguageSourceSetRules

//Creating LanguageSourceSets via the model DSL
model {
 another(JavaSourceSet) {
 source {
 srcDir "src/main/another"
 }
 }
}

//Using FunctionalSourceSets
@Managed

 SourceBundle {interface
 FunctionalSourceSet getFreeSources()
 FunctionalSourceSet getPaidSources()
}
model {
 sourceBundle(SourceBundle) {
 freeSources.create(, JavaSourceSet)"main"
 freeSources.create(, JvmResourceSet)"resources"
 paidSources.create(, JavaSourceSet)"main"
 paidSources.create(, JvmResourceSet)"resources"
 }
}

Note: The code for this example can be found at samples/modelRules/language-support

in the ‘-all’ distribution of Gradle.

Output of gradle help

> gradle help
:help

67.3.7. References, binding and scopes

As previously mentioned, a rule has a subject and zero or more inputs. The rule's subject and inputs are

declared as “references” and are “bound” to model elements before execution by Gradle. Each rule must

effectively forward declare the subject and inputs as references. Precisely how this is done depends on the

form of the rule. For example, the rules provided by a declare references as methodRuleSource

parameters.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html

Page 461 of 573

A reference is either “by-path” or “by-type”.

A “by-type” reference identifies a particular model element by its type. For example, a reference to the

 effectively identifies the element in the project model space. The modelTaskContainer "tasks"

space is not exhaustively searched for candidates for by-type binding. The search space for a by-type

binding is determined by the “scope” of the rule (discussed later).

A “by-path” reference identifies a particular model element by its path in model space. By-path references

are always relative to the rule scope; there is currently no way to path “out” of the scope. All by-path

references also have an associated type, but this does not influence what the reference binds to. The element

identified by the path must however by type compatible with the reference, or a fatal “binding failure” will

occur.

67.3.7.1. Binding scope

Rules are bound within a “scope”, which determines how references bind. Most rules are bound at the

project scope (i.e. the root of the model graph for the project). However, rules can be scoped to a node

within the graph. The method is an example, of a mechanism for applying scopedModelMap.named()

rules. Rules declared in the build script using the block, or via a applied as amodel {} RuleSource

plugin use the root of the model space as the scope. This can be considered the default scope.

By-path references are always relative to the rule scope. When the scope is the root, this effectively allows

binding to any element in the graph. When it is not, the children of the scope can be referred to by-path.

When binding by-type references, the following elements are considered:

The scope element itself.

The immediate children of the scope element.

The immediate children of the model space (i.e. project space) root.

For the common case, where the rule is effectively scoped to the root, only the immediate children of the

root need to be considered.

67.3.7.2. Binding to all elements in a scope matching type

Mutating or validating all elements of a given type in some scope is a common use-case. To accommodate

this rules can be applied via the annotation.@Each

In the example below a rule is applied to each in the model setting a default file@Defaults FileItem

size of "1024". Another rule applies a to every that makes sure all fileRuleSource DirectoryItem

sizes are positive and divisible by "16".

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html#named(java.lang.String, java.lang.Class)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html

Page 462 of 573

Example 67.12. a DSL example applying a rule to every element in a scope

build.gradle

@Managed Item Named {}interface extends
 FileItem Item {@Managed interface extends

 setSize(size)void int
 getSize()int
}

 DirectoryItem Item {@Managed interface extends
 ModelMap<Item> getChildren()
}

 PluginRules RuleSource {class extends
 setDefaultFileSize(FileItem file) {@Defaults void @Each
 file.size = 1024
 }

 applyValidateRules(ValidateRules rules, DirectoryItem directory) {}@Rules void @Each
}
apply plugin: PluginRules

 ValidateRules RuleSource {abstract class extends
 @Validate
 validateSizeIsPositive(ModelMap<FileItem> files) {void
 files.each { file ->
 assert file.size > 0
 }
 }

 @Validate
 validateSizeDivisibleBySixteen(ModelMap<FileItem> files) {void
 files.each { file ->
 assert file.size % == 16 0
 }
 }
}

model {
 root(DirectoryItem) {
 children {
 dir(DirectoryItem) {
 children {
 file1(FileItem)
 file2(FileItem) { size = }2048
 }
 }
 file3(FileItem)
 }
 }
}

Note: The code for this example can be found at samples/modelRules/ruleSourcePluginEach

in the ‘-all’ distribution of Gradle.

Page 463 of 573

67.4. Rule sources
One way to define rules, is via a subclass. Such types can be applied in the same manner (toRuleSource

project objects) as implementations (i.e. via).Plugin Project.apply()

Example 67.13. applying a rule source plugin

build.gradle

@Managed
 Person {interface

 setFirstName(String name)void
 String getFirstName()

 setLastName(String name)void
 String getLastName()
}

 PersonRules RuleSource {class extends
 person(Person p) {}@Model void

 setFirstName(Person p) {@Mutate void
 p.firstName = "John"
 }

 createHelloTask(ModelMap<Task> tasks, Person p) {@Mutate void
 tasks.create() {"hello"
 doLast {
 println "Hello $p.firstName $p.lastName!"
 }
 }
 }
}

apply plugin: PersonRules

Rule source plugins can be packaged and distributed in the same manner as other types of plugins (see

).Chapter 39, Writing Custom Plugins

The different methods of the rule source are discrete, independent rules. Their order, or the fact that they

belong to the same class, are irrelevant.

Example 67.14. a model creation rule

build.gradle

@Model person(Person p) {}void

This rule declares that there is a model element at path (defined by the method name), of type "person" Person

. This is the form of the type rule for types. Here, the person object is the rule subject.Model Managed

The method could potentially have a body, that mutated the person instance. It could also potentially have

more parameters, that would be the rule inputs.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Model.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Managed.html

Page 464 of 573

The model DSL makes heavy

use of various Groovy DSL

features. Please have a read of

Section 16.7, “Some Groovy

 for an introduction tobasics”

these Groovy features.

Example 67.15. a model mutation rule

build.gradle

@Mutate setFirstName(Person p) {void
 p.firstName = "John"
}

This rule mutates the person object. The first parameter to the method is the subject. Here, aMutate

by-type reference is used as no annotation is present on the parameter. It could also potentially havePath

more parameters, that would be the rule inputs.

Example 67.16. creating a task

build.gradle

@Mutate createHelloTask(ModelMap<Task> tasks, Person p) {void
 tasks.create() {"hello"
 doLast {
 println "Hello $p.firstName $p.lastName!"
 }
 }
}

This rule effectively adds a task, by mutating the tasks collection. The subject here is the Mutate "tasks"

node, which is available as a of . The only input is our person element. As the person isModelMap Task

being used as an input here, it will have been realised before executing this rule. That is, the task container

effectively the person element. If there are other configuration rules for the person element,depends on

potentially specified in a build script or other plugin, they will also be guaranteed to have been executed.

As is a type in this example, any attempt to modify the person parameter in this methodPerson Managed

would result in an exception being thrown. Managed objects enforce immutability at the appropriate point in

their lifecycle.

Please see the documentation for for more information on constraints on how rule sourcesRuleSource

must be implemented and for more types of rules.

67.5. The model DSL
It is also possible to declare a model and rules directly in a build script using the “model DSL”.

The general form of the model DSL is:

model {
 «rule-definitions»
}

All rules are nested inside a block. There may be anymodel

number of rule definitions inside each block, and theremodel

may be any number of blocks in a build script. You canmodel

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Path.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html

Page 465 of 573

also use a block in build scripts that are applied using model

.apply from: $uri

There are currently 2 kinds of rule that you can define using the model DSL: configuration rules, and

creation rules.

67.5.1. Configuration rules

You can define a rule that configures a particular model element. A configuration rule has the following

form:

model {
 «model-path-to-subject» {
 «configuration code»
 }
}

Continuing with the example so far of the model element of type being present, the"person" Person

following DSL snippet adds a configuration rule for the person that sets its property.lastName

Example 67.17. DSL configuration rule

build.gradle

model {
 person {
 lastName = "Smith"
 }
}

A configuration rule specifies a path to the subject that should be configured and a closure containing the

code to run when the subject is configured. The closure is executed with the subject passed as the closure

delegate. Exactly what code you can provide in the closure depends on the type of the subject. This is

discussed below.

You should note that the configuration code is not executed immediately but is instead executed only when

the subject is required. This is an important behaviour of model rules and allows Gradle to configure only

those elements that are required for the build, which helps reduce build time. For example, let's run a task

that uses the "person" object:

Page 466 of 573

Example 67.18. Configuration run when required

build.gradle

model {
 person {
 println "configuring person"
 lastName = "Smith"
 }
}

Output of gradle showPerson

> gradle showPerson
configuring person
:showPerson
Hello John Smith!

BUILD SUCCESSFUL

Total time: 1 secs

You can see that before the task is run, the "person" element is configured by running the rule closure. Now

let's run a task that does not require the "person" element:

Example 67.19. Configuration not run when not required

Output of gradle somethingElse

> gradle somethingElse
:somethingElse
Not using person

BUILD SUCCESSFUL

Total time: 1 secs

In this instance, you can see that the "person" element is not configured at all.

67.5.2. Creation rules

It is also possible to create model elements at the root level. The general form of a creation rule is:

model {
 «element-name»(«element-type») {
 «initialization code»
 }
}

The following model rule creates the element:"person"

Page 467 of 573

Example 67.20. DSL creation rule

build.gradle

model {
 person(Person) {
 firstName = "John"
 }
}

A creation rule definition specifies the path of the element to create, plus its public type, represented as a

Java interface or class. Only certain types of model elements can be created.

A creation rule may also provide a closure containing the initialization code to run when the element is

created. The closure is executed with the element passed as the closure delegate. Exactly what code you can

provide in the closure depends on the type of the subject. This is discussed below.

The initialization closure is optional and can be omitted, for example:

Example 67.21. DSL creation rule without initialization

build.gradle

model {
 barry(Person)
}

You should note that the initialization code is not executed immediately but is instead executed only when

the element is required. The initialization code is executed before any configuration rules are run. For

example:

Page 468 of 573

You can use the tomodel report

determine the type of a

particular model element.

Example 67.22. Initialization before configuration

build.gradle

model {
 person {
 println "configuring person"
 println "last name is $lastName, should be Smythe"
 lastName = "Smythe"
 }
 person(Person) {
 println "creating person"
 firstName = "John"
 lastName = "Smith"
 }
}

Output of gradle showPerson

> gradle showPerson
creating person
configuring person
last name is Smith, should be Smythe
:showPerson
Hello John Smythe!

BUILD SUCCESSFUL

Total time: 1 secs

Notice that the creation rule appears in the build script the configuration rule, but its code runs beforeafter

the code of the configuration rule. Gradle collects up all the rules for a particular subject before running any

of them, then runs the rules in the appropriate order.

67.5.3. Model rule closures

Most DSL rules take a closure containing some code to run to configure the subject. The code you can use in

this closure depends on the type of the subject of the rule.

In general, a rule closure may contain arbitrary code, mixed with

some type specific DSL syntax.

67.5.3.1. subjectModelMap<T>

A is basically a map of model elements, indexed byModelMap

some name. When a is used as the subject of a DSLModelMap

rule, the rule closure can use any of the methods defined on the interface.ModelMap

A rule closure with as a subject can also include nested creation or configuration rules. TheseModelMap

behave in a similar way to the creation and configuration rules that appear directly under the block.model

Here is an example of a nested creation rule:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html

Page 469 of 573

Example 67.23. Nested DSL creation rule

build.gradle

model {
 people {
 john(Person) {
 firstName = "John"
 }
 }
}

As before, a nested creation rule defines a name and public type for the element, and optionally, a closure

containing code to use to initialize the element. The code is run only when the element is required in the

build.

Here is an example of a nested configuration rule:

Example 67.24. Nested DSL configuration rule

build.gradle

model {
 people {
 john {
 lastName = "Smith"
 }
 }
}

As before, a nested configuration rule defines the name of the element to configure and a closure containing

code to use to configure the element. The code is run only when the element is required in the build.

ModelMap introduces several other kinds of rules. For example, you can define a rule that targets each of

the elements in the map. The code in the rule closure is executed once for each element in the map, when

that element is required. Let's run a task that requires all of the children of the "people" element:

Page 470 of 573

Example 67.25. DSL configuration rule for each element in a map

build.gradle

model {
 people {
 john(Person) {
 println "creating $it"
 firstName = "John"
 lastName = "Smith"
 }
 all {
 println "configuring $it"
 }
 barry(Person) {
 println "creating $it"
 firstName = "Barry"
 lastName = "Barry"
 }
 }
}

Output of gradle listPeople

> gradle listPeople
creating Person 'people.barry'
configuring Person 'people.barry'
creating Person 'people.john'
configuring Person 'people.john'
:listPeople
Hello Barry Barry!
Hello John Smith!

BUILD SUCCESSFUL

Total time: 1 secs

Any method on that accepts an as its last parameter can also be used to define a nestedModelMap Action

rule.

67.5.3.2. type subject@Managed

When a managed type is used as the subject of a DSL rule, the rule closure can use any of the methods

defined on the managed type interface.

A rule closure can also configure the properties of the element using nested closures. For example:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Action.html

Page 471 of 573

Example 67.26. Nested DSL property configuration

build.gradle

model {
 person {
 address {
 city = "Melbourne"
 }
 }
}

Currently, the nested closures do not define rules and are executed immediately. Please be aware that

this behaviour will change in a future Gradle release.

67.5.3.3. All other subjects

For all other types, the rule closure can use any of the methods defined by the type. There is no special DSL

defined for these elements.

67.5.4. Automatic type coercion

Scalar properties in managed types can be assigned values (e.g. , ,CharSequence String GString

etc.) and they will be converted to the actual property type for you. This works for all scalar types including File

s, which will be resolved relative to the current project.

Example 67.27. a DSL example showing type conversions

build.gradle

Page 472 of 573

enum Temperature {
 TOO_HOT,
 TOO_COLD,
 JUST_RIGHT
}

@Managed
 Item {interface

 setName(String n); String getName()void

 setQuantity(q); getQuantity()void int int

 setPrice(p); getPrice()void float float

 setTemperature(Temperature t)void
 Temperature getTemperature()

 setDataFile(File f); File getDataFile()void
}

 ItemRules RuleSource {class extends
 @Model
 item(Item item) {void
 def data = item.dataFile.text.trim()
 def (name, quantity, price, temp) = data.split()','
 item.name = name
 item.quantity = quantity
 item.price = price
 item.temperature = temp
 }

 @Defaults
 setDefaults(Item item) {void
 item.dataFile = 'data.csv'
 }

 @Mutate
 createDataTask(ModelMap<Task> tasks, Item item) {void
 tasks.create() {'showData'
 doLast {
 println """
Item '$item.name'
 quantity: $item.quantity
 price: $item.price
 temperature: $item.temperature"""
 }
 }
 }
}

apply plugin: ItemRules

model {
 item {
 price = "${price * (quantity < 10 ? 2 : 0.5)}"
 }
}

Page 473 of 573

Note: The code for this example can be found at samples/modelRules/modelDslCoercion

in the ‘-all’ distribution of Gradle.

In the above example, an is created and is initialized in by providing the path toItem setDefaults()

the data file. In the method the resolved is parsed to extract and set the data. In the DSLitem() File

block at the end, the price is adjusted based on the quantity; if there are fewer than 10 remaining the price is

doubled, otherwise it is reduced by 50%. The expression is a valid value since it resolves to a GString float

value in string form.

Finally, in we add the task to display all of the configured values.createDataTask() showData

67.5.5. Declaring input dependencies

Rules declared in the DSL may on other model elements through the use of a special syntax.depend

Example 67.28. a DSL rule using inputs

build.gradle

model {
 tasks {
 hello(Task) {
 def p = $.person
 doLast {
 println "Hello $p.firstName $p.lastName!"
 }
 }
 }
}

Note: The code for this example can be found at in the ‘-all’samples/modelRules/modelDsl

distribution of Gradle.

In the above snippet, the construct is an input reference. The construct returns the value of the$.person

model element at the specified path, as its default type (i.e. the type advertised by the). It mayModel Report

appear anywhere in the rule that an expression may normally appear. It is not limited to the right hand side

of variable assignments.

The general syntax is of the form:

$.«path-to-model-element»

Paths are a period separated list of identifiers. To directly depend on the of the person, thefirstName

following could be used:

Page 474 of 573

$.person.firstName

The input element is guaranteed to be fully configured before the rule executes. That is, all of the rules that

mutate the element are guaranteed to have been previously executed, leaving the target element in its final,

immutable, state.

Most model elements enforce immutability when being used as inputs. Any attempt to mutate such an

element will result in a runtime error. However, some legacy type objects do not currently implement such

checks. Regardless, it is always invalid to attempt to mutate an input to a rule.

67.5.5.1. Using as an inputModelMap<T>

When you use a as input, each item in the map is made available as a property.ModelMap

67.6. The model report
The built-in task displays a hierarchical view of the elements in the model space. Each itemModelReport

prefixed with a on the model report is a model element and the visual nesting of these elements correlates+

to the model path (e.g.). The model report displays the following details about each modeltasks.help

element:

Table 67.4. Model report - model element details

Detail Description

Type This is the underlying type of the model element and is typically a fully qualified class name.

Value Is conditionally displayed on the report when a model element can be represented as a string.

Creator Every model element has a creator. A creator signifies the origin of the model element (i.e.

what created the model element).

Rules Is a listing of the rules, excluding the creator rule, which are executed for a given model

element. The order in which the rules are displayed reflects the order in which they are

executed.

Example 67.29. model task output

Output of gradle model

> gradle model
:model

--
Root project
--

+ person
 | Type: Person
 | Creator: PersonRules#person
 | Rules:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.reporting.model.ModelReport.html

Page 475 of 573

 person { ... } @ build.gradle line 57, column 3
 PersonRules#setFirstName
 + age
 | Type: int
 | Value: 0
 | Creator: PersonRules#person
 + children
 | Type: org.gradle.model.ModelSet<Person>
 | Creator: PersonRules#person
 + employed
 | Type: boolean
 | Value: false
 | Creator: PersonRules#person
 + father
 | Type: Person
 | Value: null
 | Creator: PersonRules#person
 + firstName
 | Type: java.lang.String
 | Value: John
 | Creator: PersonRules#person
 + homeDirectory
 | Type: java.io.File
 | Value: null
 | Creator: PersonRules#person
 + id
 | Type: java.lang.Long
 | Value: null
 | Creator: PersonRules#person
 + lastName
 | Type: java.lang.String
 | Value: Smith
 | Creator: PersonRules#person
 + maritalStatus
 | Type: MaritalStatus
 | Creator: PersonRules#person
 + mother
 | Type: Person
 | Value: null
 | Creator: PersonRules#person
 + userGroups
 | Type: java.util.List<java.lang.String>
 | Value: null
 | Creator: PersonRules#person
+ tasks
 | Type: org.gradle.model.ModelMap<org.gradle.api.Task>
 | Creator: Project.<init>.tasks()
 | Rules:
 PersonRules#createHelloTask
 + buildEnvironment
 | Type: org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask
 | Value: task ':buildEnvironment'
 | Creator: tasks.addPlaceholderAction(buildEnvironment)
 | Rules:
 copyToTaskContainer
 + components
 | Type: org.gradle.api.reporting.components.ComponentReport
 | Value: task ':components'
 | Creator: tasks.addPlaceholderAction(components)
 | Rules:
 copyToTaskContainer

Page 476 of 573

 + dependencies
 | Type: org.gradle.api.tasks.diagnostics.DependencyReportTask
 | Value: task ':dependencies'
 | Creator: tasks.addPlaceholderAction(dependencies)
 | Rules:
 copyToTaskContainer
 + dependencyInsight
 | Type: org.gradle.api.tasks.diagnostics.DependencyInsightReportTask
 | Value: task ':dependencyInsight'
 | Creator: tasks.addPlaceholderAction(dependencyInsight)
 | Rules:
 HelpTasksPlugin.Rules#addDefaultDependenciesReportConfiguration
 copyToTaskContainer
 + hello
 | Type: org.gradle.api.Task
 | Value: task ':hello'
 | Creator: PersonRules#createHelloTask > create(hello)
 | Rules:
 copyToTaskContainer
 + help
 | Type: org.gradle.configuration.Help
 | Value: task ':help'
 | Creator: tasks.addPlaceholderAction(help)
 | Rules:
 copyToTaskContainer
 + init
 | Type: org.gradle.buildinit.tasks.InitBuild
 | Value: task ':init'
 | Creator: tasks.addPlaceholderAction(init)
 | Rules:
 copyToTaskContainer
 + model
 | Type: org.gradle.api.reporting.model.ModelReport
 | Value: task ':model'
 | Creator: tasks.addPlaceholderAction(model)
 | Rules:
 copyToTaskContainer
 + projects
 | Type: org.gradle.api.tasks.diagnostics.ProjectReportTask
 | Value: task ':projects'
 | Creator: tasks.addPlaceholderAction(projects)
 | Rules:
 copyToTaskContainer
 + properties
 | Type: org.gradle.api.tasks.diagnostics.PropertyReportTask
 | Value: task ':properties'
 | Creator: tasks.addPlaceholderAction(properties)
 | Rules:
 copyToTaskContainer
 + tasks
 | Type: org.gradle.api.tasks.diagnostics.TaskReportTask
 | Value: task ':tasks'
 | Creator: tasks.addPlaceholderAction(tasks)
 | Rules:
 copyToTaskContainer
 + wrapper
 | Type: org.gradle.api.tasks.wrapper.Wrapper
 | Value: task ':wrapper'
 | Creator: tasks.addPlaceholderAction(wrapper)

Page 477 of 573

 | Rules:
 copyToTaskContainer

67.7. Limitations and future direction
Rule based model configuration is the future of Gradle. This area is fledgling, but under very active

development. Early experiments have demonstrated that this approach is more efficient, able to provide

richer diagnostics and authoring assistance and is more extensible. However, there are currently many

limitations.

The majority of the development to date has been focused on proving the efficacy of the approach, and

building the internal rule execution engine and model graph mechanics. The user facing aspects (e.g the

DSL, rule source classes) are yet to be optimized for conciseness and general usability. Likewise, many

necessary configuration patterns and constructs are not yet able to be expressed via the API.

In conjunction with the addition of better syntax, a richer toolkit of configuration constructs and generally

more expressive power, more tooling will be added that will enable build engineers and users alike to

comprehend, modify and extend builds in new ways.

Due to the inherent nature of the rule based approach, it is more efficient at constructing the build model

than today's Gradle. However, in the future Gradle will also leverage the parallelism that this approach

enables both at configuration and execution time. Moreover, due to increased transparency of the model

Gradle will be able to further reduce build times by caching and pre-computing the build model. Beyond

improved general build performance, this will greatly improve the experience when using Gradle from tools

such as IDEs.

As this area of Gradle is under active development, it will be changing rapidly. Please be sure to consult the

documentation of Gradle corresponding to the version you are using and to watch for changes announced in

the release notes for future versions.

Page 478 of 573

68
Software model concepts

Support for the software model is currently . Please be aware that the DSL, APIs and otherincubating

configuration may change in later Gradle versions.

The software model describes how a piece of software is built and how the components of the software

relate to each other. The software model is organized around some key concepts:

A is a general concept that represents some logical piece of software. Examples ofcomponent

components are a command-line application, a web application or a library. A component is often

composed of other components. Most Gradle builds will produce at least one component.

A is a reusable component that is linked into or combined into some other component. In thelibrary

Java ecosystem, a library is often built as a Jar file, and then later bundled into an application of some

kind. In the native ecosystem, a library may be built as a shared library or static library, or both.

A represents a logical group of source files. Most components are built from source sets ofsource set

various languages. Some source sets contain source that is written by hand, and some source sets may

contain source that is generated from something else.

A represents some output that is built for a component. A component may produce multiplebinary

different output binaries. For example, for a C++ library, both a shared library and a static library binary

may be produced.

A represents some mutually exclusive binary of a component. A library, for example, mightvariant

target Java 7 and Java 8, effectively producing two distinct binaries: a Java 7 Jar and a Java 8 Jar. These

are different variants of the library.

The of a library represents the artifacts and dependencies that are required to compile against thatAPI

library. The API typically consists of a binary together with a set of dependencies.

Page 479 of 573

69
Implementing model rules in a plugin

A plugin can define rules by extending and adding methods that define the rules. The pluginRuleSource

class can either extend directly or can implement and include a nested RuleSource Plugin

 subclass.RuleSource

Refer to the API docs for for more details.RuleSource

69.1. Applying additional rules
A rule method annotated with can apply a to a target model element.Rules RuleSource

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/Rules.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/model/RuleSource.html

Page 480 of 573

70
Building Java Libraries

Support for building Java libraries using the software model is currently . Please be awareincubating

that the DSL, APIs and other configuration may change in later Gradle versions.

The Java software plugins are intended to replace the , and leverage the Gradle Java plugin software model

to achieve the best performance, improved expressiveness and support for variant-aware dependency

management.

70.1. Features
The Java software plugins provide:

Support for building Java libraries and other components that run on the JVM.

Support for several source languages.

Support for building different variants of the same software, for different Java versions, or for any

purpose.

Build time definition and enforcement of Java library API.

Compile avoidance.

Dependency management between Java software components.

70.2. Java Software Model
The Java software plugins provide a that describes Java based software and how it should besoftware model

built. This Java software model extends the base Gradle , to add support for building JVMsoftware model

libraries. A is a kind of that is built for and runs on the JVM. It may be built from JavaJVM library library

source, or from various other languages. All JVM libraries provide an API of some kind.

70.3. Usage
To use the Java software plugins, include the following in your build script:

Page 481 of 573

Example 70.1. Using the Java software plugins

build.gradle

plugins {
 id 'jvm-component'
 id 'java-lang'
}

70.4. Creating a library
A library is created by declaring a under the element of the :JvmLibrarySpec components model

Example 70.2. Creating a java library

build.gradle

model {
 components {
 main(JvmLibrarySpec)
 }
}

Output of gradle build

> gradle build
:compileMainJarMainJava
:processMainJarMainResources
:createMainJar
:mainApiJar
:mainJar
:assemble
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

This example creates a library named , which will implicitly create a named main JavaSourceSet java

. The conventions of the are observed, where Java sources are expected to be found in legacy Java plugin src/main/java

, while resources are expected to be found in .src/main/resources

70.5. Source Sets
Source sets represent logical groupings of source files in a library. A library can define multiple source sets

and all sources will be compiled and included in the resulting binaries. When a library is added to a build,

the following source sets are added by default.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/JavaSourceSet.html

Page 482 of 573

Table 70.1. Java plugin - default source sets

Source Set Type Directory

java JavaSourceSet src/${library.name}/java

resources JvmResourceSet src/${library.name}/resources

It is possible to configure an existing through the container:source set sources

Example 70.3. Configuring a source set

build.gradle

components {
 main {
 sources {
 java {
 // configure the "java" source set
 }
 }
 }
}

It is also possible to create an additional source set, using the type:JavaSourceSet

Example 70.4. Creating a new source set

build.gradle

components {
 main {
 sources {
 mySourceSet(JavaSourceSet) {
 // configure the "mySourceSet" source set
 }
 }
 }
}

70.6. Tasks
By default, when the plugins above are applied, no new tasks are added to the build. However, when

libraries are defined, conventional tasks are added which build and package each binary of the library.

For each binary of a library, a single lifecycle task is created which executes all tasks associated with

building the binary. To build all binaries, the standard lifecycle task can be used.build

Table 70.2. Java plugin - lifecycle tasks

Component Type Binary Type Lifecycle Task

JvmLibrarySpec JvmBinarySpec ${library.name}${binary.name}

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmBinarySpec.html

Page 483 of 573

For each source set added to a library, tasks are added to compile or process the source files for each binary.

Table 70.3. Java plugin - source set tasks

Source Set Type Task name Type

JavaSourceSet compile${library.name}${binary.name}${library.name}${sourceset.name} PlatformJavaCompile

JvmResourceSet process${library.name}${binary.name}${library.name}${sourceset.name} ProcessResources

For each binary in a library, a packaging task is added to create the jar for that binary.

Table 70.4. Java plugin - packaging tasks

Binary Type Task name Depends on Type Description

JvmBinarySpec create${library.name}${binary.name} all

PlatformJavaCompile

and ProcessResources

tasks associated with the

binary

Jar Packages

the

compiled

classes and

processed

resources of

the binary.

70.7. Finding out more about your project
Gradle provides a report that you can run from the command-line that shows details about the components

and binaries that your project produces. To use this report, just run . Below is angradle components

example of running this report for one of the sample projects:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.jvm.tasks.Jar.html

Page 484 of 573

Example 70.5. The components report

Output of gradle components

> gradle components
:components

--
Root project
--

JVM library 'main'

Source sets
 Java source 'main:java'
 srcDir: src/main/java
 Java source 'main:mySourceSet'
 srcDir: src/main/mySourceSet
 JVM resources 'main:resources'
 srcDir: src/main/resources

Binaries
 Jar 'main:jar'
 build using task: :mainJar
 target platform: java7
 tool chain: JDK 7 (1.7)
 classes dir: build/classes/main/jar
 resources dir: build/resources/main/jar
 API Jar file: build/jars/main/jar/api/main.jar
 Jar file: build/jars/main/jar/main.jar

Note: currently not all plugins register their components, so some components may not be visible here.

BUILD SUCCESSFUL

Total time: 1 secs

70.8. Dependencies
A component in the Java software model can declare dependencies on other Java libraries. If component main

depends on library , this means that the of is required when compiling the sources of util API util main

, and the of is required when running or testing . The terms 'API' and 'runtime' areruntime util main

examples of of a Java library.usages

70.8.1. Library usage

The 'API' usage of a Java library consists of:

Artifact(s): the Jar file(s) containing the public classes of that library

Dependencies: the set of other libraries that are required to compile against that library

When library is compiled with a dependency on , the 'API' dependencies of 'util' are resolvedmain util

transitively, resulting in the complete set of libraries required to compile. For each of these libraries

Page 485 of 573

(including 'util'), the 'API' artifacts will be included in the compile classpath.

Similarly, the 'runtime' usage of a Java library consists of artifacts and dependencies. When a Java

component is tested or bundled into an application, the runtime usage of any runtime dependencies will be

resolved transitively into the set of libraries required at runtime. The runtime artifacts of these libraries will

then be included in the testing or runtime classpath.

70.8.2. Dependency types

Two types of Java library dependencies can be declared:

Dependencies on a library defined in a local Gradle project

Dependencies on a library published to a Maven repository

Dependencies onto libraries published to an Ivy repository are not yet supported.

70.8.3. Declaring dependencies

Dependencies may be declared for a specific , for an entire or asJavaSourceSet JvmLibrarySpec

part of the of a component:JvmApiSpec

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmApiSpec.html

Page 486 of 573

Example 70.6. Declaring a dependency onto a library

build.gradle

model {
 components {
 server(JvmLibrarySpec) {
 sources {
 java {
 dependencies {
 library 'core'
 }
 }
 }
 }

 core(JvmLibrarySpec) {
 dependencies {
 library 'commons'
 }
 }

 commons(JvmLibrarySpec) {
 api {
 dependencies {
 library 'collections'
 }
 }
 }

 collections(JvmLibrarySpec)
 }
}

Output of gradle serverJar

> gradle serverJar
:compileCollectionsJarCollectionsJava
:collectionsApiJar
:compileCommonsJarCommonsJava
:commonsApiJar
:compileCoreJarCoreJava
:processCoreJarCoreResources
:coreApiJar
:compileServerJarServerJava
:createServerJar
:serverApiJar
:serverJar

BUILD SUCCESSFUL

Dependencies declared for a source set will only be used for compiling that particular source set.

Dependencies declared for a component will be used when compiling all source sets for the component.

Dependencies declared for the component are used for compiling all source sets for the component, andapi

are also exported as part of the component's API. See for moreEnforcing API boundaries at compile time

details.

Page 487 of 573

The previous example declares a dependency for the source set of the library onto the java server core

library of the same project. However, it is possible to create a dependency on a library in a different project

as well:

Example 70.7. Declaring a dependency onto a project with an explicit library

build.gradle

client(JvmLibrarySpec) {
 sources {
 java {
 dependencies {
 project library ':util' 'main'
 }
 }
 }
}

Output of gradle clientJar

> gradle clientJar
:util:compileMainJarMainJava
:util:mainApiJar
:compileClientJarClientJava
:clientApiJar
:createClientJar
:clientJar

BUILD SUCCESSFUL

When the target project defines a single library, the selector can be omitted altogether:library

Example 70.8. Declaring a dependency onto a project with an implicit library

build.gradle

dependencies {
 project ':util'
}

Dependencies onto libraries published to Maven repositories can be declared via module identifiers

consisting of a , a plus an optional :group name module name version selector

Page 488 of 573

Example 70.9. Declaring a dependency onto a library published to a Maven repository

build.gradle

verifier(JvmLibrarySpec) {
 dependencies {
 module group version 'asm' 'org.ow2.asm' '5.0.4'
 module group 'asm-analysis' 'org.ow2.asm'
 }
}

Output of gradle verifierJar

> gradle verifierJar
:compileVerifierJarVerifierJava
:createVerifierJar
:verifierApiJar
:verifierJar

BUILD SUCCESSFUL

A shorthand notation for module identifiers can also be used:

Example 70.10. Declaring a module dependency using shorthand notation

build.gradle

dependencies {
 module 'org.ow2.asm:asm:5.0.4'
 module 'org.ow2.asm:asm-analysis'
}

Module dependencies will be resolved against the configured repositories as usual:

Example 70.11. Configuring repositories for dependency resolution

build.gradle

repositories {
 mavenCentral()
}

The class provides a complete reference of the dependencies DSL.DependencySpecContainer

70.9. Defining a Library API
Every library has an API, which consists of artifacts and dependencies that are required to compile against

the library. The library may be explicitly declared for a component, or may be implied based on other

component metadata.

By default, all types of a library are considered to be part of its API. In many cases this is notpublic

ideal; a library will contain many public types that intended for internal use within that library. By explicitly

declaring an API for a Java library, Gradle can provide compile-time encapsulation of these

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/DependencySpecContainer.html

Page 489 of 573

internal-but-public types. The types to include in a library API are declared at the package level. Packages

containing API types are considered to be .exported

By default, dependencies of a library are considered to be part of its API. By explicitly declaring anot

dependency as part of the library API, this dependency will then be made available to consumers when

compiling. Dependencies declared this way are considered to be , and are known as 'APIexported

dependencies'.

JDK 9 will introduce , the reference implementation of the . Jigsaw willJigsaw Java Module System

provide both compile-time and run-time enforcement of API encapsulation.

Gradle anticipates the arrival of JDK 9 and the Java Module System with an approach to specifying

and enforcing API encapsulation at compile-time. This allows Gradle users to leverage the many

benefits of strong encapsulation, and prepare their software projects for migration to JDK 9.

70.9.1. Some terminology

An is a set of classes, interfaces, methods that are exposed to a consumer.API

An is the specification of classes, interfaces or methods that belong to an API, togetherAPI specification

with the set of dependencies that are part of the API. It can be found in various forms, like module-info.java

in Jigsaw, or the block that Gradle defines as part of those stories. Usually, we canapi { ... }

simplify this to a list of packages, called .exported packages

A consists of and used at execution time. There can beruntime jar API classes non-API classes

multiple runtime jars depending on combinations of the variant dimensions: target platform, hardware

infrastructure, target application server, ...

API classes are classes of a which match the variant API specification

Non-API classes are classes of a which do not match the .variant API specification

A is an for which its implementation and non public members have beenstubbed API class API class

removed. It is meant to be used when a consumer is going to be compiled against an .API

An is a collection of . There can be multiple API jars depending on theAPI jar API classes

combinations of variant dimensions.

A is a collection of . There can be multiple stubbed API jarsstubbed API jar stubbed API classes

depending on the combinations of variant dimensions.

An corresponds to the public signature of an API, that is to say the setABI (application binary interface)

of stubbed API classes that it exposes (and their API visible members).

We avoid the use of the term because it is too vague: both and implementation API classes Non-API classes

can have an implementation. For example, an can be an interface, but also a concrete class.API class

Implementation is an overloaded term in the Java ecosystem, and often refers to a class implementing an

interface. This is not the case here: a concrete class can be member of an API, but to compile against an

API, you don't need the implementation of the class: all you need is the signatures.

70.9.2. Specifying API classes

Page 490 of 573

Example 70.12. Specifying api packages

build.gradle

model {
 components {
 main(JvmLibrarySpec) {
 api {
 exports 'org.gradle'
 exports 'org.gradle.utils'
 }
 }
 }
}

70.9.3. Specifying API dependencies

Example 70.13. Specifying api dependencies

build.gradle

commons(JvmLibrarySpec) {
 api {
 dependencies {
 library 'collections'
 }
 }
}

70.9.4. Compile avoidance

When you define an API for your library, Gradle enforces the usage of that API at compile-time. This comes

with 3 direct consequences:

Trying to use a non-API class in a dependency will now result in a compilation error.

Changing the implementation of an API class will not result in recompilation of consumers if the ABI

doesn't change (that is to say, all public methods have the same signature but not necessarily the same

body).

Changing the implementation of a non-API class will not result in recompilation of consumers. This

means that changes to non-API classes will not trigger recompilation of downstream dependencies,

because the ABI of the component doesn't change.

Given a component that exports , and defines those classes:main org.gradle org.gradle.utils

Page 491 of 573

Example 70.14. Main sources

src/main/java/org/gradle/Person.java

package org.gradle;

 Person {public class
 String name;private final

 Person(String name) {public
 .name = name;this
 }

 String getName() {public
 name;return
 }
}

src/main/java/org/gradle/internal/PersonInternal.java

package org.gradle.internal;

 org.gradle.Person;import

 PersonInternal Person {public class extends
 PersonInternal(String name) {public
 (name);super
 }
}

src/main/java/org/gradle/utils/StringUtils.java

package org.gradle.utils;

 StringUtils {public abstract class

}

Compiling a component that declares a dependency onto will succeed:client main

Page 492 of 573

Example 70.15. Client component

build.gradle

model {
 components {
 client(JvmLibrarySpec) {
 sources {
 java {
 dependencies {
 library 'main'
 }
 }
 }
 }
 }
}

src/client/java/org/gradle/Client.java

package org.gradle;

 Client {public class
 Person person;private

 setPerson(Person p) { .person = p; }public void this
 Person getPerson() { person; }public return
}

Output of gradle :clientJar

> gradle :clientJar
:compileMainJarMainJava
:processMainJarMainResources
:mainApiJar
:compileClientJarClientJava
:clientApiJar
:createClientJar
:clientJar

BUILD SUCCESSFUL

But trying to compile a component that declares a dependency onto but uses an non-APIbrokenclient main

class of will result in a compile-time error:main

Page 493 of 573

Example 70.16. Broken client component

src/brokenclient/java/org/gradle/Client.java

package org.gradle;

 org.gradle.internal.PersonInternal;import

 Client {public class
 PersonInternal person;private

 setPerson(PersonInternal p) { .person = p; }public void this
 PersonInternal getPerson() { person; }public return
}

Output of gradle :brokenclientJar

> gradle :brokenclientJar
:compileMainJarMainJava
:processMainJarMainResources
:mainApiJar
:compileBrokenclientJarBrokenclientJava FAILED

BUILD FAILED

On the other hand, if in is updated and its API hasn't changed, will not bePerson.java client client

recompiled. This is in particular important for incremental builds of large projects, where we can avoid the

compilation of dependencies in chain, and then dramatically reduce build duration:

Page 494 of 573

Example 70.17. Recompiling the client

src/main/java/org/gradle/Person.java

package org.gradle;

 Person {public class
 String name;private final

 Person(String name) {public
 // we updated the body if this method
 // but the signature doesn't change
 // so we will not recompile components
 // that depend on this class
 .name = name.toUpperCase();this
 }

 String getName() {public
 name;return
 }
}

Output of gradle :clientJar

> gradle :clientJar
:compileMainJarMainJava
:processMainJarMainResources UP-TO-DATE
:mainApiJar
:compileClientJarClientJava UP-TO-DATE
:clientApiJar UP-TO-DATE
:createClientJar UP-TO-DATE
:clientJar UP-TO-DATE

BUILD SUCCESSFUL

Page 495 of 573

70.10. Platform aware dependency management

70.10.1. Specifying the target platform

The software model extracts the target platform as a core concept. In the Java world, this means that a

library can be built, or resolved, against a specific version of Java. For example, if you compile a library for

Java 5, we know that such a library can be consumed by a library built for Java 6, but the opposite is not

true. Gradle lets you define which platforms a library targets, and will take care of:

generating a binary for each target platform (eg, a Java 5 jar as well as a Java 6 jar)

resolving dependencies against a matching platform

The DSL defines which platforms a library should be built against:targetPlatform

Example 70.18. Declaring target platforms

core/build.gradle

model {
 components {
 main(JvmLibrarySpec) {
 targetPlatform 'java5'
 targetPlatform 'java6'
 }
 }
}

Output of gradle :core:build

> gradle :core:build
:core:compileMainJava5JarMainJava
:core:processMainJava5JarMainResources
:core:createMainJava5Jar
:core:mainJava5ApiJar
:core:mainJava5Jar
:core:compileMainJava6JarMainJava
:core:compileMainJava6JarMainJava6JarJava
:core:processMainJava6JarMainResources
:core:createMainJava6Jar
:core:mainJava6ApiJar
:core:mainJava6Jar
:core:assemble
:core:check UP-TO-DATE
:core:build

BUILD SUCCESSFUL

When building the application, Gradle generates two binaries: and java5MainJar java6MainJar

corresponding to the target versions of Java. These artifacts will participate in dependency resolution as

described .here

Page 496 of 573

70.10.2. Binary specific source sets

For each it is possible to define additional source sets for each binary. A common useJvmLibrarySpec

case for this is having specific dependencies for each variant and source sets that conform to those

dependencies. The example below configures a source set on the binary:java6 main.java6Jar

Example 70.19. Declaring binary specific sources

core/build.gradle

main {
 binaries.java6Jar {
 sources {
 java(JavaSourceSet) {
 source.srcDir 'src/main/java6'
 }
 }
 }
}

Output of gradle clean :core:mainJava6Jar

> gradle clean :core:mainJava6Jar
:core:clean
:server:clean UP-TO-DATE
:core:compileMainJava6JarMainJava
:core:compileMainJava6JarMainJava6JarJava
:core:processMainJava6JarMainResources
:core:createMainJava6Jar
:core:mainJava6ApiJar
:core:mainJava6Jar

BUILD SUCCESSFUL

70.10.3. Dependency resolution

When a library targets multiple versions of Java and depends on another library, Gradle will make its best

effort to resolve the dependency to the most appropriate version of the dependency library. In practice, this

means that Gradle chooses the version:highest compatible

for a binary built for Java B n

for a dependency binary built for Java D m

D is compatible with if B m<=n

for multiple compatible binaries , choose theD(java 5), D(java 6), ...D(java m)

compatible D binary with the highest Java version

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JvmLibrarySpec.html

Page 497 of 573

Example 70.20. Declaring target platforms

server/build.gradle

model {
 components {
 main(JvmLibrarySpec) {
 targetPlatform 'java5'
 targetPlatform 'java6'
 sources {
 java {
 dependencies {
 project library ':core' 'main'
 }
 }
 }
 }
 }
}

Output of gradle clean :server:build

> gradle clean :server:build
:core:clean
:server:clean UP-TO-DATE
:core:compileMainJava5JarMainJava
:core:processMainJava5JarMainResources
:core:mainJava5ApiJar
:server:compileMainJava5JarMainJava
:server:createMainJava5Jar
:server:mainJava5ApiJar
:server:mainJava5Jar
:core:compileMainJava6JarMainJava
:core:compileMainJava6JarMainJava6JarJava
:core:processMainJava6JarMainResources
:core:mainJava6ApiJar
:server:compileMainJava6JarMainJava
:server:createMainJava6Jar
:server:mainJava6ApiJar
:server:mainJava6Jar
:server:assemble
:server:check UP-TO-DATE
:server:build

BUILD SUCCESSFUL

In the example above, Gradle automatically chooses the Java 6 variant of the dependency for the Java 6

variant of the component, and chooses the Java 5 version of the dependency for the Java 5 variantserver

of the component.server

70.11. Custom variant resolution
The Java plugin, in addition to the target platform resolution, supports resolution of custom variants. Custom

variants can be defined on custom binary types, as long as they extend . Users interestedJarBinarySpec

in testing this incubating feature can check out the documentation of the annotation.Variant

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/JarBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/Variant.html

Page 498 of 573

Page 499 of 573

70.12. Testing Java libraries

70.12.1. Standalone JUnit test suites

The Java software model supports defining standalone JUnit test suites as components of the model.

Standalone test suite are components that are self contained, in the sense that there is no component under

test: everything being tested must belong to the test suite sources.

A test suite is declared by creating a component of type , which is available whenJUnitTestSuiteSpec

you apply the plugin:junit-test-suite

Example 70.21. Using the JUnit plugin

build.gradle

plugins {
 id 'jvm-component'
 id 'java-lang'
 id 'junit-test-suite'
}

model {
 testSuites {
 test(JUnitTestSuiteSpec) {
 jUnitVersion '4.12'
 }
 }
}

In the example above, is the name of our test suite. By convention, Gradle will create two source setstest

for the test suite, based on the name of the component: one for Java sources, and the other for resources: src/test/java

and . If the component was named , then sources and resourcessrc/resources/java integTest

would have been found respectively in and .src/integTest/java src/integTest/resources

Once the component is created, the test suite can be executed running the <<test suite name>>BinaryTest

task:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/jvm/test/JUnitTestSuiteSpec.html

Page 500 of 573

Example 70.22. Executing the test suite

src/test/java/org/gradle/MyTest.java

package org.gradle;

 org.junit.Test;import

 org.junit.Assert.*;import static

 MyTest {public class
 @Test
 myTestMethod() {public void
 assertEquals(, .length());4 "test"
 }
}

Output of gradle testBinaryTest

> gradle testBinaryTest
:compileTestBinaryTestJava
:processTestBinaryTestResources
:testBinaryTest

BUILD SUCCESSFUL

It is possible to configure source sets in a .similar way as libraries

A test suite being a component can also .declare dependencies onto other components

A test suite can also contain resources, in which case it is possible to configure the resource processing task:

Example 70.23. Executing the test suite

build.gradle

model {
 tasks.processTestBinaryTestResources {
 // uncomment lines
 filter { String line ->
 line.replaceAll(,)'<!-- (.+?) -->' '$1'
 }
 }
}

70.12.2. Testing JVM libraries with JUnit

It is likely that you will want to test another JVM component. The Java software model supports it exactly

like standalone test suites, by just declaring an additional component under test:

Page 501 of 573

Example 70.24. Declaring a component under test

build.gradle

model {
 components {
 main(JvmLibrarySpec)
 }
 testSuites {
 test(JUnitTestSuiteSpec) {
 jUnitVersion '4.12'
 testing $.components.main
 }
 }
}

Output of gradle testMainJarBinaryTest

> gradle testMainJarBinaryTest
:compileMainJarMainJava
:processMainJarMainResources
:compileTestMainJarBinaryTestJava
:testMainJarBinaryTest

BUILD SUCCESSFUL

Note that the syntax to choose the component under test is a reference (). You can select any $. JvmComponentSpec

as the component under test. It's also worth noting that when you declare a component under test, a test suite

is created for each binary of the component under test (for example, if the component under test has a Java 7

and Java 8 version, 2 different test suite binaries would be automatically created).

70.13. Declaring Java toolchains
You can declare the list of local JVM installations using the model block. GradlejavaInstallations

will use this information to locate your JVMs and probe their versions. Please note that this information is

not yet used by Gradle to select the appropriate JDK or JRE when compiling your Java sources, or when

executing Java applications. A local Java installation can be declared using the type,LocalJava

independently of the fact they are a JDK or a JRE:

Page 502 of 573

Example 70.25. Declaring local Java installations

build.gradle

model {
 javaInstallations {
 openJdk6(LocalJava) {
 path '/usr/lib/jvm/jdk1.6.0-amd64'
 }
 oracleJre7(LocalJava) {
 path '/usr/lib/jvm/jre1.7.0'
 }
 ibmJdk8(LocalJava) {
 path '/usr/lib/jvm/jdk1.8.0'
 }
 }
}

Page 503 of 573

71
Building Play applications

Support for building Play applications is currently . Please be aware that the DSL, APIs andincubating

other configuration may change in later Gradle versions.

 is a modern web application framework. The Play plugin adds support for building, testing and runningPlay

Play applications with Gradle.

The Play plugin makes use of the Gradle .software model

71.1. Usage
To use the Play plugin, include the following in your build script to apply the plugin and add theplay

Typesafe repositories:

Example 71.1. Using the Play plugin

build.gradle

plugins {
 id 'play'
}

repositories {
 jcenter()
 maven {
 name "typesafe-maven-release"
 url "https://repo.typesafe.com/typesafe/maven-releases"
 }
 ivy {
 name "typesafe-ivy-release"
 url "https://repo.typesafe.com/typesafe/ivy-releases"
 layout "ivy"
 }
}

Note that defining the Typesafe repositories is necessary. In future versions of Gradle, this will be replaced

with a more convenient syntax.

https://www.playframework.com/

Page 504 of 573

71.2. Limitations
The Play plugin currently has a few limitations.

Full support is limited to Play 2.3.x applications. Limited support is available for Play 2.4.x applications.

Gradle does not include support for a few new build-related features in 2.4. Specifically, Gradle does not

yet support aggregate reverse routes. Future Gradle versions will add more support for Play 2.4.x and

3.0.x.

A given project may only define a single Play application. This means that a single project cannot build

more than one Play application. However, a multi-project build can have many projects that each define

their own Play application.

Play applications can only target a single “platform” (combination of Play, Scala and Java version) at a

time. This means that it is currently not possible to define multiple variants of a Play application that, for

example, produce jars for both Scala 2.10 and 2.11. This limitation may be lifted in future Gradle

versions.

71.3. Software Model
The Play plugin uses a to describe a Play application and how to build it. The Play softwaresoftware model

model extends the base Gradle to add support for building Play applications. A Playsoftware model

application is represented by a component type. The plugin automaticallyPlayApplicationSpec

creates a single instance when it is applied. Additional PlayPlayApplicationBinarySpec

components cannot be added to a project.

Figure 71.1. Play plugin - software model

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Page 505 of 573

71.3.1. The Play application component

A Play application component describes the application to be built and consists of several configuration

elements. One type of element that describes the application are the source sets that define where the

application controller, route, template and model class source files should be found. These source sets are

logical groupings of files of a particular type and a default source set for each type is created when the play

plugin is applied.

Table 71.1. Default Play source sets

Source Set Type Directory Filters

java JavaSourceSet app **/*.java

scala ScalaLanguageSourceSet app **/*.scala

routes RoutesSourceSet conf routes, *.routes

twirlTemplates TwirlSourceSet app **/*.html

javaScript JavaScriptSourceSet app/assets **/*.js

These source sets can be configured or additional source sets can be added to the Play component. See Configuring Play

for further information.

Another element of configuring a Play application is the . To build a Play application, Gradle needsplatform

to understand which versions of Play, Scala and Java to use. The Play component specifies this requirement

as a . If these values are not configured, a default version of Play, Scala and Java will bePlayPlatform

used. See for information on configuring the Play platform.Targeting a certain version of Play

Note that only a single platform can be specified for a given Play component. This means that only a single

version of Play, Scala and Java can be used to build a Play component. In other words, a Play component

can only produce one set of outputs, and those outputs will be built using the versions specified by the

platform configured on the component.

71.3.2. The Play application binary

A Play application component is compiled and packaged to produce a set of outputs which are represented

by a . The Play binary specifies the jar files produced by building thePlayApplicationBinarySpec

component as well as providing elements by which additional content can be added to those jar files. It also

exposes the tasks involved in building the component and creating the binary.

See for examples of configuring the Play binary.Configuring Play

71.4. Project Layout
The Play plugin follows the typical Play application layout. You can to includeconfigure source sets

additional directories or change the defaults.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/scala/ScalaLanguageSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.routes.RoutesSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.javascript.JavaScriptSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PlayApplicationBinarySpec.html

Page 506 of 573

 app Application source code.
 assets Assets that require compilation.
 javascripts JavaScript source code to be minified.
 controllers Application controller source code.
 models Application business source code.
 views Application UI templates.
 build.gradle Your project's build script.
 conf Main application configuration file and routes files.
 public Public assets.
 images Application image files.
 javascripts Typically JavaScript source code.
 stylesheets Typically CSS source code.
 test Test source code.

71.5. Tasks
The Play plugin hooks into the normal Gradle lifecycle tasks such as , and , but itassemble check build

also adds several additional tasks which form the lifecycle of a Play project:

Table 71.2. Play plugin - lifecycle tasks

Task name Depends on Type Description

playBinary All compile tasks for source sets added to the

Play application.

Task Performs a build of just

the Play application.

dist , createPlayBinaryZipDist createPlayBinaryTarDistTask Assembles the Play

distribution.

stage stagePlayBinaryDist Task Stages the Play

distribution.

The plugin also provides tasks for running, testing and packaging your Play application:

Table 71.3. Play plugin - running and testing tasks

Task name Depends on Type Description

runPlayBinary to build PlayplayBinary

application.

PlayRun Runs the Play application for local

development. See how this works with continuous build.

testPlayBinary to build PlayplayBinary

application and compilePlayBinaryTests

.

Test Runs JUnit/TestNG tests for the Play

application.

For the different types of sources in a Play application, the plugin adds the following compilation tasks:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.testing.Test.html

Page 507 of 573

Table 71.4. Play plugin - source set tasks

Task name Source

Type

Type Description

compilePlayBinaryScala Scala and

Java

PlatformScalaCompile Compiles

all Scala

and Java

sources

defined by

the Play

application.

compilePlayBinaryPlayTwirlTemplates Twirl

HTML

templates

TwirlCompile Compiles

HTML

templates

with the

Twirl

compiler.

compilePlayBinaryPlayRoutes Play

Route

files

RoutesCompile Compiles

routes files

into Scala

sources.

minifyPlayBinaryJavaScript JavaScript

files

JavaScriptMinify Minifies

JavaScript

files with

the Google

Closure

compiler.

71.6. Finding out more about your project
Gradle provides a report that you can run from the command-line that shows some details about the

components and binaries that your project produces. To use this report, just run .gradle components

Below is an example of running this report for one of the sample projects:

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.TwirlCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.JavaScriptMinify.html

Page 508 of 573

Example 71.2. The components report

Output of gradle components

> gradle components
:components

--
Root project
--

Play Application 'play'

Source sets
 Java source 'play:java'
 srcDir: app
 includes: **/*.java
 JavaScript source 'play:javaScript'
 srcDir: app/assets
 includes: **/*.js
 JVM resources 'play:resources'
 srcDir: conf
 Routes source 'play:routes'
 srcDir: conf
 includes: routes, *.routes
 Scala source 'play:scala'
 srcDir: app
 includes: **/*.scala
 Twirl template source 'play:twirlTemplates'
 srcDir: app
 includes: **/*.html

Binaries
 Play Application Jar 'play:binary'
 build using task: :playBinary
 target platform: Play Platform (Play 2.3.9, Scala: 2.11, Java: Java SE 8)
 toolchain: Default Play Toolchain
 classes dir: build/playBinary/classes
 resources dir: build/playBinary/resources
 JAR file: build/playBinary/lib/basic.jar

Note: currently not all plugins register their components, so some components may not be visible here.

BUILD SUCCESSFUL

Total time: 1 secs

71.7. Running a Play application
The task starts the Play application under development. During development it isrunPlayBinary

beneficial to execute this task as a . Continuous build is a generic feature that supportscontinuous build

automatically re-running a build when inputs change. The task is “continuous buildrunPlayBinary

aware” in that it behaves differently when run as part of a continuous build.

When not run as part of a continuous build, the task will the build. That is, therunPlayBinary block

Page 509 of 573

task will not complete as long as the application is running. When running as part of a continuous build, the

task will start the application if not running and otherwise propagate any changes to the code of the

application to the running instance. This is useful for quickly iterating on your Play application with an

edit->rebuild->refresh cycle. Changes to your application will not take affect until the end of the overall

build.

To enable continuous build, run Gradle with or -t runPlayBinary --continuous runPlayBinary

.

Users of Play used to such a workflow with Play's default build system should note that compile errors are

handled differently. If a build failure occurs during a continuous build, the Play application will not be

reloaded. Instead, you will be presented with an exception message. The exception message will only

contain the overall cause of the build failure. More detailed information will only be available from the

console.

71.8. Configuring a Play application

71.8.1. Targeting a certain version of Play

By default, Gradle uses Play 2.3.9, Scala 2.11 and the version of Java used to start the build. A Play

application can select a different version by specifying a target PlayApplicationSpec.platform()

on the Play application component.

Example 71.3. Selecting a version of the Play Framework

build.gradle

model {
 components {
 play {
 platform play: , scala: '2.3.6' '2.10'
 }
 }
}

71.8.2. Adding dependencies

You can add compile, test and runtime dependencies to a Play application through Configuration

created by the Play plugin.

 is used for compile time dependencies.play

 is used for test compile time dependencies.playTest

 is used for run time dependencies.playRun

Example 71.4. Adding dependencies to a Play application

build.gradle

dependencies {
 play "commons-lang:commons-lang:2.6"
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.artifacts.Configuration.html

Page 510 of 573

71.8.3. Configuring the default source sets

You can further configure the default source sets to do things like add new directories, add filters, etc.

71.8.4. Adding extra source sets

If your Play application has additional sources that exist in non-standard directories, you can add extra

source sets that Gradle will automatically add to the appropriate compile tasks.

Example 71.5. Adding extra source sets to a Play application

build.gradle

model {
 components {
 play {
 sources {
 java {
 source.srcDir "additional/java"
 }
 javaScript {
 source {
 srcDir "additional/javascript"
 exclude "**/old_*.js"
 }
 }
 }
 }
 }
}

build.gradle

model {
 components {
 play {
 sources {
 extraJava(JavaSourceSet) {
 source.srcDir "extra/java"
 }
 extraTwirl(TwirlSourceSet) {
 source.srcDir "extra/twirl"
 }
 extraRoutes(RoutesSourceSet) {
 source.srcDir "extra/routes"
 }
 }
 }
 }
}

71.8.5. Configuring compiler options

If your Play application requires additional Scala compiler flags, you can add these arguments directly to the

Scala compiler task.

Page 511 of 573

Example 71.6. Configuring Scala compiler options

build.gradle

model {
 components {
 play {
 binaries.all {
 tasks.withType(PlatformScalaCompile) {
 scalaCompileOptions.additionalParameters = [,]"-feature" "-language:implicitConversions"
 }
 }
 }
 }
}

71.8.6. Configuring routes style

The injected router is only supported in Play Framework 2.4 or better.

If your Play application's router uses dependency injection to access your controllers, you'll need to

configure your application to use the default static router. Under the covers, the Play plugin is using the not InjectedRoutesGenerator

instead of the default to generate the router classes.StaticRoutesGenerator

Example 71.7. Configuring routes style

build.gradle

model {
 components {
 play {
 injectedRoutesGenerator = true
 }
 }
}

71.8.7. Injecting a custom asset pipeline

Gradle Play support comes with a simplistic asset processing pipeline that minifies JavaScript assets.

However, many organizations have their own custom pipeline for processing assets. You can easily hook the

results of your pipeline into the Play binary by utilizing the property on the binary.PublicAssets

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PublicAssets.html

Page 512 of 573

Example 71.8. Configuring a custom asset pipeline

build.gradle

model {
 components {
 play {
 binaries.all { binary ->
 tasks.create(, AddCopyrights) { copyrightTask ->"addCopyrightToPlay${binary.name.capitalize()}Assets"
 source "raw-assets"
 copyrightFile = project.file()'copyright.txt'
 destinationDir = project.file()"${buildDir}/play${binary.name.capitalize()}/addCopyRights"

 // Hook this task into the binary
 binary.assets.addAssetDir destinationDir
 binary.assets.builtBy copyrightTask
 }
 }
 }
 }
}

 AddCopyrights SourceTask {class extends
 @InputFile
 File copyrightFile

 @OutputDirectory
 File destinationDir

 @TaskAction
 generateAssets() {void
 String copyright = copyrightFile.text
 getSource().files.each { File file ->
 File outputFile = File(destinationDir, file.name)new
 outputFile.text = "${copyright}\n${file.text}"
 }
 }
}

71.9. Multi-project Play applications
Play applications can be built in multi-project builds as well. Simply apply the plugin in theplay

appropriate subprojects and create any project dependencies on the configuration.play

Example 71.9. Configuring dependencies on Play subprojects

build.gradle

dependencies {
 play project()":admin"
 play project()":user"
 play project()":util"
}

See the sample provided in the Gradle distribution for a working example.play/multiproject

Page 513 of 573

71.10. Packaging a Play application for
distribution

Gradle provides the capability to package your Play application so that it can easily be distributed and run in

a target environment. The distribution package (zip file) contains the Play binary jars, all dependencies, and

generated scripts that set up the classpath and run the application in a Play-specific container.Netty

The distribution can be created by running the lifecycle task and places the distribution in the dist $buildDir/distributions

directory. Alternatively, one can validate the contents by running the lifecycle task which copies thestage

files to the directory using the layout of the distribution package.$buildDir/stage

http://netty.io

Page 514 of 573

Table 71.5. Play distribution tasks

Task name Depends on Type

createPlayBinaryStartScripts - CreateStartScripts

stagePlayBinaryDist , playBinary createPlayBinaryStartScriptsCopy

createPlayBinaryZipDist Zip

createPlayBinaryTarDist Tar

stage stagePlayBinaryDist Task

dist , createPlayBinaryZipDist createPlayBinaryTarDistTask

71.10.1. Adding additional files to your Play application distribution

You can add additional files to the distribution package using the API.Distribution

http://www.gradle.org/docs/2.12-rc-1/groovydoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/distribution/Distribution.html

Page 515 of 573

Example 71.10. Add extra files to a Play application distribution

build.gradle

model {
 distributions {
 playBinary {
 contents {
 from()"README.md"
 from() {"scripts"
 into "bin"
 }
 }
 }
 }
}

71.11. Resources
For additional information about developing Play applications:

Play types in the Gradle DSL Guide:

PlayApplicationBinarySpec

PlayApplicationSpec

PlayPlatform

JvmClasses

PublicAssets

PlayDistributionContainer

JavaScriptMinify

PlayRun

RoutesCompile

TwirlCompile

.Play Framework Documentation

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PlayApplicationBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.JvmClasses.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.PublicAssets.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.distribution.PlayDistributionContainer.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.JavaScriptMinify.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.play.tasks.TwirlCompile.html
https://www.playframework.com/documentation

Page 516 of 573

72
Building native software

Support for building native software is currently . Please be aware that the DSL, APIs andincubating

other configuration may change in later Gradle versions.

The native software plugins add support for building native software components, such as executables or

shared libraries, from code written in C++, C and other languages. While many excellent build tools exist

for this space of software development, Gradle offers developers its trademark power and flexibility together

with dependency management practices more traditionally found in the JVM development space.

The native software plugins make use of the Gradle .software model

72.1. Features
The native software plugins provide:

Support for building native libraries and applications on Windows, Linux, OS X and other platforms.

Support for several source languages.

Support for building different variants of the same software, for different architectures, operating

systems, or for any purpose.

Incremental parallel compilation, precompiled headers.

Dependency management between native software components.

Unit test execution.

Generate Visual studio solution and project files.

Deep integration with various tool chain, including discovery of installed tool chains.

72.2. Supported languages
The following source languages are currently supported:

C

C++

Objective-C

Objective-C++

Assembly

Windows resources

Page 517 of 573

72.3. Tool chain support
Gradle offers the ability to execute the same build using different tool chains. When you build a native

binary, Gradle will attempt to locate a tool chain installed on your machine that can build the binary. You

can fine tune exactly how this works, see for details.Section 72.17, “Tool chains”

The following tool chains are supported:

Operating

System

Tool Chain Notes

Linux GCC

Linux Clang

Mac OS X XCode Uses the Clang tool chain bundled with XCode.

Windows Visual C++ Windows XP and later, Visual C++ 2010/2012/2013.

Windows GCC with Cywin

32

Windows XP and later.

Windows GCC with MinGW Windows XP and later. is currently notMingw-w64

supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested

continuously:

Operating System Tool Chain Notes

Mac OS X GCC from Macports

Mac OS X Clang from Macports

Windows GCC with Cywin 64 Windows XP and later.

UNIX-like GCC

UNIX-like Clang

72.4. Tool chain installation

Note that if you are using GCC then you currently need to install support for C++, even if you are not

building from C++ source. This restriction will be removed in a future Gradle version.

To build native software, you will need to have a compatible tool chain installed:

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://clang.llvm.org

Page 518 of 573

72.4.1. Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the

Visual Studio installations and select the latest version. There is no need to mess around with environment

variables or batch scripts. This works fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

72.4.2. OS X

To build on OS X, you should install XCode. The native plugins will discover the XCode installation using

the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool

chains, you will need to make the tool chain the default using the command and addport select

Macports to the system PATH.

72.4.3. Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or

Clang using the system PATH.

72.5. Native software model
The native software model builds on the base Gradle .software model

To build native software using Gradle, your project should define one or more . Eachnative components

component represents either an executable or a library that Gradle should build. A project can define any

number of components. Gradle does not define any components by default.

For each component, Gradle defines a for each language that the component can be built from. Asource set

source set is essentially just a set of source directories containing source files. For example, when you apply

the plugin and define a library called , Gradle will define, by default, a source setc helloworld

containing the C source files in the directory. It will use these source files to buildsrc/helloworld/c

the library. This is described in more detail below.helloworld

For each component, Gradle defines one or more as output. To build a binary, Gradle will take thebinaries

source files defined for the component, compile them as appropriate for the source language, and link the

result into a binary file. For an executable component, Gradle can produce executable binary files. For a

library component, Gradle can produce both static and shared library binary files. For example, when you

define a library called and build on Linux, Gradle will, by default, produce helloworld libhelloworld.so

and binaries.libhelloworld.a

In many cases, more than one binary can be produced for a component. These binaries may vary based on

the tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional

source files provided. Each native binary produced for a component is referred to as . Binary variantsvariant

are discussed in detail below.

Page 519 of 573

72.6. Parallel Compilation
Gradle uses the single build worker pool to concurrently compile and link native components, by default. No

special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build machine

(as reported to the build JVM). To explicitly set the number of workers use the --max-workers

command-line option or system property. There is generally no need toorg.gradle.workers.max

change this setting from its default.

The build worker pool is shared across all build tasks. This means that when using parallel project execution

, the maximum number of concurrent individual compilation operations does not increase. For example, if

the build machine has 4 processing cores and 10 projects are compiling in parallel, Gradle will only use 4

total workers, not 40.

72.7. Building a library
To build either a static or shared native library, you define a library component in the components

container. The following sample defines a library called :hello

Example 72.1. Defining a library component

build.gradle

model {
 components {
 hello(NativeLibrarySpec)
 }
}

A library component is represented using . Each library component can produce atNativeLibrarySpec

least one shared library binary () and at least one static library binary (SharedLibraryBinarySpec

).StaticLibraryBinarySpec

72.8. Building an executable
To build a native executable, you define an executable component in the container. Thecomponents

following sample defines an executable called :main

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Page 520 of 573

Example 72.2. Defining executable components

build.gradle

model {
 components {
 main(NativeExecutableSpec) {
 sources {
 c.lib library: "hello"
 }
 }
 }
}

An executable component is represented using . Each executable componentNativeExecutableSpec

can produce at least one executable binary ().NativeExecutableBinarySpec

For each component defined, Gradle adds a with the same name. Each of theseFunctionalSourceSet

functional source sets will contain a language-specific source set for each of the languages supported by the

project.

72.9. Tasks
For each that can be produced by a build, a single is constructed thatNativeBinarySpec lifecycle task

can be used to create that binary, together with a set of other tasks that do the actual work of compiling,

linking or assembling the binary.

Component Type Native Binary Type Lifecycle task Location of created binary

NativeExecutableSpec NativeExecutableBinarySpec Executable${component.name} /exe/ /${project.buildDir} ${component.name} ${component.name}

NativeLibrarySpec SharedLibraryBinarySpec SharedLibrary${component.name} /libs/ /shared/lib .so${project.buildDir} ${component.name} ${component.name}

NativeLibrarySpec StaticLibraryBinarySpec StaticLibrary${component.name} /libs/ /static/ .a${project.buildDir} ${component.name} ${component.name}

72.9.1. Working with shared libraries

For each executable binary produced, the plugin provides an task,cpp install${binary.name}

which creates a development install of the executable, along with the shared libraries it requires. This allows

you to run the executable without needing to install the shared libraries in their final locations.

72.10. Finding out more about your project
Gradle provides a report that you can run from the command-line that shows some details about the

components and binaries that your project produces. To use this report, just run .gradle components

Below is an example of running this report for one of the sample projects:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Page 521 of 573

Example 72.3. The components report

Output of gradle components

> gradle components
:components

--
Root project
--

Native library 'hello'

Source sets
 C++ source 'hello:cpp'
 srcDir: src/hello/cpp

Binaries
 Shared library 'hello:sharedLibrary'
 build using task: :helloSharedLibrary
 build type: build type 'debug'
 flavor: flavor 'default'
 target platform: platform 'current'
 tool chain: Tool chain 'clang' (Clang)
 shared library file: build/libs/hello/shared/libhello.dylib
 Static library 'hello:staticLibrary'
 build using task: :helloStaticLibrary
 build type: build type 'debug'
 flavor: flavor 'default'
 target platform: platform 'current'
 tool chain: Tool chain 'clang' (Clang)
 static library file: build/libs/hello/static/libhello.a

Native executable 'main'

Source sets
 C++ source 'main:cpp'
 srcDir: src/main/cpp

Binaries
 Executable 'main:executable'
 build using task: :mainExecutable
 install using task: :installMainExecutable
 build type: build type 'debug'
 flavor: flavor 'default'
 target platform: platform 'current'
 tool chain: Tool chain 'clang' (Clang)
 executable file: build/exe/main/main

Note: currently not all plugins register their components, so some components may not be visible here.

BUILD SUCCESSFUL

Total time: 1 secs

Page 522 of 573

72.11. Language support
Presently, Gradle supports building native software from any combination of source languages listed below.

A native binary project will contain one or more named instances (eg 'main',FunctionalSourceSet

'test', etc), each of which can contain s containing source files, one for eachLanguageSourceSet

language.

C

C++

Objective-C

Objective-C++

Assembly

Windows resources

72.11.1. C++ sources

C++ language support is provided by means of the plugin.'cpp'

Example 72.4. The 'cpp' plugin

build.gradle

apply plugin: 'cpp'

C++ sources to be included in a native binary are provided via a , which defines a set ofCppSourceSet

C++ source files and optionally a set of exported header files (for a library). By default, for any named

component the contains source files in , and header files in CppSourceSet .cpp src/${name}/cpp src/${name}/headers

.

While the plugin defines these default locations for each , it is possible to extend orcpp CppSourceSet

override these defaults to allow for a different project layout.

Example 72.5. C++ source set

build.gradle

sources {
 cpp {
 source {
 srcDir "src/source"
 include "**/*.cpp"
 }
 }
}

For a library named 'main', header files in are considered the “public” or “exported”src/main/headers

headers. Header files that should not be exported should be placed inside the directorysrc/main/cpp

(though be aware that such header files should always be referenced in a manner relative to the file

including them).

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.cpp.CppSourceSet.html

Page 523 of 573

72.11.2. C sources

C language support is provided by means of the plugin.'c'

Example 72.6. The 'c' plugin

build.gradle

apply plugin: 'c'

C sources to be included in a native binary are provided via a , which defines a set of CCSourceSet

source files and optionally a set of exported header files (for a library). By default, for any named

component the contains source files in , and header files in CSourceSet .c src/${name}/c src/${name}/headers

.

While the plugin defines these default locations for each , it is possible to extend orc CSourceSet

override these defaults to allow for a different project layout.

Example 72.7. C source set

build.gradle

sources {
 c {
 source {
 srcDir "src/source"
 include "**/*.c"
 }
 exportedHeaders {
 srcDir "src/include"
 }
 }
}

For a library named 'main', header files in are considered the “public” or “exported”src/main/headers

headers. Header files that should not be exported should be placed inside the directorysrc/main/c

(though be aware that such header files should always be referenced in a manner relative to the file

including them).

72.11.3. Assembler sources

Assembly language support is provided by means of the plugin.'assembler'

Example 72.8. The 'assembler' plugin

build.gradle

apply plugin: 'assembler'

Assembler sources to be included in a native binary are provided via a , whichAssemblerSourceSet

defines a set of Assembler source files. By default, for any named component the AssemblerSourceSet

contains source files under ..s src/${name}/asm

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.assembler.AssemblerSourceSet.html

Page 524 of 573

72.11.4. Objective-C sources

Objective-C language support is provided by means of the plugin.'objective-c'

Example 72.9. The 'objective-c' plugin

build.gradle

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided via a , whichObjectiveCSourceSet

defines a set of Objective-C source files. By default, for any named component the

 contains source files under .ObjectiveCSourceSet .m src/${name}/objectiveC

72.11.5. Objective-C++ sources

Objective-C++ language support is provided by means of the plugin.'objective-cpp'

Example 72.10. The 'objective-cpp' plugin

build.gradle

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided via a ,ObjectiveCppSourceSet

which defines a set of Objective-C++ source files. By default, for any named component the

 contains source files under .ObjectiveCppSourceSet .mm src/${name}/objectiveCpp

72.12. Configuring the compiler, assembler and
linker

Each binary to be produced is associated with a set of compiler and linker settings, which include

command-line arguments as well as macro definitions. These settings can be applied to all binaries, an

individual binary, or selectively to a group of binaries based on some criteria.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html

Page 525 of 573

Example 72.11. Settings that apply to all binaries

build.gradle

model {
 binaries {
 all {
 // Define a preprocessor macro for every binary
 cppCompiler.define "NDEBUG"

 // Define toolchain-specific compiler and linker options
 (toolChain in Gcc) {if
 cppCompiler.args , "-O2" "-fno-access-control"
 linker.args , "-Xlinker" "-S"
 }
 (toolChain in VisualCpp) {if
 cppCompiler.args "/Zi"
 linker.args "/DEBUG"
 }
 }
 }
}

Each binary is associated with a particular , allowing settings to be targeted based onNativeToolChain

this value.

It is easy to apply settings to all binaries of a particular type:

Example 72.12. Settings that apply to all shared libraries

build.gradle

// For any shared library binaries built with Visual C++,
// define the DLL_EXPORT macro
model {
 binaries {
 withType(SharedLibraryBinarySpec) {
 (toolChain in VisualCpp) {if
 cCompiler.args "/Zi"
 cCompiler.define "DLL_EXPORT"
 }
 }
 }
}

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular executable

or component:library

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Page 526 of 573

Example 72.13. Settings that apply to all binaries produced for the 'main' executable component

build.gradle

model {
 components {
 main(NativeExecutableSpec) {
 targetPlatform "x86"
 binaries.all {
 (toolChain in VisualCpp) {if
 sources {
 platformAsm(AssemblerSourceSet) {
 source.srcDir "src/main/asm_i386_masm"
 }
 }
 assembler.args "/Zi"
 } {else
 sources {
 platformAsm(AssemblerSourceSet) {
 source.srcDir "src/main/asm_i386_gcc"
 }
 }
 assembler.args "-g"
 }
 }
 }
 }
}

The example above will apply the supplied configuration to all binaries built.executable

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all

shared libraries for the main library component.

Example 72.14. Settings that apply only to shared libraries produced for the 'main' library component

build.gradle

model {
 components {
 main(NativeLibrarySpec) {
 binaries.withType(SharedLibraryBinarySpec) {
 // Define a preprocessor macro that only applies to shared libraries
 cppCompiler.define "DLL_EXPORT"
 }
 }
 }
}

72.13. Windows Resources
When using the tool chain, Gradle is able to compile Window Resource () files and linkVisualCpp rc

them into a native binary. This functionality is provided by the plugin.'windows-resources'

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Page 527 of 573

Example 72.15. The 'windows-resources' plugin

build.gradle

apply plugin: 'windows-resources'

Windows resources to be included in a native binary are provided via a , whichWindowsResourceSet

defines a set of Windows Resource source files. By default, for any named component the

 contains source files under .WindowsResourceSet .rc src/${name}/rc

As with other source types, you can configure the location of the windows resources that should be included

in the binary.

Example 72.16. Configuring the location of Windows resource sources

build-resource-only-dll.gradle

sources {
 rc {
 source {
 srcDirs "src/hello/rc"
 }
 exportedHeaders {
 srcDirs "src/hello/headers"
 }
 }
}

You are able to construct a resource-only library by providing Windows Resource sources with no other

language sources, and configure the linker as appropriate:

Example 72.17. Building a resource-only dll

build-resource-only-dll.gradle

model {
 components {
 helloRes(NativeLibrarySpec) {
 binaries.all {
 rcCompiler.args "/v"
 linker.args , "/noentry" "/machine:x86"
 }
 sources {
 rc {
 source {
 srcDirs "src/hello/rc"
 }
 exportedHeaders {
 srcDirs "src/hello/headers"
 }
 }
 }
 }
 }
}

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.rc.WindowsResourceSet.html

Page 528 of 573

The example above also demonstrates the mechanism of passing extra command-line arguments to the

resource compiler. The extension is of type .rcCompiler PreprocessingTool

72.14. Library Dependencies
Dependencies for native components are binary libraries that export header files. The header files are used

during compilation, with the compiled binary dependency being used during linking and execution. Header

files should be organized into subdirectories to prevent clashes of commonly named headers. For instance, if

your project has a header, it will make it less likely the wrong header is used if youmylib logging.h

include it as instead of ."mylib/logging.h" "logging.h"

72.14.1. Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project.

A common example is a native executable component that uses functions provided by a separate native

library component.

Such a library dependency can be added to a source set associated with the component:executable

Example 72.18. Providing a library dependency to the source set

build.gradle

sources {
 cpp {
 lib library: "hello"
 }
}

Alternatively, a library dependency can be provided directly to the NativeExecutableBinarySpec

for the .executable

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.PreprocessingTool.html

Page 529 of 573

Example 72.19. Providing a library dependency to the binary

build.gradle

model {
 components {
 hello(NativeLibrarySpec) {
 sources {
 c {
 source {
 srcDir "src/source"
 include "**/*.c"
 }
 exportedHeaders {
 srcDir "src/include"
 }
 }
 }
 }
 main(NativeExecutableSpec) {
 sources {
 cpp {
 source {
 srcDir "src/source"
 include "**/*.cpp"
 }
 }
 }
 binaries.all {
 // Each executable binary produced uses the 'hello' static library binary
 lib library: , linkage: 'hello' 'static'
 }
 }
 }
}

72.14.2. Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Page 530 of 573

Example 72.20. Declaring project dependencies

build.gradle

project() {":lib"
 apply plugin: "cpp"
 model {
 components {
 main(NativeLibrarySpec)
 }

 // For any shared library binaries built with Visual C++,
 // define the DLL_EXPORT macro
 binaries {
 withType(SharedLibraryBinarySpec) {
 (toolChain in VisualCpp) {if
 cppCompiler.define "DLL_EXPORT"
 }
 }
 }
 }
}

project() {":exe"
 apply plugin: "cpp"

 model {
 components {
 main(NativeExecutableSpec) {
 sources {
 cpp {
 lib project: , library: ':lib' 'main'
 }
 }
 }
 }
 }
}

72.15. Precompiled Headers
Precompiled headers are a performance optimization that reduces the cost of compiling widely used headers

multiple times. This feature a header such that the compiled object file can be reused whenprecompiles

compiling each source file rather than recompiling the header each time. This support is available for C,

C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes all of the headers that

should be precompiled. It must be specified as the first included header in every source file where the

precompiled header should be used. It is assumed that this header file, and any headers it contains, make use

of header guards so that they can be included in an idempotent manner. If header guards are not used in a

header file, it is possible the header could be compiled more than once and could potentially lead to a broken

build.

Page 531 of 573

Example 72.21. Creating a precompiled header file

src/hello/headers/pch.h

#ifndef PCH_H
#define PCH_H
#include <iostream>
#include "hello.h"
#endif

Example 72.22. Including a precompiled header file in a source file

src/hello/cpp/hello.cpp

#include "pch.h"

void LIB_FUNC Greeter::hello () {
 std::cout << "Hello world!" << std::endl;
}

Precompiled headers are specified on a source set. Only one precompiled header file can be specified on a

given source set and will be applied to all source files that declare it as the first include. If a source files does

not include this header file as the first header, the file will be compiled in the normal manner (without

making use of the precompiled header object file). The string provided should be the same as that which is

used in the "#include" directive in the source files.

Example 72.23. Configuring a precompiled header

build.gradle

model {
 components {
 hello(NativeLibrarySpec) {
 sources {
 cpp {
 preCompiledHeader "pch.h"
 }
 }
 }
 }
}

A precompiled header must be included in the same way for all files that use it. Usually, this means the

header file should exist in the source set "headers" directory or in a directory included on the compiler

include path.

72.16. Native Binary Variants
For each executable or library defined, Gradle is able to build a number of different native binary variants.

Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries

produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on , , and . For each of thesebuild type platform flavor

Page 532 of 573

'variant dimensions', it is possible to specify a set of available values as well as target each component at

one, some or all of these. For example, a plugin may define a range of support platforms, but you may

choose to only target Windows-x86 for a particular component.

72.16.1. Build types

A determines various non-functional aspects of a binary, such as whether debug informationbuild type

is included, or what optimisation level the binary is compiled with. Typical build types are 'debug' and

'release', but a project is free to define any set of build types.

Example 72.24. Defining build types

build.gradle

model {
 buildTypes {
 debug
 release
 }
}

If no build types are defined in a project, then a single, default build type called 'debug' is added.

For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 72.25. Configuring debug binaries

build.gradle

model {
 binaries {
 all {
 (toolChain in Gcc && buildType == buildTypes.debug) {if
 cppCompiler.args "-g"
 }
 (toolChain in VisualCpp && buildType == buildTypes.debug) {if
 cppCompiler.args '/Zi'
 cppCompiler.define 'DEBUG'
 linker.args '/DEBUG'
 }
 }
 }
}

At this stage, it is completely up to the build script to configure the relevant compiler/linker flags for

each build type. Future versions of Gradle will automatically include the appropriate debug flags for

any 'debug' build type, and may be aware of various levels of optimisation as well.

Page 533 of 573

72.16.2. Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a

variant being produced for each platform. Gradle defines each OS/architecture combination as a

, and a project may define any number of platforms. If no platforms are defined in aNativePlatform

project, then a single, default platform 'current' is added.

Presently, a consists of a defined operating system and architecture. As we continue toPlatform

develop the native binary support in Gradle, the concept of Platform will be extended to include

things like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the extensibility

of Gradle to apply additional attributes to each platform, which can then be queried to specify

particular includes, preprocessor macros or compiler arguments for a native binary.

Example 72.26. Defining platforms

build.gradle

model {
 platforms {
 x8 {6
 architecture "x86"
 }
 x6 {4
 architecture "x86_64"
 }
 itanium {
 architecture "ia-64"
 }
 }
}

For a given variant, Gradle will attempt to find a that is able to build for the targetNativeToolChain

platform. Available tool chains are searched in the order defined. See the section below for moretool chains

details.

72.16.3. Flavor

Each component can have a set of named , and a separate binary variant can be produced for eachflavors

flavor. While the and variant dimensions have a defined meaning inbuild type target platform

Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between 'demo', 'paid' and 'enterprise' editions of the

component, where the same set of sources is used to produce binaries with different functions.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Page 534 of 573

Example 72.27. Defining flavors

build.gradle

model {
 flavors {
 english
 french
 }
 components {
 hello(NativeLibrarySpec) {
 binaries.all {
 (flavor == flavors.french) {if
 cppCompiler.define "FRENCH"
 }
 }
 }
 }
}

In the example above, a library is defined with a 'english' and 'french' flavor. When compiling the 'french'

variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default' is used.

72.16.4. Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every

combination of , and defined for the project. It is possible to override thisbuildType platform flavor

on a per-component basis, by specifying the set of , and/or targetBuildTypes targetPlatform targetFlavors

.

Example 72.28. Targeting a component at particular platforms

build.gradle

model {
 components {
 hello(NativeLibrarySpec) {
 targetPlatform "x86"
 targetPlatform "x64"
 }
 main(NativeExecutableSpec) {
 targetPlatform "x86"
 targetPlatform "x64"
 sources {
 cpp.lib library: , linkage: 'hello' 'static'
 }
 }
 }
}

Here you can see that the method is used toTargetedNativeComponent.targetPlatform()

specify a platform that the named should be built for.NativeExecutableSpec main

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)

Page 535 of 573

A similar mechanism exists for selecting andTargetedNativeComponent.targetBuildTypes()

.TargetedNativeComponent.targetFlavors()

72.16.5. Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a

 model element is created for every possible combination of these. However, inNativeBinarySpec

many cases it is not possible to build a particular variant, perhaps because no tool chain is available to build

for a particular platform.

If a binary variant cannot be built for any reason, then the associated with thatNativeBinarySpec

variant will not be . It is possible to use this property to create a task to generate all possiblebuildable

variants on a particular machine.

Example 72.29. Building all possible variants

build.gradle

model {
 tasks {
 buildAllExecutables(Task) {
 dependsOn $.binaries.findAll { it.buildable }
 }
 }
}

72.17. Tool chains
A single build may utilize different tool chains to build variants for different platforms. To this end, the core

'native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of

tool chains for a project may also be explicitly defined, allowing additional cross-compilers to be configured

as well as allowing the install directories to be specified.

72.17.1. Defining tool chains

The supported tool chain types are:

Gcc

Clang

VisualCpp

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Page 536 of 573

Example 72.30. Defining tool chains

build.gradle

model {
 toolChains {
 visualCpp(VisualCpp) {
 // Specify the installDir if Visual Studio cannot be located
 // installDir "C:/Apps/Microsoft Visual Studio 10.0"
 }
 gcc(Gcc) {
 // Uncomment to use a GCC install that is not in the PATH
 // path "/usr/bin/gcc"
 }
 clang(Clang)
 }
}

Each tool chain implementation allows for a certain degree of configuration (see the API documentation for

more details).

72.17.2. Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant,

Gradle will attempt to locate a that is able to build for the target platform. AvailableNativeToolChain

tool chains are searched in the order defined.

When a platform does not define an architecture or operating system, the default target of the tool

chain is assumed. So if a platform does not define a value for , Gradle will findoperatingSystem

the first available tool chain that can build for the specified .architecture

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the

tool chain will target the current operating system. See the next section for information on cross-compiling

for other operating systems.

Tool Chain Architectures

GCC x86, x86_64

Clang x86, x86_64

Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64'. For GCC

running on Windows via Cygwin, platforms 'windows/x86' and 'windows/x86_64' are supported. (The

Cygwin POSIX runtime is not yet modelled as part of the platform, but will be in the future.)

If no target platforms are defined for a project, then all binaries are built to target a default platform named

'current'. This default platform does not specify any or value,architecture operatingSystem

hence using the default values of the first available tool chain.

Gradle provides a that allows the build author to control the exact set of arguments passed to a toolhook

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Page 537 of 573

chain executable. This enables the build author to work around any limitations in Gradle, or assumptions

that Gradle makes. The arguments hook should be seen as a 'last-resort' mechanism, with preference given to

truly modelling the underlying domain.

Example 72.31. Reconfigure tool arguments

build.gradle

model {
 toolChains {
 visualCpp(VisualCpp) {
 eachPlatform {
 cppCompiler.withArguments { args ->
 args << "-DFRENCH"
 }
 }
 }
 clang(Clang) {
 eachPlatform {
 cCompiler.withArguments { args ->
 Collections.replaceAll(args, ,)"CUSTOM" "-DFRENCH"
 }
 linker.withArguments { args ->
 args.remove "CUSTOM"
 }
 staticLibArchiver.withArguments { args ->
 args.remove "CUSTOM"
 }
 }
 }
 }
}

72.17.3. Cross-compiling with GCC

Cross-compiling is possible with the and tool chains, by adding support for additional targetGcc Clang

platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom

configuration can be specified.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.toolchain.Clang.html

Page 538 of 573

Example 72.32. Defining target platforms

build.gradle

model {
 toolChains {
 gcc(Gcc) {
 target(){"arm"
 cppCompiler.withArguments { args ->
 args << "-m32"
 }
 linker.withArguments { args ->
 args << "-m32"
 }
 }
 target()"sparc"
 }
 }
 platforms {
 arm {
 architecture "arm"
 }
 sparc {
 architecture "sparc"
 }
 }
 components {
 main(NativeExecutableSpec) {
 targetPlatform "arm"
 targetPlatform "sparc"
 }
 }
}

72.18. Visual Studio IDE integration
Gradle has the ability to generate Visual Studio project and solution files for the native components defined

in your build. This ability is added by the plugin. For a multi-project build, all projectsvisual-studio

with native components should have this plugin applied.

When the plugin is applied, a task name isvisual-studio ${component.name}VisualStudio

created for each defined component. This task will generate a Visual Studio Solution file for the named

component. This solution will include a Visual Studio Project for that component, as well as linking to

project files for each depended-on binary.

The content of the generated visual studio files can be modified via API hooks, provided by the visualStudio

extension. Take a look at the 'visual-studio' sample, or see

 and VisualStudioExtension.getProjects()

 in the API documentation for more details.VisualStudioExtension.getSolutions()

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions

Page 539 of 573

72.19. CUnit support
The Gradle plugin provides support for compiling and executing CUnit tests in your native-binarycunit

project. For each and defined in your project,NativeExecutableSpec NativeLibrarySpec

Gradle will create a matching component, named CUnitTestSuiteSpec ${component.name}Test

.

72.19.1. CUnit sources

Gradle will create a named 'cunit' for each component in theCSourceSet CUnitTestSuiteSpec

project. This source set should contain the cunit test files for the component under test. Source files can be

located in the conventional location () or can be configuredsrc/${component.name}Test/cunit

like any other source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher

sources. Gradle will expect and call a function with the signature void gradle_cunit_register()

that you can use to configure the actual CUnit suites and tests to execute.

Due to this mechanism, your CUnit sources may not contain a method since this will clash withmain

the method provided by Gradle.

72.19.2. Building CUnit executables

A component has an associated or CUnitTestSuiteSpec NativeExecutableSpec

 component. For each configured for the main component,NativeLibrarySpec NativeBinarySpec

a matching will be configured on the test suite component. These testCUnitTestSuiteBinarySpec

suite binaries can be configured in a similar way to any other binary instance:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html

Page 540 of 573

Example 72.33. Registering CUnit tests

suite_operators.c

#include <CUnit/Basic.h>
#include "gradle_cunit_register.h"
#include "test_operators.h"

int suite_init(void) {
 return 0;
}

int suite_clean(void) {
 return 0;
}

void gradle_cunit_register() {
 CU_pSuite pSuiteMath = CU_add_suite("operator tests", suite_init, suite_clean);
 CU_add_test(pSuiteMath, "test_plus", test_plus);
 CU_add_test(pSuiteMath, "test_minus", test_minus);
}

build.gradle

model {
 binaries {
 withType(CUnitTestSuiteBinarySpec) {
 lib library: , linkage: "cunit" "static"

 (flavor == flavors.failing) {if
 cCompiler.define "PLUS_BROKEN"
 }
 }
 }
}

Both the CUnit sources provided by your project and the generated launcher require the core CUnit

headers and libraries. Presently, this library dependency must be provided by your project for each

.CUnitTestSuiteBinarySpec

72.19.3. Running CUnit tests

For each , Gradle will create a task to execute this binary, which will runCUnitTestSuiteBinarySpec

all of the registered CUnit tests. Test results will be found in the /test-results${build.dir}

directory.

Example 72.34. Running CUnit tests

build.gradle

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html

Page 541 of 573

apply plugin: "c"
apply plugin: 'cunit-test-suite'

model {
 flavors {
 passing
 failing
 }
 platforms {
 x8 {6
 architecture "x86"
 }
 }
 repositories {
 libs(PrebuiltLibraries) {
 cunit {
 headers.srcDir "libs/cunit/2.1-2/include"
 binaries.withType(StaticLibraryBinary) {
 staticLibraryFile =
 file(+"libs/cunit/2.1-2/lib/"
 findCUnitLibForPlatform(targetPlatform))
 }
 }
 }
 }
 components {
 operators(NativeLibrarySpec) {
 targetPlatform "x86"
 }
 }
 testSuites {
 operatorsTest(CUnitTestSuiteSpec) {
 testing $.components.operators
 }
 }
}
model {
 binaries {
 withType(CUnitTestSuiteBinarySpec) {
 lib library: , linkage: "cunit" "static"

 (flavor == flavors.failing) {if
 cCompiler.define "PLUS_BROKEN"
 }
 }
 }
}

Note: The code for this example can be found at in thesamples/native-binaries/cunit

‘-all’ distribution of Gradle.

Output of gradle -q runOperatorsTestFailingCUnitExe

Page 542 of 573

> gradle -q runOperatorsTestFailingCUnitExe

There were test failures:
 1. /home/user/gradle/samples/native-binaries/cunit/src/operatorsTest/c/test_plus.c:6 - plus(0, -2) == -2
 2. /home/user/gradle/samples/native-binaries/cunit/src/operatorsTest/c/test_plus.c:7 - plus(2, 2) == 4

The current support for CUnit is quite rudimentary. Plans for future integration include:

Allow tests to be declared with Javadoc-style annotations.

Improved HTML reporting, similar to that available for JUnit.

Real-time feedback for test execution.

Support for additional test frameworks.

72.20. GoogleTest support
The Gradle plugin provides support for compiling and executing GoogleTest tests in yourgoogle-test

native-binary project. For each and defined in yourNativeExecutableSpec NativeLibrarySpec

project, Gradle will create a matching component, named GoogleTestTestSuiteSpec ${component.name}Test

.

72.20.1. GoogleTest sources

Gradle will create a named 'cpp' for each component inCppSourceSet GoogleTestTestSuiteSpec

the project. This source set should contain the GoogleTest test files for the component under test. Source

files can be located in the conventional location () or can besrc/${component.name}Test/cpp

configured like any other source set.

72.20.2. Building GoogleTest executables

A component has an associated or GoogleTestTestSuiteSpec NativeExecutableSpec

 component. For each configured for the main component,NativeLibrarySpec NativeBinarySpec

a matching will be configured on the test suite component.GoogleTestTestSuiteBinarySpec

These test suite binaries can be configured in a similar way to any other binary instance:

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html

Page 543 of 573

Example 72.35. Registering GoogleTest tests

build.gradle

model {
 binaries {
 withType(GoogleTestTestSuiteBinarySpec) {
 lib library: , linkage: "googleTest" "static"

 (flavor == flavors.failing) {if
 cppCompiler.define "PLUS_BROKEN"
 }

 (targetPlatform.operatingSystem.linux) {if
 cppCompiler.args '-pthread'
 linker.args '-pthread'
 }
 }
 }
}

Note: The code for this example can be found at samples/native-binaries/google-test

in the ‘-all’ distribution of Gradle.

The GoogleTest sources provided by your project require the core GoogleTest headers and libraries.

Presently, this library dependency must be provided by your project for each

.GoogleTestTestSuiteBinarySpec

72.20.3. Running GoogleTest tests

For each , Gradle will create a task to execute this binary, whichGoogleTestTestSuiteBinarySpec

will run all of the registered GoogleTest tests. Test results will be found in the /test-results${build.dir}

directory.

The current support for GoogleTest is quite rudimentary. Plans for future integration include:

Improved HTML reporting, similar to that available for JUnit.

Real-time feedback for test execution.

Support for additional test frameworks.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html

Page 544 of 573

73
Extending the software model

Support for the software model is currently . Please be aware that the DSL, APIs and otherincubating

configuration may change in later Gradle versions.

One of the strengths of Gradle has always been its extensibility, and its adaptability to new domains. The

software model takes this extensibility to a new level, enabling the deep modeling of specific domains via

richly typed DSLs. The following chapter describes how the model and the corresponding DSLs can be

extended to support domains like , or . Before reading thisJava Play Framework native software development

you should be familiar with the Gradle software model and .rule based configuration concepts

The following build script is an example of using a custom software model for building Markdown based

documentation:

Example 73.1. an example of using a custom software model

build.gradle

import sample.documentation.DocumentationComponent
 sample.documentation.TextSourceSetimport
 sample.markdown.MarkdownSourceSetimport

apply plugin:sample.documentation.DocumentationPlugin
apply plugin:sample.markdown.MarkdownPlugin

model {
 components {
 docs(DocumentationComponent) {
 sources {
 reference(TextSourceSet)
 userguide(MarkdownSourceSet) {
 generateIndex = true
 smartQuotes = true
 }
 }
 }
 }
}

Note: The code for this example can be found at insamples/customModel/languageType/

the ‘-all’ distribution of Gradle.

Page 545 of 573

The rest of this chapter is dedicated to explaining what is going on behind this build script.

73.1. Concepts
A custom software model type has a public type, a base interface and internal views. Multiple such types

then collaborate to define a custom software model.

73.1.1. Public type and base interfaces

Extended types declare a that extends a :public type base interface

Components extend the base interfaceComponentSpec

Binaries extend the base interfaceBinarySpec

Source sets extend the base interfaceLanguageSourceSet

The is exposed to build logic.public type

73.1.2. Internal views

Adding internal views to your model type, you can make some data visible to build logic via a public type,

while hiding the rest of the data behind the internal view types. This is covered in a below.dedicated section

73.1.3. Components all the way down

Components are composed of other components. A source set is just a special kind of component

representing sources. It might be that the sources are provided, or generated. Similarily, some components

are composed of different binaries, which are built by tasks. All buildable components are built by tasks. In

the software model, you will write rules to generate both binaries from components and tasks from binaries.

73.2. Components
To declare a custom component type one must extend , or one of the following,ComponentSpec

depending on the use case:

SourceComponentSpec represents a component which has sources

VariantComponentSpec represents a component which generates different binaries based on

context (target platforms, build flavors, ...). Such a component generally produces multiple binaries.

GeneralComponentSpec is a convenient base interface for components that are built from sources

and variant-aware. This is the typical case for a lot of software components, and therefore it should be in

most of the cases the base type to be extended.

The core software model includes more types that can be used as base for extension. For example:

 and can also be extended in this manner. Theses are no-opLibrarySpec ApplicationSpec

extensions of used to describe a software model better by distinguishingGeneralComponentSpec

libraries and applications components. should be used for all components that describe aTestSuiteSpec

test suite.

http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/SourceComponentSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.VariantComponentSpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/GeneralComponentSpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ApplicationSpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/testing/base/TestSuiteSpec.html

Page 546 of 573

Example 73.2. Declare a custom component

DocumentationComponent.groovy

@Managed
 DocumentationComponent GeneralComponentSpec {}interface extends

Types extending are registered via a rule annotated with :ComponentSpec ComponentType

Example 73.3. Register a custom component

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends
 @ComponentType
 registerComponent(TypeBuilder<DocumentationComponent> builder) {}void
}

73.3. Binaries
To declare a custom binary type one must extend .BinarySpec

Example 73.4. Declare a custom binary

DocumentationBinary.groovy

@Managed
 DocumentationBinary BinarySpec {interface extends

 File getOutputDir()
 setOutputDir(File outputDir)void
}

Types extending are registered via a rule annotated with :BinarySpec ComponentType

Example 73.5. Register a custom binary

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends
 @ComponentType
 registerBinary(TypeBuilder<DocumentationBinary> builder) {}void
}

73.4. Source sets
To declare a custom source set type one must extend .LanguageSourceSet

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/dsl/org.gradle.language.base.LanguageSourceSet.html

Page 547 of 573

Example 73.6. Declare a custom source set

MarkdownSourceSet.groovy

@Managed
 MarkdownSourceSet LanguageSourceSet {interface extends

 isGenerateIndex()boolean
 setGenerateIndex(generateIndex)void boolean

 isSmartQuotes()boolean
 setSmartQuotes(smartQuotes)void boolean
}

Types extending are registered via a rule annotated with :LanguageSourceSet ComponentType

Example 73.7. Register a custom source set

MarkdownPlugin.groovy

class MarkdownPlugin RuleSource {extends
 @ComponentType
 registerMarkdownLanguage(TypeBuilder<MarkdownSourceSet> builder) {}void
}

Setting the is mandatory.language name

73.5. Putting it all together

73.5.1. Generating binaries from components

Binaries generation from components is done via rules annotated with . This ruleComponentBinaries

generates a named for each andDocumentationBinary exploded DocumentationComponent

sets its property:outputDir

Example 73.8. Generates documentation binaries

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends
 @ComponentBinaries
 generateDocBinaries(ModelMap<DocumentationBinary> binaries, VariantComponentSpec component, File buildDir) {void @Path("buildDir")
 binaries.create() { binary ->"exploded"
 outputDir = File(buildDir,)new "${component.name}/${binary.name}"
 }
 }
}

73.5.2. Generating tasks from binaries

Tasks generation from binaries is done via rules annotated with . This rule generates a BinaryTasks Copy

task for each of each :TextSourceSet DocumentationBinary

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/ComponentBinaries.html
http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/platform/base/BinaryTasks.html

Page 548 of 573

Example 73.9. Generates tasks for text source sets

DocumentationPlugin.groovy

class DocumentationPlugin RuleSource {extends
 @BinaryTasks
 generateTextTasks(ModelMap<Task> tasks, DocumentationBinary binary) {void final
 binary.inputs.withType(TextSourceSet) { textSourceSet ->
 def taskName = binary.tasks.taskName(, textSourceSet.name)"compile"
 def outputDir = File(binary.outputDir, textSourceSet.name)new
 tasks.create(taskName, Copy) {
 from textSourceSet.source
 destinationDir = outputDir
 }
 }
 }
}

This rule generates a task for each of each MarkdownCompileTask MarkdownSourceSet DocumentationBinary

:

Example 73.10. Register a custom source set

MarkdownPlugin.groovy

class MarkdownPlugin RuleSource {extends
 @BinaryTasks
 processMarkdownDocumentation(ModelMap<Task> tasks, DocumentationBinary binary) {void final
 binary.inputs.withType(MarkdownSourceSet) { markdownSourceSet ->
 def taskName = binary.tasks.taskName(, markdownSourceSet.name)"compile"
 def outputDir = File(binary.outputDir, markdownSourceSet.name)new
 tasks.create(taskName, MarkdownHtmlCompile) { compileTask ->
 compileTask.source = markdownSourceSet.source
 compileTask.destinationDir = outputDir
 compileTask.smartQuotes = markdownSourceSet.smartQuotes
 compileTask.generateIndex = markdownSourceSet.generateIndex
 }
 }
 }
}

See the sample source for more on the task.MarkdownCompileTask

73.5.3. Using your custom model

This build script demonstrate usage of the custom model defined in the sections above:

Page 549 of 573

Example 73.11. an example of using a custom software model

build.gradle

import sample.documentation.DocumentationComponent
 sample.documentation.TextSourceSetimport
 sample.markdown.MarkdownSourceSetimport

apply plugin:sample.documentation.DocumentationPlugin
apply plugin:sample.markdown.MarkdownPlugin

model {
 components {
 docs(DocumentationComponent) {
 sources {
 reference(TextSourceSet)
 userguide(MarkdownSourceSet) {
 generateIndex = true
 smartQuotes = true
 }
 }
 }
 }
}

Note: The code for this example can be found at insamples/customModel/languageType/

the ‘-all’ distribution of Gradle.

And in the components reports for such a build script we can see our model types properly registered:

Example 73.12. foo bar

Output of gradle -q components

> gradle -q components

--
Root project
--

DocumentationComponent 'docs'

Source sets
 Markdown source 'docs:userguide'
 srcDir: src/docs/userguide
 Text source 'docs:reference'
 srcDir: src/docs/reference

Binaries
 DocumentationBinary 'docs:exploded'
 build using task: :docsExploded

Note: currently not all plugins register their components, so some components may not be visible here.

Page 550 of 573

73.6. About internal views
Internal views can be added to an already registered type or to a new custom type. In other words, using

internal views, you can attach extra properties to already registered components, binaries and source sets

types like , or and to the custom types youJvmLibrarySpec JarBinarySpec JavaSourceSet

write.

Let's start with a simple component public type and its internal view declarations:

Example 73.13. public type and internal view declaration

build.gradle

@Managed MyComponent ComponentSpec {interface extends
 String getPublicData()
 setPublicData(String data)void
}

 MyComponentInternal MyComponent {@Managed interface extends
 String getInternalData()
 setInternalData(String internal)void
}

The type registration is as follows:

Example 73.14. type registration

build.gradle

class MyPlugin RuleSource {extends
 @ComponentType
 registerMyComponent(TypeBuilder<MyComponent> builder) {void
 builder.internalView(MyComponentInternal)
 }
}

The method of the type builder can be called several times. This is how youinternalView(type)

would add several internal views to a type.

Now, let's mutate both public and internal data using some rule:

Example 73.15. public and internal data mutation

build.gradle

class MyPlugin RuleSource {extends
 @Mutate
 mutateMyComponents(ModelMap<MyComponentInternal> components) {void
 components.all { component ->
 component.publicData = "Some PUBLIC data"
 component.internalData = "Some INTERNAL data"
 }
 }
}

Page 551 of 573

Our property should not be exposed to build logic. Let's check this using the taskinternalData model

on the following build file:

Example 73.16. example build script and model report output

build.gradle

apply plugin: MyPlugin
model {
 components {
 my(MyComponent)
 }
}

Output of gradle -q model

> gradle -q model

--
Root project
--

+ components
 | Type: org.gradle.platform.base.ComponentSpecContainer
 | Creator: ComponentBasePlugin.PluginRules#components
 | Rules:
 components { ... } @ build.gradle line 42, column 5
 MyPlugin#mutateMyComponents
 + my
 | Type: MyComponent
 | Creator: components { ... } @ build.gradle line 42, column 5 > create(my)
 | Rules:
 MyPlugin#mutateMyComponents > all()
 + publicData
 | Type: java.lang.String
 | Value: Some PUBLIC data
 | Creator: components { ... } @ build.gradle line 42, column 5 > create(my)
+ tasks
 | Type: org.gradle.model.ModelMap<org.gradle.api.Task>
 | Creator: Project.<init>.tasks()
 + assemble
 | Type: org.gradle.api.DefaultTask
 | Value: task ':assemble'
 | Creator: tasks.addPlaceholderAction(assemble)
 | Rules:
 copyToTaskContainer
 + build
 | Type: org.gradle.api.DefaultTask
 | Value: task ':build'
 | Creator: tasks.addPlaceholderAction(build)
 | Rules:
 copyToTaskContainer
 + buildEnvironment
 | Type: org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask
 | Value: task ':buildEnvironment'
 | Creator: tasks.addPlaceholderAction(buildEnvironment)
 | Rules:
 copyToTaskContainer
 + check
 | Type: org.gradle.api.DefaultTask

Page 552 of 573

 | Value: task ':check'
 | Creator: tasks.addPlaceholderAction(check)
 | Rules:
 copyToTaskContainer
 + clean
 | Type: org.gradle.api.tasks.Delete
 | Value: task ':clean'
 | Creator: tasks.addPlaceholderAction(clean)
 | Rules:
 copyToTaskContainer
 + components
 | Type: org.gradle.api.reporting.components.ComponentReport
 | Value: task ':components'
 | Creator: tasks.addPlaceholderAction(components)
 | Rules:
 copyToTaskContainer
 + dependencies
 | Type: org.gradle.api.tasks.diagnostics.DependencyReportTask
 | Value: task ':dependencies'
 | Creator: tasks.addPlaceholderAction(dependencies)
 | Rules:
 copyToTaskContainer
 + dependencyInsight
 | Type: org.gradle.api.tasks.diagnostics.DependencyInsightReportTask
 | Value: task ':dependencyInsight'
 | Creator: tasks.addPlaceholderAction(dependencyInsight)
 | Rules:
 HelpTasksPlugin.Rules#addDefaultDependenciesReportConfiguration
 copyToTaskContainer
 + help
 | Type: org.gradle.configuration.Help
 | Value: task ':help'
 | Creator: tasks.addPlaceholderAction(help)
 | Rules:
 copyToTaskContainer
 + init
 | Type: org.gradle.buildinit.tasks.InitBuild
 | Value: task ':init'
 | Creator: tasks.addPlaceholderAction(init)
 | Rules:
 copyToTaskContainer
 + model
 | Type: org.gradle.api.reporting.model.ModelReport
 | Value: task ':model'
 | Creator: tasks.addPlaceholderAction(model)
 | Rules:
 copyToTaskContainer
 + projects
 | Type: org.gradle.api.tasks.diagnostics.ProjectReportTask
 | Value: task ':projects'
 | Creator: tasks.addPlaceholderAction(projects)
 | Rules:
 copyToTaskContainer
 + properties
 | Type: org.gradle.api.tasks.diagnostics.PropertyReportTask
 | Value: task ':properties'
 | Creator: tasks.addPlaceholderAction(properties)
 | Rules:
 copyToTaskContainer
 + tasks
 | Type: org.gradle.api.tasks.diagnostics.TaskReportTask

Page 553 of 573

 | Value: task ':tasks'
 | Creator: tasks.addPlaceholderAction(tasks)
 | Rules:
 copyToTaskContainer
 + wrapper
 | Type: org.gradle.api.tasks.wrapper.Wrapper
 | Value: task ':wrapper'
 | Creator: tasks.addPlaceholderAction(wrapper)

Page 554 of 573

 | Rules:
 copyToTaskContainer

We can see in this report that is present and that is not.publicData internalData

Page 555 of 573

Part VII. Appendix

Table of Contents
A. Gradle Samples
A.1. Sample customBuildLanguage
A.2. Sample customDistribution
A.3. Sample customPlugin
A.4. Sample java/multiproject

B. Potential Traps
B.1. Groovy script variables
B.2. Configuration and execution phase

C. The Feature Lifecycle
C.1. States
C.2. Backwards Compatibility Policy

D. Gradle Command Line
D.1. Deprecated command-line options
D.2. Daemon command-line options
D.3. System properties
D.4. Environment variables

Glossary

Page 557 of 573

A
Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can

find these samples in the directory of the distribution./samplesGRADLE_HOME

Table A.1. Samples included in the distribution

Sample Description

announce A project which uses the announce plugin

application A project which uses the application plugin

buildDashboard A project which uses the build-dashboard plugin

codeQuality A project which uses the various code quality

plugins.

customBuildLanguage This sample demonstrates how to add some

custom elements to the build DSL. It also

demonstrates the use of custom plug-ins to

organize build logic.

customDistribution This sample demonstrates how to create a custom

Gradle distribution and use it with the Gradle

wrapper.

customPlugin A set of projects that show how to implement, test,

publish and use a custom plugin and task.

ear/earCustomized/ear Web application ear project with customized

contents

ear/earWithWar Web application ear project

groovy/customizedLayout Groovy project with a custom source layout

Page 558 of 573

groovy/mixedJavaAndGroovy Project containing a mix of Java and Groovy

source

groovy/multiproject Build made up of multiple Groovy projects. Also

demonstrates how to exclude certain source files,

and the use of a custom Groovy AST

transformation.

groovy/quickstart Groovy quickstart sample

java/base Java base project

java/customizedLayout Java project with a custom source layout

java/multiproject This sample demonstrates how an application can

be composed using multiple Java projects.

java/quickstart Java quickstart project

java/withIntegrationTests This sample demonstrates how to use a source set

to add an integration test suite to a Java project.

javaGradlePlugin This example demonstrates the use of the java

gradle plugin development plugin. By applying the

plugin, the java plugin is automatically applied as

well as the gradleApi() dependency. Furthermore,

validations are performed against the plugin

metadata during jar execution.

maven/pomGeneration Demonstrates how to deploy and install to a

Maven repository. Also demonstrates how to

deploy a javadoc JAR along with the main JAR,

how to customize the contents of the generated

POM, and how to deploy snapshots and releases to

different repositories.

maven/quickstart Demonstrates how to deploy and install artifacts to

a Maven repository.

osgi A project which builds an OSGi bundle

scala/customizedLayout Scala project with a custom source layout

scala/force Scala quickstart project

Page 559 of 573

scala/mixedJavaAndScala A project containing a mix of Java and Scala

source.

scala/quickstart Scala quickstart project

scala/zinc Scala project using the Zinc based Scala compiler.

testing/testReport Generates an HTML test report that includes the

test results from all subprojects.

toolingApi/customModel A sample of how a plugin can expose its own

custom tooling model to tooling API clients.

toolingApi/eclipse An application that uses the tooling API to build

the Eclipse model for a project.

toolingApi/idea An application that uses the tooling API to extract

information needed by IntelliJ IDEA.

toolingApi/model An application that uses the tooling API to build

the model for a Gradle build.

toolingApi/runBuild An application that uses the tooling API to run a

Gradle task.

userguide/distribution A project which uses the distribution plugin

userguide/javaLibraryDistribution A project which uses the Java library distribution

plugin

webApplication/customized Web application with customized WAR contents.

webApplication/quickstart Web application quickstart project

A.1. Sample customBuildLanguage
This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use

of custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second

represents a product module. Each product includes one or more product modules, and each product module

Page 560 of 573

may be included in multiple products. That is, there is a many-to-many relationship between these products

and product modules. For each product, the build produces a ZIP containing the runtime classpath for each

product module included in the product. The ZIP also contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basicEdition/build.gradle

). Notice that the build script uses the element. This is a custom element.product { }

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2

custom plug-ins found in .buildSrc/src/main/groovy

A.2. Sample customDistribution
This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.

This sample contains the following projects:

The directory contains the project that implements a custom plugin, and bundles the plugin intoplugin

a custom Gradle distribution.

The directory contains the project that uses the custom distribution.consumer

A.3. Sample customPlugin
A set of projects that show how to implement, test, publish and use a custom plugin and task.

This sample contains the following projects:

The directory contains the project that implements and publishes the plugin.plugin

The directory contains the project that uses the plugin.consumer

A.4. Sample java/multiproject
This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP

which includes an API JAR, which a 3rd party application would compile against, and a client runtime.

Then, there is a server WAR which provides a web service.

Page 561 of 573

B
Potential Traps

B.1. Groovy script variables
For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types

of script variables. One with a local scope and one with a script-wide scope.

Page 562 of 573

Example B.1. Variables scope: local and script wide

scope.groovy

String localScope1 = 'localScope1'
def localScope2 = 'localScope2'
scriptScope = 'scriptScope'

println localScope1
println localScope2
println scriptScope

closure = {
 println localScope1
 println localScope2
 println scriptScope
}

def method() {
 {try
 localScope1
 } (MissingPropertyException e) {catch
 println 'localScope1NotAvailable'
 }
 {try
 localScope2
 } (MissingPropertyException e) {catch
 println 'localScope2NotAvailable'
 }
 println scriptScope
}

closure.call()
method()

Output of gradle

> gradle
localScope1
localScope2
scriptScope
localScope1
localScope2
scriptScope
localScope1NotAvailable
localScope2NotAvailable
scriptScope

Variables which are declared with a type modifier are visible within closures but not visible within methods.

This is a heavily discussed behavior in the Groovy community. []29

B.2. Configuration and execution phase
It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 20,

).The Build Lifecycle

Page 563 of 573

Example B.2. Distinct configuration and execution phase

build.gradle

def classesDir = file()'build/classes'
classesDir.mkdirs()
task clean(type: Delete) {
 delete 'build'
}
task compile(dependsOn:) << {'clean'
 (!classesDir.isDirectory()) {if
 println 'The class directory does not exist. I can not operate'
 // do something
 }
 // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory does not exist. I can not operate

As the creation of the directory happens during the configuration phase, the task removes theclean

directory during the execution phase.

[] 29 One o f t hose d i s cus s ions can be found he re :

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

Page 564 of 573

C
The Feature Lifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular and

frequent basis (approximately every 6 weeks). Continuous improvement combined with frequent delivery

allows new features to be made available to users early and for invaluable real world feedback to be

incorporated into the development process. Getting new functionality into the hands of users regularly is a

core value of the Gradle platform. At the same time, API and feature stability is taken very seriously and is

also considered a core value of the Gradle platform. This is something that is engineered into the

development process by design choices and automated testing, and is formalised by Section C.2,

.“Backwards Compatibility Policy”

The Gradle has been designed to meet these goals. It also serves to clearly communicate tofeature lifecycle

users of Gradle what the state of a feature is. The term typically means an API or DSL method orfeature

property in this context, but it is not restricted to this definition. Command line arguments and modes of

execution (e.g. the Build Daemon) are two examples of other kinds of features.

C.1. States
Features can be in one of 4 states:

Internal

Incubating

Public

Deprecated

C.1.1. Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can

change in any way at any point in time without any notice. Therefore, we recommend avoiding the use of

such features. Internal features are not documented. If it appears in this User Guide, the DSL Reference or

the API Reference documentation then the feature is not internal.

Internal features may evolve into public features.

C.1.2. Incubating

Features are introduced in the state to allow real world feedback to be incorporated into theincubating

feature before it is made public and locked down to provide backwards compatibility. It also gives users

who are willing to accept potential future changes early access to the feature so they can put it into use

immediately.

Page 565 of 573

A feature in an incubating state may change in future Gradle versions until it is no longer incubating.

Changes to incubating features for a Gradle release will be highlighted in the release notes for that release.

The incubation period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that

are incubating are annotated with , which is also used to specially mark them in the DSL andIncubating

API references. If an incubating feature is discussed in this User Guide, it will be explicitly said to be in the

incubating state.

C.1.3. Public

The default state for a non-internal feature is . Anything that is documented in the User Guide, DSLpublic

Reference or API references that is not explicitly said to be incubating or deprecated is considered public.

Features are said to be from an incubating state to public. The release notes for each releasepromoted

indicate which previously incubating features are being promoted by the release.

A public feature will be removed or intentionally changed without undergoing deprecation. All publicnever

features are subject to the backwards compatibility policy.

C.1.4. Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features

will eventually be removed from Gradle after being . A deprecated feature will bedeprecated never

changed, until it is finally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all methods/properties/classes that are

deprecated are annotated with “ ” which is reflected in the DSL and API@java.lang.Deprecated

references. In most cases, there is a replacement for the deprecated element, and this will be described in the

documentation. Using a deprecated feature will also result in a runtime warning in Gradle's output.

Use of deprecated features should be avoided. The release notes for each release indicate any features that

are being deprecated by the release.

C.2. Backwards Compatibility Policy
Gradle provides backwards compatibility across major versions (e.g. , , etc.). Once a public feature1.x 2.x

is introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once

deprecated, it may be removed in the next major release. Deprecated features may be supported across major

releases, but this is not guaranteed.

http://www.gradle.org/docs/2.12-rc-1/javadoc/org/gradle/api/Incubating.html

Page 566 of 573

D
Gradle Command Line

The command has the following usage:gradle

gradle [option...] [task...]

The command-line options available for the command are listed below:gradle

, , -? -h --help

Shows a help message.

, -a --no-rebuild

Do not rebuild project dependencies.

--all

Shows additional detail in the task listing. See .Section 4.6.2, “Listing tasks”

, -b --build-file

Specifies the build file. See .Section 4.5, “Selecting which build to execute”

, -c --settings-file

Specifies the settings file.

--console

Specifies which type of console output to generate.

Set to to generate plain text only. This option disables all color and other rich output in theplain

console output.

Set to (the default) to enable color and other rich output in the console output when the buildauto

process is attached to a console, or to generate plain text only when not attached to a console.

Set to to enable color and other rich output in the console output, regardless of whether the buildrich

process is not attached to a console. When not attached to a console, the build output will use ANSI

control characters to generate the rich output.

--continue

Continues task execution after a task failure.

--configure-on-demand (incubating)

Only relevant projects are configured in this build run. This means faster builds for large multi-projects.

See .Section 24.1.1.1, “Configuration on demand”

Page 567 of 573

, -D --system-prop

Sets a system property of the JVM, for example . See -Dmyprop=myvalue Section 11.2, “Gradle

.properties and system properties”

, -d --debug

Log in debug mode (includes normal stacktrace). See .Chapter 22, Logging

, -g --gradle-user-home

Specifies the Gradle user home directory. The default is the directory in the user's home.gradle

directory.

--gui

Launches the Gradle GUI. See .Chapter 10, Using the Gradle Graphical User Interface

, -I --init-script

Specifies an initialization script. See .Chapter 42, Initialization Scripts

, -i --info

Set log level to info. See .Chapter 22, Logging

, -m --dry-run

Runs the build with all task actions disabled. See .Section 4.7, “Dry Run”

--offline

Specifies that the build should operate without accessing network resources. See Section 23.9.2,

.“Command line options to override caching”

, -P --project-prop

Sets a project property of the root project, for example . See -Pmyprop=myvalue Section 11.2,

.“Gradle properties and system properties”

, -p --project-dir

Specifies the start directory for Gradle. Defaults to current directory. See Section 4.5, “Selecting which

.build to execute”

--parallel (incubating)

Build projects in parallel. Gradle will attempt to determine the optimal number of executor threads to

use. This option should only be used with decoupled projects (see).Section 24.9, “Decoupled Projects”

--max-workers (incubating)

Sets the maximum number of workers that Gradle may use. For example . The--max-workers=3

default is the number of processors. This option replaces when used in--parallel-threads

conjuction with .--parallel

--profile

Profiles build execution time and generates a report in the directory./reports/profilebuildDir

See .Section 4.6.8, “Profiling a build”

--project-cache-dir

Page 568 of 573

Specifies the project-specific cache directory. Default value is in the root project directory..gradle

, -q --quiet

Log errors only. See .Chapter 22, Logging

--recompile-scripts

Forces scripts to be recompiled, bypassing caching.

--refresh-dependencies

Refresh the state of dependencies. See .Section 23.9.2, “Command line options to override caching”

--rerun-tasks

Specifies that any task optimization is ignored.

, -S --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See .Chapter 22, Logging

, -s --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See .Chapter 22, Logging

, -t --continuous (incubating)

Enables - Gradle will automatically re-run when changes are detected.continuous building

, -u --no-search-upwards

Don't search in parent directories for a file.settings.gradle

, -v --version

Prints version info.

, -x --exclude-task

Specifies a task to be excluded from execution. See .Section 4.2, “Excluding tasks”

The above information is printed to the console when you execute .gradle -h

D.1. Deprecated command-line options
--no-color

Do not use color in the console output. This option has been replaced by the --console plain

option.

--parallel-threads

Build projects in parallel, using the specified number of executor threads. For example--parallel-threads=3

. This option should only be used with decoupled projects (see). ThisSection 24.9, “Decoupled Projects”

option has been replaced by .--max-workers

Page 569 of 573

D.2. Daemon command-line options
The contains more information about the daemon. For example it includesChapter 6, The Gradle Daemon

information how to turn on the daemon by default so that you can avoid using all the time.--daemon

--daemon

Uses the Gradle daemon to run the build. Starts the daemon if not running or existing daemon busy.

 contains more detailed information when new daemon processes areChapter 6, The Gradle Daemon

started.

--foreground

Starts the Gradle daemon in the foreground. Useful for debugging or troubleshooting because you can

easily monitor the build execution.

--no-daemon

Do not use the Gradle daemon to run the build. Useful occasionally if you have configured Gradle to

always run with the daemon by default.

--stop

Stops the Gradle daemon if it is running. You can only stop daemons that were started with the Gradle

version you use when running .--stop

D.3. System properties
The following system properties are available for the command. Note that command-line optionsgradle

take precedence over system properties.

gradle.user.home

Specifies the Gradle user home directory.

The contains specific informationSection 11.1, “Configuring the build environment via gradle.properties”

about Gradle configuration available via system properties.

D.4. Environment variables
The following environment variables are available for the command. Note that command-linegradle

options and system properties take precedence over environment variables.

GRADLE_OPTS

Specifies command-line arguments to use to start the JVM. This can be useful for setting the system

properties to use for running Gradle. For example you could set GRADLE_OPTS="-Dorg.gradle.daemon=true"

to use the Gradle daemon without needing to use the option every time you run Gradle. --daemon

Page 570 of 573

 contains more informationSection 11.1, “Configuring the build environment via gradle.properties”

about ways of configuring the daemon without using environmental variables, e.g. in more maintainable

and explicit way.

GRADLE_USER_HOME

Specifies the Gradle user home directory (which defaults to “ ” if not set).USER_HOME/.gradle

JAVA_HOME

Specifies the JDK installation directory to use.

VII

Appendix
A

Artifact

??

B

Build Script

??

C

Configuration

See .Dependency Configuration

Configuration Injection

??

D

DAG

See .Directed Acyclic Graph

Dependency

See .External Dependency

See .Project Dependency

??

Dependency Configuration

??

Dependency Resolution

??

Directed Acyclic Graph

A directed acyclic graph is a directed graph that contains no cycles. In Gradle each task to execute

represents a node in the graph. A dependsOn relation to another task will add this other task as a node (if

it is not in the graph already) and create a directed edge between those two nodes. Any dependsOn

relation will be validated for cycles. There must be no way to start at certain node, follow a sequence of

edges and end up at the original node.

Domain Specific Language

A domain-specific language is a programming language or specification language dedicated to a

particular problem domain, a particular problem representation technique, and/or a particular solution

technique. The concept isn't new—special-purpose programming languages and all kinds of

modeling/specification languages have always existed, but the term has become more popular due to the

rise of domain-specific modeling.

DSL

See .Domain Specific Language

E

External Dependency

??

Extension Object

??

I

Init Script

A script that is run before the build itself starts, to allow customization of Gradle and the build.

Initialization Script

See .Init Script

P

Plugin

??

Project

??

Project Dependency

??

Publication

??

R

Repository

??

S

Source Set

??

T

Task

??

Transitive Dependency

??

