
Gradle User Guide

Version 1.2-rc-1

Copyright © 2007-2012 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not

charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Table of Contents
1. Introduction

1.1. About this user guide

2. Overview
2.1. Features
2.2. Why Groovy?

3. Tutorials
3.1. Getting Started

4. Installing Gradle
4.1. Prerequisites
4.2. Download
4.3. Unpacking
4.4. Environment variables
4.5. Running and testing your installation
4.6. JVM options

5. Troubleshooting
5.1. Working through problems
5.2. Getting help

6. Build Script Basics
6.1. Projects and tasks
6.2. Hello world
6.3. A shortcut task definition
6.4. Build scripts are code
6.5. Task dependencies
6.6. Dynamic tasks
6.7. Manipulating existing tasks
6.8. Shortcut notations
6.9. Extra task properties
6.10. Using Ant Tasks
6.11. Using methods
6.12. Default tasks
6.13. Configure by DAG
6.14. Where to next?

7. Java Quickstart
7.1. The Java plugin
7.2. A basic Java project
7.3. Multi-project Java build
7.4. Where to next?

8. Dependency Management Basics
8.1. What is dependency management?
8.2. Declaring your dependencies
8.3. Dependency configurations
8.4. External dependencies
8.5. Repositories
8.6. Publishing artifacts
8.7. Where to next?

9. Groovy Quickstart

9.1. A basic Groovy project
9.2. Summary

10. Web Application Quickstart
10.1. Building a WAR file
10.2. Running your web application
10.3. Summary

11. Using the Gradle Command-Line
11.1. Executing multiple tasks
11.2. Excluding tasks
11.3. Continuing the build when a failure occurs
11.4. Task name abbreviation
11.5. Selecting which build to execute
11.6. Obtaining information about your build
11.7. Dry Run
11.8. Summary

12. Using the Gradle Graphical User Interface
12.1. Task Tree
12.2. Favorites
12.3. Command Line
12.4. Setup

13. Writing Build Scripts
13.1. The Gradle build language
13.2. The Project API
13.3. The Script API
13.4. Declaring variables
13.5. Some Groovy basics

14. Tutorial - 'This and That'
14.1. Directory creation
14.2. Gradle properties and system properties
14.3. Configuring the project using an external build script
14.4. Configuring arbitrary objects
14.5. Configuring arbitrary objects using an external script
14.6. Caching

15. More about Tasks
15.1. Defining tasks
15.2. Locating tasks
15.3. Configuring tasks
15.4. Adding dependencies to a task
15.5. Adding a description to a task
15.6. Replacing tasks
15.7. Skipping tasks
15.8. Skipping tasks that are up-to-date
15.9. Task rules
15.10. Summary

16. Working With Files
16.1. Locating files
16.2. File collections
16.3. File trees
16.4. Using the contents of an archive as a file tree
16.5. Specifying a set of input files

16.6. Copying files
16.7. Using the taskSync
16.8. Creating archives

17. Using Ant from Gradle
17.1. Using Ant tasks and types in your build
17.2. Importing an Ant build
17.3. Ant properties and references
17.4. API

18. Logging
18.1. Choosing a log level
18.2. Writing your own log messages
18.3. Logging from external tools and libraries
18.4. Changing what Gradle logs

19. The Gradle Daemon
19.1. Enter the daemon
19.2. Reusing and expiration of daemons
19.3. Usage and troubleshooting
19.4. Configuring the daemon

20. The Build Environment
20.1. Configuring the build environment via gradle.properties
20.2. Accessing the web via a proxy

21. Gradle Plugins
21.1. Applying plugins
21.2. What plugins do
21.3. Conventions
21.4. More on plugins

22. Standard Gradle plugins
22.1. Language plugins
22.2. Incubating language plugins
22.3. Integration plugins
22.4. Software development plugins
22.5. Base plugins
22.6. Third party plugins

23. The Java Plugin
23.1. Usage
23.2. Source sets
23.3. Tasks
23.4. Project layout
23.5. Dependency management
23.6. Convention properties
23.7. Working with source sets
23.8. Javadoc
23.9. Clean
23.10. Resources
23.11. CompileJava
23.12. Test
23.13. Jar
23.14. Uploading

24. The Groovy Plugin

24.1. Usage
24.2. Tasks
24.3. Project layout
24.4. Dependency management
24.5. Convention properties
24.6. Source set properties
24.7. CompileGroovy

25. The Scala Plugin
25.1. Usage
25.2. Tasks
25.3. Project layout
25.4. Dependency Management
25.5. Convention Properties
25.6. Source set properties
25.7. Fast Scala Compiler

26. The War Plugin
26.1. Usage
26.2. Tasks
26.3. Project layout
26.4. Dependency management
26.5. Convention properties
26.6. War
26.7. Customizing

27. The Ear Plugin
27.1. Usage
27.2. Tasks
27.3. Project layout
27.4. Dependency management
27.5. Convention properties
27.6. Ear
27.7. Customizing
27.8. Using custom descriptor file

28. The Jetty Plugin
28.1. Usage
28.2. Tasks
28.3. Project layout
28.4. Dependency management
28.5. Convention properties

29. The Checkstyle Plugin
29.1. Usage
29.2. Tasks
29.3. Project layout
29.4. Dependency management
29.5. Configuration

30. The CodeNarc Plugin
30.1. Usage
30.2. Tasks
30.3. Project layout
30.4. Dependency management
30.5. Configuration

31. The FindBugs Plugin
31.1. Usage
31.2. Tasks
31.3. Dependency management
31.4. Configuration

32. The JDepend Plugin
32.1. Usage
32.2. Tasks
32.3. Dependency management
32.4. Configuration

33. The PMD Plugin
33.1. Usage
33.2. Tasks
33.3. Dependency management
33.4. Configuration

34. The Sonar Plugin
34.1. Usage
34.2. Analyzing Multi-Project Builds
34.3. Analyzing Custom Source Sets
34.4. Setting Custom Sonar Properties
34.5. Tasks

35. The OSGi Plugin
35.1. Usage
35.2. Implicitly applied plugins
35.3. Tasks
35.4. Dependency management
35.5. Convention object
35.6.

36. The Eclipse Plugin
36.1. Usage
36.2. Tasks
36.3. Configuration
36.4. Customizing the generated files

37. The IDEA Plugin
37.1. Usage
37.2. Tasks
37.3. Configuration
37.4. Customizing the generated files
37.5. Further things to consider

38. The Antlr Plugin
38.1. Usage
38.2. Tasks
38.3. Project layout
38.4. Dependency management
38.5. Convention properties
38.6. Source set properties

39. The Project Report Plugin
39.1. Usage
39.2. Tasks

39.3. Project layout
39.4. Dependency management
39.5. Convention properties

40. The Announce Plugin
40.1. Usage
40.2. Configuration

41. The Build Announcements Plugin
41.1. Usage

42. The Application Plugin
42.1. Usage
42.2. Tasks
42.3. Convention properties
42.4. Including other resources in the distribution

43. Bootstrap Plugin
43.1. Maven conversion - features
43.2. Usage

44. Dependency Management
44.1. Introduction
44.2. Dependency Management Best Practices.
44.3. Dependency configurations
44.4. How to declare your dependencies
44.5. Working with dependencies
44.6. Repositories
44.7. How dependency resolution works
44.8. The dependency cache
44.9. Strategies for transitive dependency management

45. Publishing artifacts
45.1. Introduction
45.2. Artifacts and configurations
45.3. Declaring artifacts
45.4. Publishing artifacts
45.5. More about project libraries

46. The Maven Plugin
46.1. Usage
46.2. Tasks
46.3. Dependency management
46.4. Convention properties
46.5. Convention methods
46.6. Interacting with Maven repositories

47. The Signing Plugin
47.1. Usage
47.2. Signatory credentials
47.3. Specifying what to sign
47.4. Publishing the signatures
47.5. Signing POM files

48. C++ Support
48.1. Usage
48.2. Source code locations
48.3. Compiling

48.4. Configuring the compiler
48.5. Working with shared libraries
48.6. Dependencies
48.7. Publishing

49. The Build Lifecycle
49.1. Build phases
49.2. Settings file
49.3. Multi-project builds
49.4. Initialization
49.5. Configuration and execution of a single project build
49.6. Responding to the lifecycle in the build script

50. Multi-project Builds
50.1. Cross project configuration
50.2. Subproject configuration
50.3. Execution rules for multi-project builds
50.4. Running tasks by their absolute path
50.5. Project and task paths
50.6. Dependencies - Which dependencies?
50.7. Project lib dependencies
50.8. Decoupled Projects
50.9. Multi-Project Building and Testing
50.10. Property and method inheritance
50.11. Summary

51. Writing Custom Task Classes
51.1. Packaging a task class
51.2. Writing a simple task class
51.3. A standalone project

52. Writing Custom Plugins
52.1. Packaging a plugin
52.2. Writing a simple plugin
52.3. Getting input from the build
52.4. Working with files in custom tasks and plugins
52.5. A standalone project
52.6. Maintaining multiple domain objects

53. Organizing Build Logic
53.1. Inherited properties and methods
53.2. Injected configuration
53.3. Build sources in the projectbuildSrc
53.4. Running another Gradle build from a build
53.5. External dependencies for the build script
53.6. Ant optional dependencies
53.7. Summary

54. Initialization Scripts
54.1. Basic usage
54.2. Using an init script
54.3. Writing an init script
54.4. External dependencies for the init script

55. The Gradle Wrapper
55.1. Configuration
55.2. Unix file permissions

55.3. Environment variable

56. Embedding Gradle
56.1. Introduction to the Tooling API
56.2. Tooling API and the Gradle Build Daemon
56.3. Quickstart

57. Comparing Builds
57.1. Definition of terms
57.2. Current Capabilities
57.3. Comparing Gradle Builds

A. Gradle Samples
A.1. Sample customBuildLanguage
A.2. Sample customDistribution
A.3. Sample customPlugin
A.4. Sample java/multiproject

B. Potential Traps
B.1. Groovy script variables
B.2. Configuration and execution phase

C. Gradle Command Line
C.1. Deprecated command-line options
C.2. Daemon command-line options:
C.3. System properties
C.4. Environment variables

D. Existing IDE Support and how to cope without it
D.1. IntelliJ
D.2. Eclipse
D.3. Using Gradle without IDE support

Glossary

List of Examples

6.1. The first build script

6.2. Execution of a build script

6.3. A task definition shortcut

6.4. Using Groovy in Gradle's tasks

6.5. Using Groovy in Gradle's tasks

6.6. Declaration of dependencies between tasks

6.7. Lazy dependsOn - the other task does not exist (yet)

6.8. Dynamic creation of a task

6.9. Accessing a task via API - adding a dependency

6.10. Accessing a task via API - adding behaviour

6.11. Accessing task as a property of the build script

6.12. Adding extra properties to a task

6.13. Using AntBuilder to execute ant.loadfile target

6.14. Using methods to organize your build logic

6.15. Defining a default tasks

6.16. Different outcomes of build depending on chosen tasks

7.1. Using the Java plugin

7.2. Building a Java project

7.3. Adding Maven repository

7.4. Adding dependencies

7.5. Customization of MANIFEST.MF

7.6. Adding a test system property

7.7. Publishing the JAR file

7.8. Eclipse plugin

7.9. Java example - complete build file

7.10. Multi-project build - hierarchical layout

7.11. Multi-project build - settings.gradle file

7.12. Multi-project build - common configuration

7.13. Multi-project build - dependencies between projects

7.14. Multi-project build - distribution file

8.1. Declaring dependencies

8.2. Definition of an external dependency

8.3. Shortcut definition of an external dependency

8.4. Usage of Maven central repository

8.5. Usage of a remote Maven repository

8.6. Usage of a remote Ivy directory

8.7. Usage of a local Ivy directory

8.8. Publishing to an Ivy repository

8.9. Publishing to a Maven repository

9.1. Groovy plugin

9.2. Dependency on Groovy 1.7.10

9.3. Groovy example - complete build file

10.1. War plugin

10.2. Running web application with Jetty plugin

11.1. Executing multiple tasks

11.2. Excluding tasks

11.3. Abbreviated task name

11.4. Abbreviated camel case task name

11.5. Selecting the project using a build file

11.6. Selecting the project using project directory

11.7. Obtaining information about projects

11.8. Providing a description for a project

11.9. Obtaining information about tasks

11.10. Changing the content of the task report

11.11. Obtaining more information about tasks

11.12. Obtaining information about dependencies

11.13. Information about properties

12.1. Launching the GUI

13.1. Accessing property of the Project object

13.2. Using local variables

13.3. Using extra properties

13.4. Groovy JDK methods

13.5. Property accessors

13.6. Method call without parentheses

13.7. List and map literals

13.8. Closure as method parameter

13.9. Closure delegates

14.1. Directory creation with mkdir

14.2. Setting properties with a gradle.properties file

14.3. Configuring the project using an external build script

14.4. Configuring arbitrary objects

14.5. Configuring arbitrary objects using a script

15.1. Defining tasks

15.2. Defining tasks - using strings

15.3. Defining tasks with alternative syntax

15.4. Accessing tasks as properties

15.5. Accessing tasks via tasks collection

15.6. Accessing tasks by path

15.7. Creating a copy task

15.8. Configuring a task - various ways

15.9. Configuring a task - fluent interface

15.10. Configuring a task - with closure

15.11. Configuring a task - with configure() method

15.12. Defining a task with closure

15.13. Adding dependency on task from another project

15.14. Adding dependency using task object

15.15. Adding dependency using closure

15.16. Adding a description to a task

15.17. Overwriting a task

15.18. Skipping a task using a predicate

15.19. Skipping tasks with StopExecutionException

15.20. Enabling and disabling tasks

15.21. A generator task

15.22. Declaring the inputs and outputs of a task

15.23. Task rule

15.24. Dependency on rule based tasks

16.1. Locating files

16.2. Creating a file collection

16.3. Using a file collection

16.4. Implementing a file collection

16.5. Creating a file tree

16.6. Using a file tree

16.7. Using an archive as a file tree

16.8. Specifying a set of files

16.9. Specifying a set of files

16.10. Copying files using the copy task

16.11. Specifying copy task source files and destination directory

16.12. Selecting the files to copy

16.13. Copying files using the copy() method

16.14. Renaming files as they are copied

16.15. Filtering files as they are copied

16.16. Nested copy specs

16.17. Using the Sync task to copy dependencies

16.18. Creating a ZIP archive

16.19. Creation of ZIP archive

16.20. Configuration of archive task - custom archive name

16.21. Configuration of archive task - appendix & classifier

17.1. Using an Ant task

17.2. Passing nested text to an Ant task

17.3. Passing nested elements to an Ant task

17.4. Using an Ant type

17.5. Using a custom Ant task

17.6. Declaring the classpath for a custom Ant task

17.7. Using a custom Ant task and dependency management together

17.8. Importing an Ant build

17.9. Task that depends on Ant target

17.10. Adding behaviour to an Ant target

17.11. Ant target that depends on Gradle task

17.12. Setting an Ant property

17.13. Getting an Ant property

17.14. Setting an Ant reference

17.15. Getting an Ant reference

18.1. Using stdout to write log messages

18.2. Writing your own log messages

18.3. Using SLF4J to write log messages

18.4. Configuring standard output capture

18.5. Configuring standard output capture for a task

18.6. Customizing what Gradle logs

20.1. Configuring an HTTP proxy

20.2. Configuring an HTTPS proxy

21.1. Applying a plugin

21.2. Applying a plugin by type

21.3. Applying a plugin by type

21.4. Tasks added by a plugin

21.5. Changing plugin defaults

21.6. Plugin convention object

23.1. Using the Java plugin

23.2. Custom Java source layout

23.3. Accessing a source set

23.4. Configuring the source directories of a source set

23.5. Defining a source set

23.6. Defining source set dependencies

23.7. Compiling a source set

23.8. Assembling a JAR for a source set

23.9. Generating the Javadoc for a source set

23.10. Running tests in a source set

23.11. Customization of MANIFEST.MF

23.12. Creating a manifest object.

23.13. Separate MANIFEST.MF for a particular archive

23.14. Separate MANIFEST.MF for a particular archive

24.1. Using the Groovy plugin

24.2. Custom Groovy source layout

24.3. Configuration of Groovy plugin

24.4. Configuration of Groovy plugin

25.1. Using the Scala plugin

25.2. Custom Scala source layout

25.3. Declaring the Scala version to use

25.4. Enabling the Fast Scala Compiler

26.1. Using the War plugin

26.2. Customization of war plugin

27.1. Using the Ear plugin

27.2. Customization of ear plugin

28.1. Using the Jetty plugin

29.1. Using the Checkstyle plugin

30.1. Using the CodeNarc plugin

31.1. Using the FindBugs plugin

32.1. Using the JDepend plugin

33.1. Using the PMD plugin

34.1. Applying the Sonar plugin

34.2. Configuring Sonar connection settings

34.3. Configuring Sonar project settings

34.4. Global configuration in a multi-project build

34.5. Common project configuration in a multi-project build

34.6. Individual project configuration in a multi-project build

34.7. Configuring the language to be analyzed

34.8. Using property syntax

34.9. Analyzing custom source sets

34.10. Setting custom global properties

34.11. Setting custom project properties

35.1. Using the OSGi plugin

35.2. Configuration of OSGi MANIFEST.MF file

36.1. Using the Eclipse plugin

36.2. Partial Overwrite for Classpath

36.3. Partial Overwrite for Project

36.4. Export Dependencies

36.5. Customizing the XML

37.1. Using the IDEA plugin

37.2. Partial Overwrite for Module

37.3. Partial Overwrite for Project

37.4. Export Dependencies

37.5. Customizing the XML

38.1. Using the Antlr plugin

38.2. Declare Antlr version

40.1. Using the announce plugin

40.2. Configure the announce plugin

40.3. Using the announce plugin

41.1. Using the build announcements plugin

41.2. Using the build announcements plugin from an init script

42.1. Using the application plugin

42.2. Configure the application main class

42.3. Include output from other tasks in the application distribution

42.4. Automatically creating files for distribution

44.1. Definition of a configuration

44.2. Accessing a configuration

44.3. Configuration of a configuration

44.4. Module dependencies

44.5. Artifact only notation

44.6. Dependency with classifier

44.7. Usage of external dependency of a configuration

44.8. Client module dependencies - transitive dependencies

44.9. Project dependencies

44.10. File dependencies

44.11. Generated file dependencies

44.12. Gradle API dependencies

44.13. Gradle's Groovy dependencies

44.14. Excluding transitive dependencies

44.15. Optional attributes of dependencies

44.16. Collections and arrays of dependencies

44.17. Dependency configurations

44.18. Dependency configurations for project

44.19. Configuration.copy

44.20. Accessing declared dependencies

44.21. Configuration.files

44.22. Configuration.files with spec

44.23. Configuration.copy

44.24. Configuration.copy vs. Configuration.files

44.25. Adding central Maven repository

44.26. Adding the local Maven cache as a repository

44.27. Adding custom Maven repository

44.28. Adding additional Maven repositories for JAR files

44.29. Accessing password protected Maven repository

44.30. Flat repository resolver

44.31. Ivy repository

44.32. Ivy repository with pattern layout

44.33. Ivy repository with custom patterns

44.34. Ivy repository

44.35. Accessing a repository

44.36. Configuration of a repository

44.37. Definition of a custom repository

44.38. Dynamic version cache control

44.39. Changing module cache control

45.1. Defining an artifact using an archive task

45.2. Defining an artifact using a file

45.3. Customizing an artifact

45.4. Map syntax for defining an artifact using a file

45.5. Configuration of the upload task

46.1. Using the Maven plugin

46.2. Creating a stand alone pom.

46.3. Upload of file to remote Maven repository

46.4. Upload of file via SSH

46.5. Customization of pom

46.6. Builder style customization of pom

46.7. Modifying auto-generated content

46.8. Customization of Maven installer

46.9. Generation of multiple poms

46.10. Accessing a mapping configuration

47.1. Using the Signing plugin

47.2. Signing a configuration

47.3. Signing a configuration output

47.4. Signing a task

47.5. Signing a task output

47.6. Conditional signing

47.7. Signing a POM for deployment

48.1. Using the 'cpp-exe' plugin

48.2. Using the 'cpp-lib' plugin

48.3. Supplying arbitrary args to the compiler

48.4. Declaring dependencies

48.5. Declaring project dependencies

48.6. Uploading exe or lib

49.1. Single project build

49.2. Hierarchical layout

49.3. Flat layout

49.4. Modification of elements of the project tree

49.5. Modification of elements of the project tree

49.6. Adding of test task to each project which has certain property set

49.7. Notifications

49.8. Setting of certain property to all tasks

49.9. Logging of start and end of each task execution

50.1. Multi-project tree - water & bluewhale projects

50.2. Build script of water (parent) project

50.3. Multi-project tree - water, bluewhale & krill projects

50.4. Water project build script

50.5. Defining common behaviour of all projects and subprojects

50.6. Defining specific behaviour for particular project

50.7. Defining specific behaviour for project krill

50.8. Adding custom behaviour to some projects (filtered by project name)

50.9. Adding custom behaviour to some projects (filtered by project properties)

50.10. Running build from subproject

50.11. Evaluation and execution of projects

50.12. Evaluation and execution of projects

50.13. Running tasks by their absolute path

50.14. Dependencies and execution order

50.15. Dependencies and execution order

50.16. Dependencies and execution order

50.17. Declaring dependencies

50.18. Declaring dependencies

50.19. Cross project task dependencies

50.20. Configuration time dependencies

50.21. Configuration time dependencies - evaluationDependsOn

50.22. Configuration time dependencies

50.23. Dependencies - real life example - crossproject configuration

50.24. Project lib dependencies

50.25. Project lib dependencies

50.26. Fine grained control over dependencies

50.27. Build and Test Single Project

50.28. Partial Build and Test Single Project

50.29. Build and Test Depended On Projects

50.30. Build and Test Dependent Projects

51.1. Defining a custom task

51.2. A hello world task

51.3. A customizable hello world task

51.4. A build for a custom task

51.5. A custom task

51.6. Using a custom task in another project

51.7. Testing a custom task

52.1. A custom plugin

52.2. A custom plugin extension

52.3. A custom plugin with configuration closure

52.4. Evaluating file properties lazily

52.5. A build for a custom plugin

52.6. Wiring for a custom plugin

52.7. Using a custom plugin in another project

52.8. Testing a custom plugin

52.9. Managing domain objects

53.1. Using inherited properties and methods

53.2. Using injected properties and methods

53.3. Custom buildSrc build script

53.4. Adding subprojects to the root buildSrc project

53.5. Running another build from a build

53.6. Declaring external dependencies for the build script

53.7. A build script with external dependencies

53.8. Ant optional dependencies

54.1. Using init script to perform extra configuration before projects are evaluated

54.2. Declaring external dependencies for an init script

54.3. An init script with external dependencies

55.1. Wrapper task

55.2. Wrapper generated files

55.3. Configuration of wrapper task

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Page 18 of 331

1
Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology

in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!

Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or and pom.xml ivy.xml

files.

Ant tasks and builds as first class citizens.

 build scripts.Groovy

A rich domain model for describing your build.

In you will find a detailed overview of Gradle. Otherwise, the are waiting, haveChapter 2, Overview tutorials

fun :)

1.1. About this user guide
This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't documented as

completely as they need to be. Some of the content presented won't be entirely clear or will assume that you

know more about Gradle than you do. We need your help to improve this user guide. You can find out more

about contributing to the documentation at the .Gradle web site

http://www.gradle.org/contribute

Page 19 of 331

2
Overview

2.1. Features
Here is a list of some of Gradle's features.

Declarative builds and build-by-convention

At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle

pushes declarative builds to the next level by providing declarative language elements that you can assemble

as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi, Web and

Scala projects. Even more, this declarative language is extensible. Add your own new language elements or

enhance the existing ones. Thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming

The declarative language lies on top of a general purpose task graph, which you can fully leverage in your

builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build

The suppleness and richness of Gradle finally allows you to apply common design principles to your build.

For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff where

unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs together (e.g. in

your project hierarchy). Thus avoiding smells like shotgun changes or divergent change that turn your build

into a maintenance nightmare. At last you can create a well structured, easily maintained, comprehensible

build.

Deep API

From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build execution,

Gradle allows you to monitor and customize its configuration and execution behavior to its very core.

Gradle scales

Gradle scales very well. It significantly increases your productivity, from simple single project builds up to

huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental

build function, this is also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds

Gradle's support for multi-project build is outstanding. Project dependencies are first class citizens. We

allow you to model the project relationships in a multi-project build as they really are for your problem

domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the

subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a

Page 20 of 331

particular subproject. Together with incremental builds this is a big time saver for larger builds.

Many ways to manage your dependencies

Different teams prefer different ways to manage their external dependencies. Gradle provides convenient

support for any strategy. From transitive dependency management with remote maven and ivy repositories

to jars or dirs on the local file system.

Gradle is the first build integration tool

Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well. Gradle

provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime. You can

depend on them from Gradle, you can enhance them from Gradle, you can even declare dependencies on

Gradle tasks in your build.xml. The same integration is provided for properties, paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving

dependencies. Gradle also provides a converter for turning a Maven pom.xml into a Gradle script. Runtime

imports of Maven projects will come soon.

Ease of migration

Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the same

branch where your production build lives and both can evolve in parallel. We usually recommend to write

tests that make sure that the produced artifacts are similar. That way migration is as less disruptive and as

reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle's build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply

exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to maintain

build. The whole design of Gradle is oriented towards being used as a language, not as a rigid framework.

And Groovy is our glue that allows you to tell your individual story with the abstractions Gradle (or you)

provide. Gradle provides some standard stories but they are not privileged in any form. This is for us a major

distinguishing features compared to other declarative build systems. Our Groovy support is also not just

some simple coating sugar layer. The whole Gradle API is fully groovynized. Only by that using Groovy is

the fun and productivity gain it can be.

The Gradle wrapper

The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This is

useful for example for some continuous integration servers. It is also useful for an open source project to

keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero

administration approach for the client machines. It also enforces the usage of a particular Gradle version

thus minimizing support issues.

Free and open source

Gradle is an open source project, and is licensed under the .ASL

http://www.gradle.org/license

Page 21 of 331

2.2. Why Groovy?
We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous in case

of . There are a couple of dynamic languages out there. Why Groovy? The answer lies in thebuild scripts

context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus are

Java projects. In such projects obviously the team members know Java. We think a build should be as

transparent as possible to team members.all

You might argue why not using Java then as the language for build scripts. We think this is a valid question. It

would have the highest transparency for your team and the lowest learning curve. But due to limitations of Java

such a build language would not be as nice, expressive and powerful as it could be. Languages like Python,[]1

Groovy or Ruby do a much better job here. We have chosen Groovy as it offers by far the greatest transparency

for Java people. Its base syntax is the same as Java's as well as its type system, its package structure and other

things. Groovy builds a lot on top of that. But on a common ground with Java.

For Java teams which share also Python or Ruby knowledge or are happy to learn it, the above arguments don't

apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just

doesn't have the highest priority for us at the moment. We happily support any community effort to create

additional build script engines.

[] 1 At you find an interesting article comparing Ant, XML, Javahttp://www.defmacro.org/ramblings/lisp.html

and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

http://www.defmacro.org/ramblings/lisp.html

Page 22 of 331

3
Tutorials

3.1. Getting Started
The following tutorials introduce some of the basics of Gradle, to help you get started.

Chapter 4, Installing Gradle

Describes how to install Gradle.

Chapter 6, Build Script Basics

Introduces the basic build script elements: and .projects tasks

Chapter 7, Java Quickstart

Shows how to start using Gradle's build-by-convention support for Java projects.

Chapter 8, Dependency Management Basics

Shows how to start using Gradle's dependency management.

Chapter 9, Groovy Quickstart

Using Gradle's build-by-convention support for Groovy projects.

Chapter 10, Web Application Quickstart

Using Gradle's build-by-convention support for Web applications.

Page 23 of 331

4
Installing Gradle

4.1. Prerequisites
Gradle requires a Java JDK to be installed. Gradle requires a JDK 1.5 or higher. Gradle ships with its own

Groovy library, therefore no Groovy needs to be installed. Any existing Groovy installation is ignored by

Gradle.

Gradle uses whichever JDK it finds in your path (to check, use). Alternatively, you can setjava -version

the environment variable to point to the install directory of the desired JDK.JAVA_HOME

4.2. Download
You can download one of the Gradle distributions from the .Gradle web site

4.3. Unpacking
The Gradle distribution comes packaged as a ZIP. The full distribution contains:

The Gradle binaries.

The user guide (HTML and PDF).

The DSL reference guide.

The API documentation (Javadoc and Groovydoc).

Extensive samples, including the examples referenced in the user guide, along with some complete and more

complex builds you can use the starting point for your own build.

The binary sources. This is for reference only. If you want to build Gradle you need to download the source

distribution or checkout the sources from the source repository. See the for details.Gradle web site

For Un*x users

You need a GNU compatible tool to unzip Gradle, if you want the file permissions to be properly set. We

mention this as some zip front ends for Mac OS X don't restore the file permissions properly.

http://www.gradle.org/downloads
http://www.gradle.org/development

Page 24 of 331

4.4. Environment variables
For running Gradle, add to your environment variable. Usually, this is sufficient/binGRADLE_HOME PATH

to run Gradle.

4.5. Running and testing your installation
You run Gradle via the command. To check if Gradle is properly installed just type . Thegradle gradle -v

output shows Gradle version and also local environment configuration (groovy and jvm version, etc.). The

displayed gradle version should match the distribution you have downloaded.

4.6. JVM options
JVM options for running Gradle can be set via environment variables. You can use or GRADLE_OPTS

. Those variables can be used together. is by convention an environment variableJAVA_OPTS JAVA_OPTS

shared by many Java applications. A typical use case would be to set the HTTP proxy in and theJAVA_OPTS

memory options in . Those variables can also be set at the beginning of the or GRADLE_OPTS gradle gradlew

script.

Page 25 of 331

5
Troubleshooting

This chapter is currently a work in progress.

When using Gradle (or any software package), you can run into problems. You may not understand how to use a

particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your problems.

5.1. Working through problems
If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New

versions of Gradle are released frequently with bug fixes and new features. The problem you are having may

have been fixed in a new release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line

switch). More information about troubleshooting daemon is located in --no-daemon Chapter 19, The Gradle

.Daemon

5.2. Getting help
The place to go for help with Gradle is . The Gradle Forums is the place where you canhttp://forums.gradle.org

report problems and ask questions to the Gradle developers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to get

help. It's also the place to post improvement suggestions or new ideas. The development team frequently posts

news items and announces releases via the forum, making it a great way to stay up to date with the latest Gradle

developments.

http://forums.gradle.org

Page 26 of 331

6
Build Script Basics

6.1. Projects and tasks
Everything in Gradle sits on top of two basic concepts: and .projects tasks

Every Gradle build is made up of one or more . A project represents some component of your softwareprojects

which can be built. What this means exactly depends on what it is that you are building. For example, a project

might represent a library JAR or a web application. It might represent a distribution ZIP assembled from the

JARs produced by other projects. A project does not necessarily represent a thing to be built. It might represent

a thing to be done, such as deploying your application to staging or production environments. Don't worry if this

seems a little vague for now. Gradle's build-by-convention support adds a more concrete definition for what a

project is.

Each project is made up of one or more . A task represents some atomic piece of work which a buildtasks

performs. This might be compiling some classes, creating a JAR, generating javadoc, or publishing some

archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at

working with multiple projects and more about working with projects and tasks.

6.2. Hello world
You run a Gradle build using the command. The command looks for a file called gradle gradle build.gradle

in the current directory. We call this file a , although strictly speaking it is a[]2 build.gradle build script

build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named .build.gradle

Example 6.1. The first build script

build.gradle

task hello {
 doLast {
 println 'Hello world!'
 }
}

In a command-line shell, enter into the containing directory and execute the build script by running gradle -q hello

:

Page 27 of 331

What does do?-q

Most of the examples in this user

guide are run with the -q

command-line option. This

suppresses Gradle's log

messages, so that only the output

of the tasks is shown. This keeps

the example output in this user

guide a little clearer. You don't

need to use this option if you

don't want. See Chapter 18,

 for more details aboutLogging

the command-line options which

affect Gradle's output.

Example 6.2. Execution of a build script

Output of gradle -q hello

> gradle -q hello
Hello world!

What's going on here? This build script defines a single task, called

, and adds an action to it. When you run ,hello gradle hello

Gradle executes the task, which in turn executes the actionhello

you've provided. The action is simply a closure containing some

Groovy code to execute.

If you think this looks similar to Ant's targets, well, you are right.

Gradle tasks are the equivalent to Ant targets. But as you will see,

they are much more powerful. We have used a different

terminology than Ant as we think the word is more expressivetask

than the word . Unfortunately this introduces a terminologytarget

clash with Ant, as Ant calls its commands, such as or javac copy

, tasks. So when we talk about tasks, we mean Gradlealways

tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant commands), we explicitly say

.ant task

6.3. A shortcut task definition
There is a shorthand way to define a task like our task above, which is more concise.hello

Example 6.3. A task definition shortcut

build.gradle

task hello << {
 println 'Hello world!'
}

Again, this defines a task called with a single closure to execute. We will use this task definition stylehello

throughout the user guide.

6.4. Build scripts are code
Gradle's build scripts expose to you the full power of Groovy. As an appetizer, have a look at this:

Page 28 of 331

Example 6.4. Using Groovy in Gradle's tasks

build.gradle

task upper << {
 String someString = 'mY_nAmE'
 println + someString"Original: "
 println + someString.toUpperCase()"Upper case: "
}

Output of gradle -q upper

> gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

or

Example 6.5. Using Groovy in Gradle's tasks

build.gradle

task count << {
 4.times { print }"$it "
}

Output of gradle -q count

> gradle -q count
0 1 2 3

6.5. Task dependencies
As you probably have guessed, you can declare dependencies between your tasks.

Example 6.6. Declaration of dependencies between tasks

build.gradle

task hello << {
 println 'Hello world!'
}
task intro(dependsOn: hello) << {
 println "I'm Gradle"
}

Output of gradle -q intro

> gradle -q intro
Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Page 29 of 331

Example 6.7. Lazy dependsOn - the other task does not exist (yet)

build.gradle

task taskX(dependsOn:) << {'taskY'
 println 'taskX'
}
task taskY << {
 println 'taskY'
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

The dependency of to is declared before is defined. This is very important fortaskX taskY taskY

multi-project builds. Task dependencies are discussed in more detail in Section 15.4, “Adding dependencies to a

.task”

Please notice, that you can't use a shortcut notation (see) when referring toSection 6.8, “Shortcut notations”

task, which is not defined yet.

6.6. Dynamic tasks
The power of Groovy can be used for more than defining what a task does. For example, you can also use it to

dynamically create tasks.

Example 6.8. Dynamic creation of a task

build.gradle

4.times { counter ->
 task << {"task$counter"
 println "I'm task number $counter"
 }
}

Output of gradle -q task1

> gradle -q task1
I'm task number 1

6.7. Manipulating existing tasks
Once tasks are created they can be accessed via an . This is different to Ant. For example you can createAPI

additional dependencies.

Page 30 of 331

Example 6.9. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
 task << {"task$counter"
 println "I'm task number $counter"
 }
}
task0.dependsOn task2, task3

Output of gradle -q task0

> gradle -q task0
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Example 6.10. Accessing a task via API - adding behaviour

build.gradle

task hello << {
 println 'Hello Earth'
}
hello.doFirst {
 println 'Hello Venus'
}
hello.doLast {
 println 'Hello Mars'
}
hello << {
 println 'Hello Jupiter'
}

Output of gradle -q hello

> gradle -q hello
Hello Venus
Hello Earth
Hello Mars
Hello Jupiter

The calls and can be executed multiple times. They add an action to the beginning or thedoFirst doLast

end of the task's actions list. When the task executes, the actions in the action list are executed in order. The <<

operator is simply an alias for .doLast

6.8. Shortcut notations
As you might have noticed in the previous examples, there is a convenient notation for accessing an existing

task. Each task is available as a property of the build script:

Page 31 of 331

Example 6.11. Accessing task as a property of the build script

build.gradle

task hello << {
 println 'Hello world!'
}
hello.doLast {
 println "Greetings from the $hello.name task."
}

Output of gradle -q hello

> gradle -q hello
Hello world!
Greetings from the hello task.

This enables very readable code, especially when using the out of the box tasks provided by the plugins (e.g. compile

).

6.9. Extra task properties
You can add your own properties to a task. To add a property named , set tomyProperty ext.myProperty

an initial value. From that point on, the property can be read and set like a predefined task property.

Example 6.12. Adding extra properties to a task

build.gradle

task myTask {
 ext.myProperty = "myValue"
}

task printTaskProperties << {
 println myTask.myProperty
}

Output of gradle -q printTaskProperties

> gradle -q printTaskProperties
myValue

Extra properties aren't limited to tasks. You can read more about them in .Section 13.4.2, “Extra properties”

6.10. Using Ant Tasks
Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks simply by relying

on Groovy. Groovy is shipped with the fantastic . Using Ant tasks from Gradle is as convenientAntBuilder

and more powerful than using Ant tasks from a file. From below example you can learn how tobuild.xml

execute ant tasks and how to access ant properties:

Page 32 of 331

Example 6.13. Using AntBuilder to execute ant.loadfile target

build.gradle

task loadfile << {
 def files = file().listFiles().sort()'../antLoadfileResources'
 files.each { File file ->
 (file.isFile()) {if
 ant.loadfile(srcFile: file, property: file.name)
 println " *** $file.name ***"
 println "${ant.properties[file.name]}"
 }
 }
}

Output of gradle -q loadfile

> gradle -q loadfile
*** agile.manifesto.txt ***
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
 *** gradle.manifesto.txt ***
Make the impossible possible, make the possible easy and make the easy elegant.
(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 17, Using Ant

.from Gradle

6.11. Using methods
Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.

Page 33 of 331

Example 6.14. Using methods to organize your build logic

build.gradle

task checksum << {
 fileList().each {File file ->'../antLoadfileResources'
 ant.checksum(file: file, property:)"cs_$file.name"
 println cs_$file.name"$file.name Checksum: ${ant.properties[" "]}"
 }
}

task loadfile << {
 fileList().each {File file ->'../antLoadfileResources'
 ant.loadfile(srcFile: file, property: file.name)
 println "I'm fond of $file.name"
 }
}

File[] fileList(String dir) {
 file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

Output of gradle -q loadfile

> gradle -q loadfile
I'm fond of agile.manifesto.txt
I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build

logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted a

whole chapter to this. See .Chapter 53, Organizing Build Logic

6.12. Default tasks
Gradle allows you to define one or more default tasks for your build.

Page 34 of 331

Example 6.15. Defining a default tasks

build.gradle

defaultTasks , 'clean' 'run'

task clean << {
 println 'Default Cleaning!'
}

task run << {
 println 'Default Running!'
}

task other << {
 println "I'm not a default task!"
}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running . In a multi-project build every subproject can have its owngradle clean run

specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project are

used (if defined).

6.13. Configure by DAG
As we describe in full detail later (See) Gradle has a configuration phase and anChapter 49, The Build Lifecycle

execution phase. After the configuration phase Gradle knows all tasks that should be executed. Gradle offers

you a hook to make use of this information. A use-case for this would be to check if the release task is part of

the tasks to be executed. Depending on this you can assign different values to some variables.

In the following example, execution of and tasks results in different value of distribution release version

variable.

Page 35 of 331

Example 6.16. Different outcomes of build depending on chosen tasks

build.gradle

task distribution << {
 println "We build the zip with version=$version"
}

task release(dependsOn:) << {'distribution'
 println 'We release now'
}

gradle.taskGraph.whenReady {taskGraph ->
 (taskGraph.hasTask(release)) {if
 version = '1.0'
 } {else
 version = '1.0-SNAPSHOT'
 }
}

Output of gradle -q distribution

> gradle -q distribution
We build the zip with version=1.0-SNAPSHOT

Output of gradle -q release

> gradle -q release
We build the zip with version=1.0
We release now

The important thing is, that the fact that the release task has been chosen, has an effect the release taskbefore

gets executed. Nor has the release task to be the task (i.e. the task passed to the command).primary gradle

6.14. Where to next?
In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to

jump into more of the details, have a look at .Chapter 15, More about Tasks

Otherwise, continue on to the tutorials in and Chapter 7, Java Quickstart Chapter 8, Dependency Management

.Basics

[] 2 There are command line switches to change this behavior. See)Appendix C, Gradle Command Line

Page 36 of 331

7
Java Quickstart

7.1. The Java plugin
As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to

implement in your build script. Out-of-the-box, however, it doesn't build anything unless you add code to your

build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run

some unit tests, and create a JAR file containing your classes. It would be nice if you didn't have to code all this

up for every project. Luckily, you don't have to. Gradle solves this problem through the use of . A pluginplugins

is an extension to Gradle which configures your project in some way, typically by adding some pre-configured

tasks which together do something useful. Gradle ships with a number of plugins, and you can easily write your

own and share them with others. One such plugin is the . This plugin adds some tasks to yourJava plugin

project which will compile and unit test your Java source code, and bundle it into a JAR file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of the

project, such as where the Java source files are located. If you follow the convention in your project, you

generally don't need to do much in your build script to get a useful build. Gradle allows you to customize your

project if you don't want to or cannot follow the convention in some way. In fact, because support for Java

projects is implemented as a plugin, you don't have to use the plugin at all to build a Java project, if you don't

want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and

multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java

plugin to build a Java project.

7.2. A basic Java project
Let's look at a simple example. To use the Java plugin, add the following to your build file:

Example 7.1. Using the Java plugin

build.gradle

apply plugin: 'java'

Note: The code for this example can be found at which is in both thesamples/java/quickstart

binary and source distributions of Gradle.

Page 37 of 331

What tasks are
available?

You can use togradle tasks

list the tasks of a project. This

will let you see the tasks that the

Java plugin has added to your

project.

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a

number of tasks to your project.

Gradle expects to find your production source code under src/main/java

and your test source code under . In addition,src/test/java

any files under will be included in thesrc/main/resources

JAR file as resources, and any files under src/test/resources

will be included in the classpath used to run the tests. All output

files are created under the directory, with the JAR filebuild

ending up in the directory.build/libs

7.2.1. Building the project

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to build

the project. The most commonly used task is the task, which does a full build of the project. When youbuild

run , Gradle will compile and test your code, and create a JAR file containing your maingradle build

classes and resources:

Example 7.2. Building a Java project

Output of gradle build

> gradle build
:compileJava
:processResources
:classes
:jar
:assemble
:compileTestJava
:processTestResources
:testClasses
:test
:check
:build

BUILD SUCCESSFUL

Total time: 1 secs

Some other useful tasks are:

clean

Deletes the directory, removing all built files.build

assemble

Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.

For example, if you use the War plugin, this task will also build the WAR file for your project.

check

Compiles and tests your code. Other plugins add more checks to this task. For example, if you use the

Code-quality plugin, this task will also run Checkstyle against your source code.

Page 38 of 331

What properties are
available?

7.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in the

project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a

. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts ofrepository

a project, or both. For this example, we will use the public Maven repository:

Example 7.3. Adding Maven repository

build.gradle

repositories {
 mavenCentral()
}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time dependency

on commons collections, and that our test classes have a compile-time dependency on junit:

Example 7.4. Adding dependencies

build.gradle

dependencies {
 compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2'
 testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

You can find out more in .Chapter 8, Dependency Management Basics

7.2.3. Customising the project

The Java plugin adds a number of properties to your project. These properties have default values which are

usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our

sample. Here we will specify the version number for our Java project, along with the Java version our source is

written in. We also add some attributes to the JAR manifest.

Example 7.5. Customization of MANIFEST.MF

build.gradle

sourceCompatibility = 1.5
version = '1.0'
jar {
 manifest {
 attributes : , : version'Implementation-Title' 'Gradle Quickstart' 'Implementation-Version'
 }
}

The tasks which the Java plugin adds are regular tasks, exactly the

same as if they were declared in the build file. This means you can

use any of the mechanisms shown in earlier chapters to customise

these tasks. For example, you can set the properties of a task, add

Page 39 of 331

You can use gradle properties

to list the properties of a project.

This will allow you to see the

properties added by the Java

plugin, and their default values.

behaviour to a task, change the dependencies of a task, or replace a

task entirely. In our sample, we will configure the task,test

which is of type , to add a system property when the tests areTest

executed:

Example 7.6. Adding a test system property

build.gradle

test {
 systemProperties : 'property' 'value'
}

7.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish the

JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will publish to a

local directory. You can also publish to a remote location, or multiple locations.

Example 7.7. Publishing the JAR file

build.gradle

uploadArchives {
 repositories {
 flatDir {
 dirs 'repos'
 }
 }
}

To publish the JAR file, run .gradle uploadArchives

7.2.5. Creating an Eclipse project

To import your project into Eclipse, you need to add another plugin to your build file:

Example 7.8. Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Now execute command to generate Eclipse project files. More on Eclipse task can begradle eclipse

found in .Chapter 36, The Eclipse Plugin

7.2.6. Summary

Here's the complete build file for our sample:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.testing.Test.html

Page 40 of 331

Example 7.9. Java example - complete build file

build.gradle

apply plugin: 'java'
apply plugin: 'eclipse'

sourceCompatibility = 1.5
version = '1.0'
jar {
 manifest {
 attributes : , : version'Implementation-Title' 'Gradle Quickstart' 'Implementation-Version'
 }
}

repositories {
 mavenCentral()
}

dependencies {
 compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2'
 testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

test {
 systemProperties : 'property' 'value'
}

uploadArchives {
 repositories {
 flatDir {
 dirs 'repos'
 }
 }
}

7.3. Multi-project Java build
Now let's look at a typical multi-project build. Below is the layout for the project:

Example 7.10. Multi-project build - hierarchical layout

Build layout

multiproject/
 api/
 services/webservice/
 shared/

Note: The code for this example can be found at which is in both thesamples/java/multiproject

binary and source distributions of Gradle.

Here we have three projects. Project produces a JAR file which is shipped to the client to provide them aapi

Page 41 of 331

Java client for your XML webservice. Project is a webapp which returns XML. Project webservice shared

contains code used both by and .api webservice

7.3.1. Defining a multi-project build

To define a multi-project build, you need to create a . The settings file lives in the root directory ofsettings file

the source tree, and specifies which projects to include in the build. It must be called . Forsettings.gradle

this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 7.11. Multi-project build - settings.gradle file

settings.gradle

include , , , "shared" "api" "services:webservice" "services:shared"

You can find out more about the settings file in .Chapter 50, Multi-project Builds

7.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we

will define this common configuration in the root project, using a technique called .configuration injection

Here, the root project is like a container and the method iterates over the elements of thissubprojects

container - the projects in this instance - and injects the specified configuration. This way we can easily define

the manifest content for all archives, and some common dependencies:

Example 7.12. Multi-project build - common configuration

build.gradle

subprojects {
 apply plugin: 'java'
 apply plugin: 'eclipse-wtp'

 repositories {
 mavenCentral()
 }

 dependencies {
 testCompile 'junit:junit:4.8.2'
 }

 version = '1.0'

 jar {
 manifest.attributes provider: 'gradle'
 }
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration

properties we have seen in the previous section are available in each subproject. So, you can compile, test, and

JAR all the projects by running from the root project directory.gradle build

Page 42 of 331

7.3.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one project

is used to compile another project. In the build file we will add a dependency on the JAR produced by the api shared

project. Due to this dependency, Gradle will ensure that project always gets built before project .shared api

Example 7.13. Multi-project build - dependencies between projects

api/build.gradle

dependencies {
 compile project()':shared'
}

See for how to disable this functionality.Section 50.7.1, “Disabling the build of dependency projects”

7.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Example 7.14. Multi-project build - distribution file

api/build.gradle

task dist(type: Zip) {
 dependsOn spiJar
 from 'src/dist'
 into() {'libs'
 from spiJar.archivePath
 from configurations.runtime
 }
}

artifacts {
 archives dist
}

7.4. Where to next?
In this chapter, you have seen how to do some of the things you commonly need to build a Java based project.

This chapter is not exhaustive, and there are many other things you can do with Java projects in Gradle. You can

find out more about the Java plugin in , and you can find more sample Java projectsChapter 23, The Java Plugin

in the directory in the Gradle distribution.samples/java

Otherwise, continue on to .Chapter 8, Dependency Management Basics

Page 43 of 331

8
Dependency Management Basics

This chapter introduces some of the basics of dependency management in Gradle.

8.1. What is dependency management?
Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the

things that your project needs to build or run, in order to find them. We call these incoming files the

 of the project. Secondly, Gradle needs to build and upload the things that your project produces.dependencies

We call these outgoing files the of the project. Let's look at these two pieces in more detail:publications

Most projects are not completely self-contained. They need files built by other projects in order to be compiled

or tested and so on. For example, in order to use Hibernate in my project, I need to include some Hibernate jars

in the classpath when I compile my source. To run my tests, I might also need to include some additional jars in

the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the dependencies of

your project are, so that it can take care of finding these dependencies, and making them available in your build.

The dependencies might need to be downloaded from a remote Maven or Ivy repository, or located in a local

directory, or may need to be built by another project in the same multi-project build. We call this process

.dependency resolution

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core requires

several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for your project,

it also needs to find these dependencies and make them available. We call these .transitive dependencies

The main purpose of most projects is to build some files that are to be used outside the project. For example, if

your project produces a java library, you need to build a jar, and maybe a source jar and some documentation,

and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for you.

You declare the publications of your project, and Gradle take care of building them and publishing them

somewhere. Exactly what "publishing" means depends on what you want to do. You might want to copy the

files to a local directory, or upload them to a remote Maven or Ivy repository. Or you might use the files in

another project in the same multi-project build. We call this process .publication

8.2. Declaring your dependencies
Let's look at some dependency declarations. Here's a basic build script:

Page 44 of 331

Example 8.1. Declaring dependencies

build.gradle

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile group: , name: , version: 'org.hibernate' 'hibernate-core' '3.6.7.Final'
 testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate core

3.6.7.Final is required to compile the project's production source. By implication, Hibernate core and its

dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to

compile the project's tests. It also tells Gradle to look in the Maven central repository for any dependencies that

are required. The following sections go into the details.

8.3. Dependency configurations
In Gradle dependencies are grouped into . A configuration is simply a named set ofconfigurations

dependencies. We will refer to them as . You can use them to declare the externaldependency configurations

dependencies of your project. As we will see later, they are also used to declare the publications of your project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths that

the Java plugin uses. Some are listed below, and you can find more details in Table 23.5, “Java plugin -

.dependency configurations”

compile

The dependencies required to compile the production source of the project.

runtime

The dependencies required by the production classes at runtime. By default, also includes the compile time

dependencies.

testCompile

The dependencies required to compile the test source of the project. By default, also includes the compiled

production classes and the compile time dependencies.

testRuntime

The dependencies required to run the tests. By default, also includes the compile, runtime and test compile

dependencies.

Various plugins add further standard configurations. You can also define your own custom configurations to use

in your build. Please see for the details of defining and customizingSection 44.3, “Dependency configurations”

dependency configurations.

Page 45 of 331

8.4. External dependencies
There are various types of dependencies that you can declare. One such type is an . This aexternal dependency

dependency on some files built outside the current build, and stored in a repository of some kind, such as Maven

central, or a corporate Maven or Ivy repository, or a directory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 8.2. Definition of an external dependency

build.gradle

dependencies {
 compile group: , name: , version: 'org.hibernate' 'hibernate-core' '3.6.7.Final'
}

An external dependency is identified using , and attributes. Depending on which kindgroup name version

of repository you are using, and may be optional.group version

There is a shortcut form for declaring external dependencies, which uses a string of the form " : : "group name version

.

Example 8.3. Shortcut definition of an external dependency

build.gradle

dependencies {
 compile 'org.hibernate:hibernate-core:3.6.7.Final'
}

To find out more about defining and working with dependencies, have a look at Section 44.4, “How to declare

.your dependencies”

8.5. Repositories
How does Gradle find the files for external dependencies? Gradle looks for them in a . A repository isrepository

really just a collection of files, organized by , and . Gradle understands several differentgroup name version

repository formats, such as Maven and Ivy, and several different ways of accessing the repository, such as using

the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use external

dependencies. One option is use the Maven central repository:

Page 46 of 331

Example 8.4. Usage of Maven central repository

build.gradle

repositories {
 mavenCentral()
}

Or a remote Maven repository:

Example 8.5. Usage of a remote Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }
}

Or a remote Ivy repository:

Example 8.6. Usage of a remote Ivy directory

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 }
}

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 8.7. Usage of a local Ivy directory

build.gradle

repositories {
 ivy {
 // URL can refer to a local directory
 url "../local-repo"
 }
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order they

are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have a look at .Section 44.6, “Repositories”

Page 47 of 331

8.6. Publishing artifacts
Dependency configurations are also used to publish files. We call these files , or usually[]3 publication artifacts

just .artifacts

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do anything

special to tell Gradle what needs to be published. However, you do need to tell Gradle where to publish the

artifacts. You do this by attaching repositories to the task. Here's an example of publishinguploadArchives

to a remote Ivy repository:

Example 8.8. Publishing to an Ivy repository

build.gradle

uploadArchives {
 repositories {
 ivy {
 credentials {
 username "username"
 password "pw"
 }
 url "http://repo.mycompany.com"
 }
 }
}

Now, when you run , Gradle will build and upload your Jar. Gradle will alsogradle uploadArchives

generate and upload an as well.ivy.xml

You can also publish to Maven repositories. The syntax is slightly different. Note that you also need to apply[]4

the Maven plugin in order to publish to a Maven repository. In this instance, Gradle will generate and upload a pom.xml

.

Example 8.9. Publishing to a Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 }
 }
}

To find out more about publication, have a look at .Chapter 45, Publishing artifacts

Page 48 of 331

8.7. Where to next?
For all the details of dependency resolution, see , and for artifactChapter 44, Dependency Management

publication see .Chapter 45, Publishing artifacts

If you are interested in the DSL elements mentioned here, have a look at , Project.configurations{}

 and .Project.repositories{} Project.dependencies{}

Otherwise, continue on to some of the other .tutorials

[] 3 We think this is confusing, and we are gradually teasing apart the two concepts in the Gradle DSL.

[] 4 We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

Page 49 of 331

9
Groovy Quickstart

To build a Groovy project, you use the . This plugin extends the Java plugin to add GroovyGroovy plugin

compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or a

mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have already

seen in .Chapter 7, Java Quickstart

9.1. A basic Groovy project
Let's look at an example. To use the Groovy plugin, add the following to your build file:

Example 9.1. Groovy plugin

build.gradle

apply plugin: 'groovy'

Note: The code for this example can be found at which is in both thesamples/groovy/quickstart

binary and source distributions of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin extends

the task to look for source files in directory , and the task tocompile src/main/groovy compileTest

look for test source files in directory . The compile tasks use joint compilation for thesesrc/test/groovy

directories, which means they can contain a mixture of java and groovy source files.

To use the groovy compilation tasks, you must also declare the Groovy version to use and where to find the

Groovy libraries. You do this by adding a dependency to the configuration. The groovy compile

configuration inherits this dependency, so the groovy libraries will be included in classpath when compiling

Groovy and Java source. For our sample, we will use Groovy 1.7.10 from the public Maven repository:

Example 9.2. Dependency on Groovy 1.7.10

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 groovy group: , name: , version: 'org.codehaus.groovy' 'groovy' '1.7.10'
}

Page 50 of 331

Here is our complete build file:

Example 9.3. Groovy example - complete build file

build.gradle

apply plugin: 'eclipse'
apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 groovy group: , name: , version: 'org.codehaus.groovy' 'groovy' '1.7.10'
 testCompile group: , name: , version: 'junit' 'junit' '4.8.2'
}

Running will compile, test and JAR your project.gradle build

9.2. Summary
This chapter describes a very simple Groovy project. Usually, a real project will require more than this. Because

a Groovy project a Java project, whatever you can do with a Java project, you can also do with a Groovyis

project.

You can find out more about the Groovy plugin in , and you can find moreChapter 24, The Groovy Plugin

sample Groovy projects in the directory in the Gradle distribution.samples/groovy

Page 51 of 331

Groovy web
applications

You can combine multiple

plugins in a single project, so you

can use the War and Groovy

plugins together to build a

Groovy based web application.

10
Web Application Quickstart

This chapter is a work in progress.

This chapter introduces some of the Gradle's support for web applications. Gradle provides two plugins for web

application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to build a

WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web application

to an embedded Jetty web container.

10.1. Building a WAR file
To build a WAR file, you apply the War plugin to your project:

Example 10.1. War plugin

build.gradle

apply plugin: 'war'

Note: The code for this example can be found at which issamples/webApplication/quickstart

in both the binary and source distributions of Gradle.

This also applies the Java plugin to your project. Running will compile, test and WAR yourgradle build

project. Gradle will look for the source files to include in the WAR file in . Yoursrc/main/webapp

compiled classes, and their runtime dependencies are also included in the WAR file.

10.2. Running your web
application

To run your web application, you apply the Jetty plugin to your

project:

Page 52 of 331

The appropriate groovy libraries

will be added to the WAR file for

you.

Example 10.2. Running web application with Jetty plugin

build.gradle

apply plugin: 'jetty'

This also applies the War plugin to your project. Running will run your web applicationgradle jettyRun

in an embedded Jetty web container. Running will build the WAR file, and then rungradle jettyRunWar

it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and reload.

10.3. Summary
You can find out more about the War plugin in and the Jetty plugin in Chapter 26, The War Plugin Chapter 28,

. You can find more sample Java projects in the directory inThe Jetty Plugin samples/webApplication

the Gradle distribution.

Page 53 of 331

11
Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the command,gradle

which you have already seen in action in previous chapters.

11.1. Executing multiple tasks
You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For example,

the command will execute the and tasks. Gradle will execute thegradle compile test compile test

tasks in the order that they are listed on the command-line, and will also execute the dependencies for each task.

Each task is executed once only, regardless of how it came to be included in the build: whether it was specified

on the command-line, or it a dependency of another task, or both. Let's look at an example.

Below four tasks are defined. Both and depend on the task. Running dist test compile gradle dist test

for this build script results in the task being executed only once.compile

Figure 11.1. Task dependencies

Page 54 of 331

Example 11.1. Executing multiple tasks

build.gradle

task compile << {
 println 'compiling source'
}

task compileTest(dependsOn: compile) << {
 println 'compiling unit tests'
}

task test(dependsOn: [compile, compileTest]) << {
 println 'running unit tests'
}

task dist(dependsOn: [compile, test]) << {
 println 'building the distribution'
}

Output of gradle dist test

> gradle dist test
:compile
compiling source
:compileTest
compiling unit tests
:test
running unit tests
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

Because each task is executed once only, executing is exactly the same as executing gradle test test gradle test

.

11.2. Excluding tasks
You can exclude a task from being executed using the command-line option and providing the name of the-x

task to exclude. Let's try this with the sample build file above.

Page 55 of 331

Example 11.2. Excluding tasks

Output of gradle dist -x test

> gradle dist -x test
:compile
compiling source
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

You can see from the output of this example, that the task is not executed, even though it is a dependencytest

of the task. You will also notice that the task's dependencies, such as are notdist test compileTest

executed either. Those dependencies of that are required by another task, such as , are stilltest compile

executed.

11.3. Continuing the build when a failure occurs
By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build will

complete sooner, but does not reveal failures in other, independent tasks. In order to discover as many failures

as possible in a single build execution, you can use the `--continue` option.

When executed with `--continue`, Gradle will execute _every_ independent task where all of the dependencies

for that task have been successfully executed. For example if your build uses the 'java' and 'checkstyle' plugins,

Gradle can then run checkstlye, execute your unit tests and build your javadoc in a single execution, even if

your code fails the checkstyle checks and one of your unit tests fail. All failures are reported at the end of the

build making it easy to fix each of the issue at hand.

Note that a task will only be executed when all of it's dependencies have been successfully executed. So in the

example above, your unit-tests will not run if there is a failure in compiling your java code. This is because the

`test` task depends indirectly on the `compileJava` task.

11.4. Task name abbreviation
When you specify tasks on the command-line, you don't have to provide the full name of the task. You only

need to provide enough of the task name to uniquely identify the task. For example, in the sample build above,

you can execute task by running :dist gradle d

Page 56 of 331

Example 11.3. Abbreviated task name

Output of gradle di

> gradle di
:compile
compiling source
:compileTest
compiling unit tests
:test
running unit tests
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

You can also abbreviate each word in a camel case task name. For example, you can execute task compileTest

by running or even gradle compTest gradle cT

Example 11.4. Abbreviated camel case task name

Output of gradle cT

> gradle cT
:compile
compiling source
:compileTest
compiling unit tests

BUILD SUCCESSFUL

Total time: 1 secs

You can also use these abbreviations with the command-line option.-x

11.5. Selecting which build to execute
When you run the command, it looks for a build file in the current directory. You can use the optiongradle -b

to select another build file. If you use option then file is not used. Example:-b settings.gradle

Example 11.5. Selecting the project using a build file

subdir/myproject.gradle

task hello << {
 println "using build file '$buildFile.name' in '$buildFile.parentFile.name'."
}

Output of gradle -q -b subdir/myproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file 'myproject.gradle' in 'subdir'.

Page 57 of 331

Alternatively, you can use the option to specify the project directory to use. For multi-project builds you-p

should use option instead of option.-p -b

Example 11.6. Selecting the project using project directory

Output of gradle -q -p subdir hello

> gradle -q -p subdir hello
using build file 'build.gradle' in 'subdir'.

11.6. Obtaining information about your build
Gradle provides several built-in tasks which show particular details of your build. This can be useful for

understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the to add tasks to yourproject report plugin

project which will generate these reports.

11.6.1. Listing projects

Running gives you a list of the sub-projects of the selected project, displayed in agradle projects

hierarchy. Here is an example:

Example 11.7. Obtaining information about projects

Output of gradle -q projects

> gradle -q projects
--
Root project
--

Root project 'projectReports'
+--- Project ':api' - The shared API for the application
\--- Project ':webapp' - The Web application implementation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a project by

setting the property:description

Example 11.8. Providing a description for a project

build.gradle

description = 'The shared API for the application'

11.6.2. Listing tasks

Running gives you a list of the main tasks of the selected project. This report shows thegradle tasks

default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 58 of 331

Example 11.9. Obtaining information about tasks

Output of gradle -q tasks

> gradle -q tasks
--
All tasks runnable from root project
--

Default tasks: dists

Build tasks

clean - Deletes the build directory (build)
dists - Builds the distribution
libs - Builds the JAR

Help tasks

dependencies - Displays the dependencies of root project 'projectReports'.
help - Displays a help message
projects - Displays the sub-projects of root project 'projectReports'.
properties - Displays the properties of root project 'projectReports'.
tasks - Displays the tasks runnable from root project 'projectReports' (some of the displayed tasks may belong to subprojects).

To see all tasks and more detail, run with --all.

By default, this report shows only those tasks which have been assigned to a task group. You can do this by

setting the property for the task. You can also set the property, to provide a descriptiongroup description

to be included in the report.

Example 11.10. Changing the content of the task report

build.gradle

dists {
 description = 'Builds the distribution'
 group = 'build'
}

You can obtain more information in the task listing using the option. With this option, the task report--all

lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an example:

Page 59 of 331

Example 11.11. Obtaining more information about tasks

Output of gradle -q tasks --all

> gradle -q tasks --all
--
All tasks runnable from root project
--

Default tasks: dists

Build tasks

clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp:clean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:libs]
 docs - Builds the documentation
api:libs - Builds the JAR
 api:compile - Compiles the source files
webapp:libs - Builds the JAR [api:libs]
 webapp:compile - Compiles the source files

Help tasks

dependencies - Displays the dependencies of root project 'projectReports'.
help - Displays a help message
projects - Displays the sub-projects of root project 'projectReports'.
properties - Displays the properties of root project 'projectReports'.
tasks - Displays the tasks runnable from root project 'projectReports' (some of the displayed tasks may belong to subprojects).

11.6.3. Listing project dependencies

Running gives you a list of the dependencies of the selected project, broken downgradle dependencies

by configuration. For each configuration, the direct and transitive dependencies of that configuration are shown

in a tree. Below is an example of this report:

Page 60 of 331

Example 11.12. Obtaining information about dependencies

Output of gradle -q dependencies api:dependencies webapp:dependencies

> gradle -q dependencies api:dependencies webapp:dependencies
--
Root project
--

No configurations

--
Project :api - The shared API for the application
--

compile
\--- org.codehaus.groovy:groovy-all:1.8.4

--
Project :webapp - The Web application implementation
--

compile
+--- projectReports:api:1.0-SNAPSHOT
| \--- org.codehaus.groovy:groovy-all:1.8.4
\--- commons-io:commons-io:1.2

11.6.4. Listing project properties

Running gives you a list of the properties of the selected project. This is a snippetgradle properties

from the output:

Example 11.13. Information about properties

Output of gradle -q api:properties

> gradle -q api:properties
--
Project :api - The shared API for the application
--

allprojects: [project ':api']
ant: org.gradle.api.internal.project.DefaultAntBuilder@12345
antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler@12345
asDynamicObject: org.gradle.api.internal.ExtensibleDynamicObject@12345
buildDir: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build
buildFile: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build.gradle

11.6.5. Profiling a build

The command line option will record some useful timing information while your build is running--profile

and write a report to the directory. The report will be named using the timebuild/reports/profile

when the build was run.

Page 61 of 331

This report lists summary times and details for both the configuration phase and task execution. The times for

configuration and task execution are sorted with the most expensive operations first. The task execution results

also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the buildSrc/build

directory.

11.7. Dry Run
Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified on the

command line, but you don't want the tasks to be executed. You can use the option for this. For example -m gradle -m clean compile

shows you all tasks to be executed as part of the and tasks. This is complementary to the clean compile

 task, which shows you the tasks which are available for execution.tasks

11.8. Summary
In this chapter, you have seen some of the things you can do with Gradle from the command-line. You can find

out more about the command in .gradle Appendix C, Gradle Command Line

Page 62 of 331

12
Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. This is a

stand alone user interface that can be launched with the option.--gui

Example 12.1. Launching the GUI

gradle --gui

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run this as

a background task ()gradle --gui&

If you run this from your Gradle project working directory, you should see a tree of tasks.

Page 63 of 331

Figure 12.1. GUI Task Tree

It is preferable to run this command from your Gradle project directory so that the settings of the UI will be

stored in your project directory. However, you can run it then change the working directory via the Setup tab in

the UI.

The UI displays 4 tabs along the top and an output window along the bottom.

12.1. Task Tree
The Task Tree shows a hierarchical display of all projects and their tasks. Double clicking a task executes it.

There is also a filter so that uncommon tasks can be hidden. You can toggle the filter via the Filter button.

Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.

Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 64 of 331

Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a

option).

Add tasks to the favorites (see Favorites tab)

Hide the selected tasks. This adds them to the filter.

Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files

associated in your OS.

12.2. Favorites
The Favorites tab is place to store commonly-executed commands. These can be complex commands (anything

that's legal to Gradle) and you can provide them with a display name. This is useful for creating, say, a custom

build command that explicitly skips tests, documentation, and samples that you could call "fast build".

You can reorder favorites to your liking and even export them to disk so they can imported by others. If you edit

them, you are given options to "Always Show Live Output." This only applies if you have 'Only Show Output

When Errors Occur'. This override always forces the output to be shown.

12.3. Command Line
The Command Line tab is place to execute a single Gradle command directly. Just enter whatever you would

normally enter after 'gradle' on the command line. This also provides a place to try out commands before adding

them to favorites.

12.4. Setup
The Setup tab allows configuration of some general settings.

Page 65 of 331

Figure 12.2. GUI Setup

Current Directory

Defines the root directory of your Gradle project (typically where build.gradle is located).

Stack Trace Output

This determines how much information to write out stack traces when errors occur. Note: if you specify a

stack trace level on either the Command Line or Favorites tab, it will override this stack trace level.

Only Show Output When Errors Occur

Enabling this option hides any output when a task is executed unless the build fails.

Use Custom Gradle Executor - Advanced feature

This provides you with an alternate way to launch Gradle commands. This is useful if your project requires

some extra setup that is done inside another batch file or shell script (such as specifying an init script).

Page 66 of 331

Getting help writing
build scripts

Don't forget that your build script

is simply Groovy code that drives

the Gradle API. And the

 interface is yourProject

starting point for accessing

everything in the Gradle API. So,

if you're wondering what 'tags'

are available in your build script,

you can start with the

documentation for the Project

interface.

13
Writing Build Scripts

This chapter looks at some of the details of writing a build script.

13.1. The Gradle build language
Gradle provides a , or DSL, for describing builds. This build language is based ondomain specific language

Groovy, with some additions to make it easier to describe a build.

13.2. The Project API
In the tutorial in we used, for example, the method. Where does thisChapter 7, Java Quickstart apply()

method come from? We said earlier that the build script defines a project in Gradle. For each project in the

build, Gradle creates an instance of type and associates this object with the build script.Project Project

As the build script executes, it configures this object:Project

Any method you call in your build script, which is not defined

in the build script, is delegated to the object.Project

Any property you access in your build script, which is not

 in the build script, is delegated to the object.defined Project

Let's try this out and try to access the property of the name

 object.Project

Example 13.1. Accessing property of the Project object

build.gradle

println name
println project.name

Output of gradle -q check

> gradle -q check
projectApi
projectApi

Both statements print out the same property. The first uses auto-delegation to the object,println Project

for properties not defined in the build script. The other statement uses the property available to anyproject

build script, which returns the associated object. Only if you define a property or a method which hasProject

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html

Page 67 of 331

the same name as a member of the object, you need to use the property.Project project

13.2.1. Standard project properties

The object provides some standard properties, which are available in your build script. The followingProject

table lists a few of the commonly used ones.

Table 13.1. Project Properties

Name Type Default Value

project Project The instanceProject

name String The name of the project directory.

path String The absolute path of the project.

description String A description for the project.

projectDir File The directory containing the build script.

buildDir File /buildprojectDir

group Object unspecified

version Object unspecified

ant AntBuilder An instanceAntBuilder

13.3. The Script API
When Gradle executes a script, it compiles the script into a class which implements . This means thatScript

all of the properties and methods declared by the interface are available in your script.Script

13.4. Declaring variables
There are two kinds of variables that can be declared in a build script: local variables and extra properties.

13.4.1. Local variables

Local variables are declared with the keyword. They are only visible in the scope where they have beendef

declared. Local variables are a feature of the underlying Groovy language.

Example 13.2. Using local variables

build.gradle

def dest = "dest"

task copy(type: Copy) {
 from "source"
 into dest
}

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Script.html

Page 68 of 331

13.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is not

limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning object's ext

property. Alternatively, an block can be used to add multiple properties at once.ext

Example 13.3. Using extra properties

build.gradle

apply plugin: "java"

ext {
 springVersion = "3.1.0.RELEASE"
 emailNotification = "build@master.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {
 main {
 purpose = "production"
 }
 test {
 purpose = "test"
 }
 plugin {
 purpose = "production"
 }
}

task printProperties << {
 println springVersion
 println emailNotification
 sourceSets.matching { it.purpose == }.each { println it.name }"production"
}

Output of gradle -q printProperties

> gradle -q printProperties
3.1.0.RELEASE
build@master.org
main
plugin

In this example, an block adds two extra properties to the object. Additionally, a propertyext project

named is added to each source set by setting to (is a permissiblepurpose ext.purpose null null

value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a

(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be[]5

accessed from anywhere their owning object can be accessed, giving them a wider scope than local variables.

Extra properties on a parent project are visible from subprojects.

For further details on extra properties and their API, see .ExtraPropertiesExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Page 69 of 331

13.5. Some Groovy basics
Groovy provides plenty of features for creating DSLs, and the Gradle build language takes advantage of these.

Understanding how the build language works will help you when you write your build script, and in particular,

when you start to write customs plugins and tasks.

13.5.1. Groovy JDK

Groovy adds lots of useful methods to JVM classes. For example, gets an method, whichIterable each

iterates over the elements of the :Iterable

Example 13.4. Groovy JDK methods

build.gradle

// Iterable gets an each() method
configurations.runtime.each { File f -> println f }

Have a look at for more details.http://groovy.codehaus.org/groovy-jdk/

13.5.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 13.5. Property accessors

build.gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir()'target'

13.5.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 13.6. Method call without parentheses

build.gradle

test.systemProperty , 'some.prop' 'value'
test.systemProperty(,)'some.prop' 'value'

13.5.4. List and map literals

Groovy provides some shortcuts for defining and instances.List Map

http://groovy.codehaus.org/groovy-jdk/

Page 70 of 331

Example 13.7. List and map literals

build.gradle

// List literal
test.includes = [,]'org/gradle/api/**' 'org/gradle/internal/**'

List<String> list = ArrayList<String>()new
list.add()'org/gradle/api/**'
list.add()'org/gradle/internal/**'
test.includes = list

// Map literal
apply plugin: 'java'

Map<String, String> map = HashMap<String, String>()new
map.put(,)'plugin' 'java'
apply(map)

13.5.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures . When the lasthere

parameter of a method is a closure, you can place the closure after the method call:

Example 13.8. Closure as method parameter

build.gradle

repositories {
 println "in a closure"
}
repositories() { println }"in a closure"
repositories({ println })"in a closure"

13.5.6. Closure delegate

Each closure has a object, which Groovy uses to look up variable and method references which aredelegate

not local variables or parameters of the closure. Gradle uses this for , where the configuration closures delegate

object is set to the object to be configured.

Example 13.9. Closure delegates

build.gradle

dependencies {
 assert delegate == project.dependencies
 compile()'junit:junit:4.8.2'
 delegate.compile()'junit:junit:4.8.2'
}

[] 5 As of Gradle 1.0-milestone-9, using to add extra properties is strongly encouraged but not yet enforced.ext

Therefore, Gradle will not fail when an unknown property is set. However, it will print a warning.

http://groovy.codehaus.org/Closures

Page 71 of 331

14
Tutorial - 'This and That'

14.1. Directory creation
There is a common situation, that multiple tasks depend on the existence of a directory. Of course you can deal

with this by adding a to the beginning of those tasks. But this is kind of bloated. There is a bettermkdir

solution (works only if the tasks that need the directory have a relationship):dependsOn

Example 14.1. Directory creation with mkdir

build.gradle

classesDir = File()new 'build/classes'
task resources << {
 classesDir.mkdirs()
 // do something
}
task compile(dependsOn:) << {'resources'
 (classesDir.isDirectory()) {if
 println 'The class directory exists. I can operate'
 }
 // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory exists. I can operate

14.2. Gradle properties and system properties
Gradle offers a variety of ways to add properties to your build. With the command line option you can pass a-D

system property to the JVM which runs Gradle. The option of the command has the same effect as-D gradle

the option of the command.-D java

You can also directly add properties to your project objects using properties files. You can place a gradle.properties

file in the Gradle user home directory (defaults to) or in your project directory. For/.gradleUSER_HOME

multi-project builds you can place files in any subproject directory. The properties ofgradle.properties

the can be accessed via the project object. The properties file in the user's homegradle.properties

directory has precedence over property files in the project directories.

You can also add properties directly to your project object via the command line option. For more exotic use-P

Page 72 of 331

cases you can even pass properties to the project object via system and environment properties. Fordirectly

example if you run a build on a continuous integration server where you have no admin rights for the .machine

Your build script needs properties which values should not be seen by others. Therefore you can't use the -P

option. In this case you can add an environment property in the project administration section (invisible to

normal users). If the environment property follows the pattern []6 ORG_GRADLE_PROJECT_ =somevaluepropertyName

, is added to your project object. If in the future CI servers support Gradle directly, theypropertyName

might start Gradle via its main method. Therefore we already support the same mechanism for system

properties. The only difference is the pattern, which is .org.gradle.project.propertyName

With the files you can also set system properties. If a property in such a file has thegradle.properties

prefix the property and its value are added to the system properties, without the prefix.systemProp.

Example 14.2. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
systemPropertiesProp=shouldBeOverWrittenBySystemProp
envPropertiesProp=shouldBeOverWrittenByEnvProp
systemProp.system=systemValue

build.gradle

task printProps << {
 println commandLineProjectProp
 println gradlePropertiesProp
 println systemProjectProp
 println envProjectProp
 println System.properties[]'system'
}

Output of gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

> gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue
gradlePropertiesValue
systemPropertyValue
envPropertyValue
systemValue

14.2.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a variable. In

case this property does not exists, an exception is thrown and the build fails. If your build script relies on

optional properties the user might set for example in a gradle.properties file, you need to check for existence

before you can access them. You can do this by using the method hasProperty('propertyName')

which returns or .true false

Page 73 of 331

14.3. Configuring the project using an external
build script

You can configure the current project using an external build script. All of the Gradle build language is

available in the external script. You can even apply other scripts from the external script.

Example 14.3. Configuring the project using an external build script

build.gradle

apply from: 'other.gradle'

other.gradle

println "configuring $project"
task hello << {
 println 'hello from other script'
}

Output of gradle -q hello

> gradle -q hello
configuring root project 'configureProjectUsingScript'
hello from other script

14.4. Configuring arbitrary objects
You can configure arbitrary objects in the following very readable way.

Example 14.4. Configuring arbitrary objects

build.gradle

task configure << {
 pos = configure(java.text.FieldPosition()) {new 10
 beginIndex = 1
 endIndex = 5
 }
 println pos.beginIndex
 println pos.endIndex
}

Output of gradle -q configure

> gradle -q configure
1
5

Page 74 of 331

14.5. Configuring arbitrary objects using an
external script

You can also configure arbitrary objects using an external script.

Example 14.5. Configuring arbitrary objects using a script

build.gradle

task configure << {
 pos = java.text.FieldPosition()new 10
 // Apply the script
 apply from: , to: pos'other.gradle'
 println pos.beginIndex
 println pos.endIndex
}

other.gradle

beginIndex = ;1
endIndex = ;5

Output of gradle -q configure

> gradle -q configure
1
5

14.6. Caching
To improve responsiveness Gradle caches all compiled scripts by default. This includes all build scripts,

initialization scripts, and other scripts. The first time you run a build for a project, Gradle creates a .gradle

directory in which it puts the compiled script. The next time you run this build, Gradle uses the compiled script,

if the script has not changed since it was compiled. Otherwise the script gets compiled and the new version is

stored in the cache. If you run Gradle with the option, the cached script is--recompile-scripts

discarded and the script is compiled and stored in the cache. This way you can force Gradle to rebuild the cache.

[] 6 or are for example CI servers which offer this functionality.Teamcity Bamboo

Page 75 of 331

15
More about Tasks

In the introductory tutorial () you have learned how to create simple tasks. YouChapter 6, Build Script Basics

have also learned how to add additional behavior to these tasks later on. And you have learned how to create

dependencies between tasks. This was all about simple tasks. But Gradle takes the concept of tasks further.

Gradle supports , that is, tasks which have their own properties and methods. This is reallyenhanced tasks

different to what you are used to with Ant targets. Such enhanced tasks are either provided by you or are

provided by Gradle.

15.1. Defining tasks
We have already seen how to define tasks using a keyword style in . There are aChapter 6, Build Script Basics

few variations on this style, which you may need to use in certain situations. For example, the keyword style

does not work in expressions.

Example 15.1. Defining tasks

build.gradle

task(hello) << {
 println "hello"
}

task(copy, type: Copy) {
 from(file())'srcDir'
 into(buildDir)
}

You can also use strings for the task names:

Example 15.2. Defining tasks - using strings

build.gradle

task() <<'hello'
{
 println "hello"
}

task(, type: Copy) {'copy'
 from(file())'srcDir'
 into(buildDir)
}

Page 76 of 331

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 15.3. Defining tasks with alternative syntax

build.gradle

tasks.add(name:) << {'hello'
 println "hello"
}

tasks.add(name: , type: Copy) {'copy'
 from(file())'srcDir'
 into(buildDir)
}

Here we add tasks to the collection. Have a look at for more variations of the tasks TaskContainer add()

method.

15.2. Locating tasks
You often need to locate the tasks that you have defined in the build file, for example, to configure them or use

them for dependencies. There are a number of ways you can do this. Firstly, each task is available as a property

of the project, using the task name as the property name:

Example 15.4. Accessing tasks as properties

build.gradle

task hello

println hello.name
println project.hello.name

Tasks are also available through the collection.tasks

Example 15.5. Accessing tasks via tasks collection

build.gradle

task hello

println tasks.hello.name
println tasks[].name'hello'

You can access tasks from any project using the task's path using the method. You cantasks.getByPath()

call the method with a task name, or a relative path, or an absolute path.getByPath()

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html

Page 77 of 331

Example 15.6. Accessing tasks by path

build.gradle

project() {':projectA'
 task hello
}

task hello

println tasks.getByPath().path'hello'
println tasks.getByPath().path':hello'
println tasks.getByPath().path'projectA:hello'
println tasks.getByPath().path':projectA:hello'

Output of gradle -q hello

> gradle -q hello
:hello
:hello
:projectA:hello
:projectA:hello

Have a look at for more options for locating tasks.TaskContainer

15.3. Configuring tasks
As an example, let's look at the task provided by Gradle. To create a task for your build, you canCopy Copy

declare in your build script:

Example 15.7. Creating a copy task

build.gradle

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see). TheCopy

following examples show several different ways to achieve the same configuration.

Example 15.8. Configuring a task - various ways

build.gradle

Copy myCopy = task(myCopy, type: Copy)
myCopy.from 'resources'
myCopy.into 'target'
myCopy.include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

This is similar to the way we would normally configure objects in Java. You have to repeat the context (myCopy

) in the configuration statement every time. This is a redundancy and not very nice to read.

There is a more convenient way of doing this.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Copy.html

Page 78 of 331

Example 15.9. Configuring a task - fluent interface

build.gradle

task(myCopy, type: Copy)
 .from()'resources'
 .into()'target'
 .include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'

You might know this approach from the Hibernates Criteria Query API or JMock. Of course the API of a task

has to support this. The , and methods all return an object that may be used to chain tofrom to include

additional configuration methods. Gradle's built-in tasks usually support this configuration style.

But there is yet another way of configuring a task. It also preserves the context and it is arguably the most

readable. It is usually our favorite.

Example 15.10. Configuring a task - with closure

build.gradle

task myCopy(type: Copy)

myCopy {
 from 'resources'
 into 'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

This works for task. Line 3 of the example is just a shortcut for the method. It isany tasks.getByName()

important to note that if you pass a closure to the method, this closure is applied to getByName() configure

the task.

There is a slightly different ways of doing this.

Example 15.11. Configuring a task - with configure() method

build.gradle

task myCopy(type: Copy)

myCopy.configure {
 from()'source'
 into()'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

Every task has a method, which you can pass a closure for configuring the task. Gradle usesconfigure()

this style for configuring objects in many places, not just for tasks.

You can also use a configuration closure when you define a task.

Page 79 of 331

Example 15.12. Defining a task with closure

build.gradle

task copy(type: Copy) {
 from 'resources'
 into 'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

15.4. Adding dependencies to a task
There are several ways you can define the dependencies of a task. In you wereSection 6.5, “Task dependencies”

introduced to defining dependencies using task names. Task names can refer to tasks in the same project as the

task, or to tasks in other projects. To refer to a task in another project, you prefix the name of the task with the

path of the project it belongs to. Below is an example which adds a dependency from to projectA:taskX projectB:taskY

:

Example 15.13. Adding dependency on task from another project

build.gradle

project() {'projectA'
 task taskX(dependsOn:) << {':projectB:taskY'
 println 'taskX'
 }
}

project() {'projectB'
 task taskY << {
 println 'taskY'
 }
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a object, as shown in this example:Task

Page 80 of 331

Example 15.14. Adding dependency using task object

build.gradle

task taskX << {
 println 'taskX'
}

task taskY << {
 println 'taskY'
}

taskX.dependsOn taskY

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

passed the task whose dependencies are being calculated. The closure should return a single or collectionTask

of objects, which are then treated as dependencies of the task. The following example adds a dependencyTask

from to all the tasks in the project whose name starts with :taskX lib

Example 15.15. Adding dependency using closure

build.gradle

task taskX << {
 println 'taskX'
}

taskX.dependsOn {
 tasks.findAll { task -> task.name.startsWith() }'lib'
}

task lib1 << {
 println 'lib1'
}

task lib2 << {
 println 'lib2'
}

task notALib << {
 println 'notALib'
}

Output of gradle -q taskX

> gradle -q taskX
lib1
lib2
taskX

For more information about task dependencies, see the API.Task

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html

Page 81 of 331

15.5. Adding a description to a task
You can add a description to your task. This description is for example displayed when executing gradle tasks

.

Example 15.16. Adding a description to a task

build.gradle

task copy(type: Copy) {
 description = 'Copies the resource directory to the target directory.'
 from 'resources'
 into 'target'
 include(, ,)'**/*.txt' '**/*.xml' '**/*.properties'
}

15.6. Replacing tasks
Sometimes you want to replace a task. For example if you want to exchange a task added by the Java plugin

with a custom task of a different type. You can achieve this with:

Example 15.17. Overwriting a task

build.gradle

task copy(type: Copy)

task copy(overwrite: true) << {
 println()'I am the new one.'
}

Output of gradle -q copy

> gradle -q copy
I am the new one.

Here we replace a task of type with a simple task. When creating the simple task, you have to set the Copy overwrite

property to true. Otherwise Gradle throws an exception, saying that a task with such a name already exists.

15.7. Skipping tasks
Gradle offers multiple ways to skip the execution of a task.

15.7.1. Using a predicate

You can use the method to attach a predicate to a task. The task's actions are only executed if theonlyIf()

predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as a

parameter, and should return true if the task should execute and false if the task should be skipped. The

predicate is evaluated just before the task is due to be executed.

Page 82 of 331

Example 15.18. Skipping a task using a predicate

build.gradle

task hello << {
 println 'hello world'
}

hello.onlyIf { !project.hasProperty() }'skipHello'

Output of gradle hello -PskipHello

> gradle hello -PskipHello
:hello SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

15.7.2. Using StopExecutionException

If the rules for skipping a task can't be expressed with predicate, you can use the

. If this exception is thrown by an action, the further execution of this action asStopExecutionException

well as the execution of any following action of this task is skipped. The build continues with executing the next

task.

Example 15.19. Skipping tasks with StopExecutionException

build.gradle

task compile << {
 println 'We are doing the compile.'
}

compile.doFirst {
 // Here you would put arbitrary conditions in real life. But we use this as an integration test, so we want defined behavior.
 (true) { StopExecutionException() }if throw new
}
task myTask(dependsOn:) << {'compile'
 println 'I am not affected'
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add execution ofconditional

the built-in actions of such a task. []7

15.7.3. Enabling and disabling tasks

Every task has also an flag which defaults to . Setting it to prevents the execution ofenabled true false

any of the task's actions.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/StopExecutionException.html

Page 83 of 331

Example 15.20. Enabling and disabling tasks

build.gradle

task disableMe << {
 println 'This should not be printed if the task is disabled.'
}
disableMe.enabled = false

Output of gradle disableMe

> gradle disableMe
:disableMe SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

15.8. Skipping tasks that are up-to-date
If you are using one of the tasks that come with Gradle, such as a task added by the Java plugin, you might have

noticed that Gradle will skip tasks that are up-to-date. This behaviour is also available for your tasks, not just for

built-in tasks.

15.8.1. Declaring a task's inputs and outputs

Let's have a look at an example. Here our task generates several output files from a source XML file. Let's run it

a couple of times.

Page 84 of 331

Example 15.21. A generator task

build.gradle

task transform {
 ext.srcFile = file()'mountains.xml'
 ext.destDir = File(buildDir,)new 'generated'
 doLast {
 println "Transforming source file."
 destDir.mkdirs()
 def mountains = XmlParser().parse(srcFile)new
 mountains.mountain.each { mountain ->
 def name = mountain.name[].text()0
 def height = mountain.height[].text()0
 def destFile = File(destDir,)new "${name}.txt"
 destFile.text = "$name -> ${height}\n"
 }
 }
}

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Notice that Gradle executes this task a second time, and does not skip the task even though nothing has changed.

Our example task was defined using an action closure. Gradle has no idea what the closure does and cannot

automatically figure out whether the task is up-to-date or not. To use Gradle's up-to-date checking, you need to

declare the inputs and outputs of the task.

Each task has an and property, which you use to declare the inputs and outputs of the task.inputs outputs

Below, we have changed our example to declare that it takes the source XML file as an input and produces

output to a destination directory. Let's run it a couple of times.

Page 85 of 331

Example 15.22. Declaring the inputs and outputs of a task

build.gradle

task transform {
 ext.srcFile = file()'mountains.xml'
 ext.destDir = File(buildDir,)new 'generated'
 inputs.file srcFile
 outputs.dir destDir
 doLast {
 println "Transforming source file."
 destDir.mkdirs()
 def mountains = XmlParser().parse(srcFile)new
 mountains.mountain.each { mountain ->
 def name = mountain.name[].text()0
 def height = mountain.height[].text()0
 def destFile = File(destDir,)new "${name}.txt"
 destFile.text = "$name -> ${height}\n"
 }
 }
}

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Output of gradle transform

> gradle transform
:transform UP-TO-DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

The task's property is of type . The task's property is of type inputs TaskInputs outputs TaskOutputs

.

15.8.2. How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the set

of input files and a hash of the contents of each file. Gradle then executes the task. If the task completes

successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files and a hash of

the contents of each file. Gradle takes note of any files created, changed or deleted in the output directories of

the task. Gradle persists both snapshots for next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If the

new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and skips

the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for next time the task

is executed.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/TaskOutputs.html

Page 86 of 331

15.9. Task rules
Sometimes you want to have a task which behavior depends on a large or infinite number value range of

parameters. A very nice and expressive way to provide such tasks are task rules:

Example 15.23. Task rule

build.gradle

tasks.addRule() { String taskName ->"Pattern: ping<ID>"
 (taskName.startsWith()) {if "ping"
 task(taskName) << {
 println + (taskName -)"Pinging: " 'ping'
 }
 }
}

Output of gradle -q pingServer1

> gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule. This description is shown when running for example gradle tasks

.

Rules not just work for calling tasks from the command line. You can also create dependsOn relations on rule

based tasks:

Example 15.24. Dependency on rule based tasks

build.gradle

tasks.addRule() { String taskName ->"Pattern: ping<ID>"
 (taskName.startsWith()) {if "ping"
 task(taskName) << {
 println + (taskName -)"Pinging: " 'ping'
 }
 }
}

task groupPing {
 dependsOn pingServer1, pingServer2
}

Output of gradle -q groupPing

> gradle -q groupPing
Pinging: Server1
Pinging: Server2

Page 87 of 331

15.10. Summary
If you are coming from Ant, such an enhanced Gradle task as looks like a mixture between an Ant targetCopy

and an Ant task. And this is actually the case. The separation that Ant does between tasks and targets is not done

by Gradle. The simple Gradle tasks are like Ant's targets and the enhanced Gradle tasks also include the Ant

task aspects. All of Gradle's tasks share a common API and you can create dependencies between them. Such a

task might be nicer to configure than an Ant task. It makes full use of the type system, is more expressive and

easier to maintain.

[] 7 You might be wondering why there is neither an import for the nor do weStopExecutionException

access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script.

These imports are customizable (see).Appendix D, Existing IDE Support and how to cope without it

Page 88 of 331

16
Working With Files

Most builds work with files. Gradle adds some concepts and APIs to help you achieve this.

16.1. Locating files
You can locate a file relative to the project directory using the method.Project.file()

Example 16.1. Locating files

build.gradle

// Using a relative path
File configFile = file()'src/config.xml'

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(File())new 'src/config.xml'

You can pass any object to the method, and it will attempt to convert the value to an absolute file() File

object. Usually, you would pass it a or instance. The supplied object's value isString File toString()

used as the file path. If this path is an absolute path, it is used to construct a instance. Otherwise, a File File

instance is constructed by prepending the project directory path to the supplied path. The method alsofile()

understands URLs, such as .file:/some/path.xml

Using this method is a useful way to convert some user provided value into an absolute . It is preferable toFile

using , as always evaluates the supplied path relative to the projectnew File(somePath) file()

directory, which is fixed, rather than the current working directory, which can change depending on how the

user runs Gradle.

16.2. File collections
A is simply a set of files. It is represented by the interface. Many objects infile collection FileCollection

the Gradle API implement this interface. For example, implement dependency configurations FileCollection

.

One way to obtain a instance is to use the method. You can passFileCollection Project.files()

this method any number of objects, which are then converted into a set of objects. The methodFile files()

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object...)

Page 89 of 331

accepts any type of object as its parameters. These are evaluated relative to the project directory, as for the file()

method, described in . You can also pass collections, iterables, maps and arrays toSection 16.1, “Locating files”

the method. These are flattened and the contents converted to instances.files() File

Example 16.2. Creating a file collection

build.gradle

FileCollection collection = files(, File(), [,])'src/file1.txt' new 'src/file2.txt' 'src/file3.txt' 'src/file4.txt'

A file collection is iterable, and can be converted to a number of other types using the operator. You can alsoas

add 2 file collections together using the operator, or subtract one file collection from another using the + -

operator. Here are some examples of what you can do with a file collection.

Example 16.3. Using a file collection

build.gradle

// Iterate over the files in the collection
collection.each {File file ->
 println file.name
}

// Convert the collection to various types
Set set = collection.files
Set set2 = collection as Set
List list = collection as List
String path = collection.asPath
File file = collection.singleFile
File file2 = collection as File

// Add and subtract collections
def union = collection + files()'src/file3.txt'
def different = collection - files()'src/file3.txt'

You can also pass the method a closure or a instance. This is called when the contents offiles() Callable

the collection are queried, and its return value is converted to a set of instances. The return value can beFile

an object of any of the types supported by the method. This is a simple way to 'implement' the files()

 interface.FileCollection

Page 90 of 331

Example 16.4. Implementing a file collection

build.gradle

task list << {
 File srcDir

 // Create a file collection using a closure
 collection = files { srcDir.listFiles() }

 srcDir = file()'src'
 println "Contents of $srcDir.name"
 collection.collect { relativePath(it) }.sort().each { println it }

 srcDir = file()'src2'
 println "Contents of $srcDir.name"
 collection.collect { relativePath(it) }.sort().each { println it }
}

Output of gradle -q list

> gradle -q list
Contents of src
src/dir1
src/file1.txt
Contents of src2
src2/dir1
src2/dir2

Some other types of things you can pass to :files()

FileCollection

These are flattened and the contents included in the file collection.

Task

The output files of the task are included in the file collection.

TaskOutputs

The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of a file collection is evaluated lazily, when it is needed. This means you

can, for example, create a that represents files which will be created in the future by, say,FileCollection

some task.

16.3. File trees
A is a collection of files arranged in a hierarchy. For example, a file tree might represent a directoryfile tree

tree or the contents of a ZIP file. It is represented by the interface. The interfaceFileTree FileTree

extends , so you can treat a file tree exactly the same way as you would a file collection.FileCollection

Several objects in Gradle implement the interface, such as .FileTree source sets

One way to obtain a instance is to use the method. This creates a FileTree Project.fileTree() FileTree

defined with a base directory, and optionally some Ant-style include and exclude patterns.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Page 91 of 331

Example 16.5. Creating a file tree

build.gradle

// Create a file tree with a base directory
FileTree tree = fileTree(dir:)'src/main'

// Add include and exclude patterns to the tree
tree.include '**/*.java'
tree.exclude '**/Abstract*'

// Create a tree using path
tree = fileTree().include()'src' '**/*.java'

// Create a tree using closure
tree = fileTree() {'src'
 include '**/*.java'
}

// Create a tree using a map
tree = fileTree(dir: , include:)'src' '**/*.java'
tree = fileTree(dir: , includes: [,])'src' '**/*.java' '**/*.xml'
tree = fileTree(dir: , include: , exclude:)'src' '**/*.java' '**/*test*/**'

You use a file tree in the same way you use a file collection. You can also visit the contents of the tree, and

select a sub-tree using Ant-style patterns:

Example 16.6. Using a file tree

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->
 println file
}

// Filter a tree
FileTree filtered = tree.matching {
 include 'org/gradle/api/**'
}

// Add trees together
FileTree sum = tree + fileTree(dir:)'src/test'

// Visit the elements of the tree
tree.visit {element ->
 println "$element.relativePath => $element.file"
}

16.4. Using the contents of an archive as a file tree
You can use the contents of an archive, such as a ZIP or TAR file, as a file tree. You do this using the

 and methods. These methods return a instanceProject.zipTree() Project.tarTree() FileTree

which you can use like any other file tree or file collection. For example, you can use it to expand the archive by

copying the contents, or to merge some archives into another.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Page 92 of 331

Example 16.7. Using an archive as a file tree

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree()'someFile.zip'

// Create a TAR file tree using path
FileTree tar = tarTree()'someFile.tar'

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip())'someTar.ext'

16.5. Specifying a set of input files
Many objects in Gradle have properties which accept a set of input files. For example, the taskJavaCompile

has a property, which defines the source files to compile. You can set the value of this property usingsource

any of the types supported by the method, which we have seen in above. This means you can set thefiles()

property using, for example, a , , collection, or even a closure. Here areFile String FileCollection

some examples:

Example 16.8. Specifying a set of files

build.gradle

// Use a File object to specify the source directory
compile {
 source = file()'src/main/java'
}

// Use a String path to specify the source directory
compile {
 source = 'src/main/java'
}

// Use a collection to specify multiple source directories
compile {
 source = [,]'src/main/java' '../shared/java'
}

// Use a FileCollection (or FileTree in this case) to specify the source files
compile {
 source = fileTree(dir:).matching { include }'src/main/java' 'org/gradle/api/**'
}

// Using a closure to specify the source files.
compile {
 source = {
 // Use the contents of each zip file in the src dir
 file().listFiles().findAll {it.name.endsWith()}.collect { zipTree(it) }'src' '.zip'
 }
}

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Page 93 of 331

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this

method accepts any of the types supported by the method.files()

Example 16.9. Specifying a set of files

build.gradle

compile {
 // Add some source directories use String paths
 source , 'src/main/java' 'src/main/groovy'

 // Add a source directory using a File object
 source file()'../shared/java'

 // Add some source directories using a closure
 source { file().listFiles() }'src/test/'
}

16.6. Copying files
You can use the task to copy files. The copy task is very flexible, and allows you to, for example, filterCopy

the contents of the files as they are copied, and to map the files names.

To use the task, you must provide a set of source files to copy, and a destination directory to copy theCopy

files to. You may also specify how to transform the files as they are copied. You do all this using a . Acopy spec

copy spec is represented by the interface. The task implements this interface. You specify theCopySpec Copy

source files using the method. To specify the destination directory, you use the CopySpec.from()

 method.CopySpec.into()

Example 16.10. Copying files using the copy task

build.gradle

task copyTask(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
}

The method accepts any of the arguments that the method does. When an argument resolves to afrom() files()

directory, everything under that directory (but not the directory itself) is recursively copied into the destination

directory. When an argument resolves to a file, that file is copied into the destination directory. When an

argument resolves to a non-existing file, that argument is ignored. The accepts any of the argumentsinto()

that the method does. Here is another example:file()

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object...)
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)

Page 94 of 331

Example 16.11. Specifying copy task source files and destination directory

build.gradle

task anotherCopyTask(type: Copy) {
 // Copy everything under src/main/webapp
 from 'src/main/webapp'
 // Copy a single file
 from 'src/staging/index.html'
 // Copy the output of a task
 from copyTask
 // Copy the output of a task using Task outputs explicitly.
 from copyTaskWithPatterns.outputs
 // Copy the contents of a Zip file
 from zipTree()'src/main/assets.zip'
 // Determine the destination directory later
 into { getDestDir() }
}

You can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 16.12. Selecting the files to copy

build.gradle

task copyTaskWithPatterns(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
 include '**/*.html'
 include '**/*.jsp'
 exclude { details -> details.file.name.endsWith() && details.file.text.contains() }'.html' 'staging'
}

You can also use the method to copy files. It works the same way as the task.Project.copy()

Example 16.13. Copying files using the copy() method

build.gradle

task copyMethod << {
 copy {
 from 'src/main/webapp'
 into 'build/explodedWar'
 include '**/*.html'
 include '**/*.jsp'
 }
}

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(groovy.lang.Closure)

Page 95 of 331

16.6.1. Renaming files

Example 16.14. Renaming files as they are copied

build.gradle

task rename(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
 // Use a closure to map the file name
 rename { String fileName ->
 fileName.replace(,)'-staging-' ''
 }
 // Use a regular expression to map the file name
 rename , '(.+)-staging-(.+)' '$1$2'
 rename(/(.+)-staging-(.+)/,)'$1$2'
}

16.6.2. Filtering files

Example 16.15. Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
 org.apache.tools.ant.filters.ReplaceTokensimport

task filter(type: Copy) {
 from 'src/main/webapp'
 into 'build/explodedWar'
 // Substitute property references in files
 expand(copyright: , version:)'2009' '2.3.1'
 expand(project.properties)
 // Use some of the filters provided by Ant
 filter(FixCrLfFilter)
 filter(ReplaceTokens, tokens: [copyright: , version:])'2009' '2.3.1'
 // Use a closure to filter each line
 filter { String line ->
 "[$line]"
 }
}

16.6.3. Using the classCopySpec

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns, copy

actions, name mappings, filters.

Page 96 of 331

Example 16.16. Nested copy specs

build.gradle

task nestedSpecs(type: Copy) {
 into 'build/explodedWar'
 exclude '**/*staging*'
 from() {'src/dist'
 include '**/*.html'
 }
 into() {'libs'
 from configurations.runtime
 }
}

16.7. Using the taskSync
The task extends the task. When it executes, it copies the source files into the destination directory,Sync Copy

and then removes any files from the destination directory which it did not copy. This can be useful for doing

things such as installing your application, creating an exploded copy of your archives, or maintaining a copy of

the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the build/libs

directory.

Example 16.17. Using the Sync task to copy dependencies

build.gradle

task libs(type: Sync) {
 from configurations.runtime
 into "$buildDir/libs"
}

16.8. Creating archives
A project can have as many as JAR archives as you want. You can also add WAR, ZIP and TAR archives to

your project. Archives are created using the various archive tasks: , , , and . They all work theZip Tar Jar War

same way, so let's look at how you create a ZIP file.

Example 16.18. Creating a ZIP archive

build.gradle

apply plugin: 'java'

task zip(type: Zip) {
 from 'src/dist'
 into() {'libs'
 from configurations.runtime
 }
}

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.War.html

Page 97 of 331

Why are you using
the Java plugin?

The Java plugin adds a number

of default values for the archive

tasks. You can use the archive

tasks without using the Java

plugin, if you like. You will need

to provide values for some

additional properties.

The archive tasks all work exactly the same way as the task,Copy

and implement the same interface. As with the CopySpec Copy

task, you specify the input files using the method, andfrom()

can optionally specify where they end up in the archive using the into()

method. You can filter the contents of file, rename files, and all the

other things you can do with a copy spec.

16.8.1. Archive naming

The default name for a generated archive is - .projectName version type

For example:

Example 16.19. Creation of ZIP archive

build.gradle

apply plugin: 'java'

version = 1.0

task myZip(type: Zip) {
 from 'somedir'
}

println myZip.archiveName
println relativePath(myZip.destinationDir)
println relativePath(myZip.archivePath)

Output of gradle -q myZip

> gradle -q myZip
zipProject-1.0.zip
build/distributions
build/distributions/zipProject-1.0.zip

This adds a archive task with the name which produces ZIP file . It isZip myZip zipProject-1.0.zip

important to distinguish between the name of the archive task and the name of the archive generated by the

archive task. The default name for archives can be changed with the project property.archivesBaseName

The name of the archive can also be changed at any time later on.

There are a number of properties which you can set on an archive task. These are listed below in Table 16.1,

. You can, for example, change the name of the archive:“Archive tasks - naming properties”

Page 98 of 331

Example 16.20. Configuration of archive task - custom archive name

build.gradle

apply plugin: 'java'
version = 1.0

task myZip(type: Zip) {
 from 'somedir'
 baseName = 'customName'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
customName-1.0.zip

You can further customize the archive names:

Example 16.21. Configuration of archive task - appendix & classifier

build.gradle

apply plugin: 'java'
archivesBaseName = 'gradle'
version = 1.0

task myZip(type: Zip) {
 appendix = 'wrapper'
 classifier = 'src'
 from 'somedir'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
gradle-wrapper-1.0-src.zip

Page 99 of 331

Table 16.1. Archive tasks - naming properties

Property name Type Default value Description

archiveName String - - - .baseName appendix version classifier extension

If any of these properties is empty the trailing is not-

added to the name.

The base

file name of

the

generated

archive

archivePath File /destinationDir archiveName The

absolute

path of the

generated

archive.

destinationDir File Depends on the archive type. JARs and WARs are

generated into /librariesproject.buildDir

. ZIPs and TARs are generated into /distributionsproject.buildDir

.

The

directory to

generate the

archive into

baseName String project.name The base

name

portion of

the archive

file name.

appendix String null The

appendix

portion of

the archive

file name.

version String project.version The version

portion of

the archive

file name.

classifier String null The

classifier

portion of

the archive

file name,

extension String Depends on the archive type, and for TAR files, the

compression type as well: , , , , zip jar war tar tgz

or .tbz2

The

extension of

the archive

file name.

Page 100 of 331

16.8.2. Sharing content between multiple archives

Using the method to share content between archives.Project.copySpec()

Often you will want to publish an archive, so that it is usable from another project. This process is described in

Chapter 45, Publishing artifacts

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(groovy.lang.Closure)

Page 101 of 331

17
Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your

Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build

script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task scripting

tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the build.xml

, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything except the

Ant tasks and types. Gradle understands this language, and allows you to import your Ant directlybuild.xml

into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like , or . For this layer Gradlejavac copy jar

provides integration simply by relying on Groovy, and the fantastic .AntBuilder

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process. Your

build script may contain statements like: . "ant clean compile".execute() []8

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example, you

could start by importing your existing Ant build. Then you could move your dependency declarations from the

Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with

some of Gradle's plugins. This process can be done in parts over time, and you can have a working Gradle build

during the entire process.

17.1. Using Ant tasks and types in your build
In your build script, a property called is provided by Gradle. This is a reference to an ant AntBuilder

instance. This is used to access Ant tasks, types and properties from your build script. There is aAntBuilder

very simple mapping from Ant's format to Groovy, which is explained below.build.xml

You execute an Ant task by calling a method on the instance. You use the task name as theAntBuilder

method name. For example, you execute the Ant task by calling the method. Theecho ant.echo()

attributes of the Ant task are passed as Map parameters to the method. Below is an example which executes the echo

task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/AntBuilder.html

Page 102 of 331

Example 17.1. Using an Ant task

build.gradle

task hello << {
 String greeting = 'hello from Ant'
 ant.echo(message: greeting)
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we pass

the message for the task as nested text:echo

Example 17.2. Passing nested text to an Ant task

build.gradle

task hello << {
 ant.echo()'hello from Ant'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as tasks,

by calling a method with the same name as the element we want to define.

Example 17.3. Passing nested elements to an Ant task

build.gradle

task zip << {
 ant.zip(destfile:) {'archive.zip'
 fileset(dir:) {'src'
 include(name:)'**.xml'
 exclude(name:)'**.java'
 }
 }
}

Page 103 of 331

You can access Ant types in the same way that you access tasks, using the name of the type as the method

name. The method call returns the Ant data type, which you can then use directly in your build script. In the

following example, we create an Ant object, then iterate over the contents of it.path

Example 17.4. Using an Ant type

build.gradle

task list << {
 def path = ant.path {
 fileset(dir: , includes:)'libs' '*.jar'
 }
 path.list().each {
 println it
 }
}

More information about can be found in 'Groovy in Action' 8.4 or at the AntBuilder Groovy Wiki

17.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the (usually easier) or Anttaskdef typedef

task, just as you would in a file. You can then refer to the custom Ant task as you would a built-inbuild.xml

Ant task.

Example 17.5. Using a custom Ant task

build.gradle

task check << {
 ant.taskdef(resource:) {'checkstyletask.properties'
 classpath {
 fileset(dir: , includes:)'libs' '*.jar'
 }
 }
 ant.checkstyle(config:) {'checkstyle.xml'
 fileset(dir:)'src'
 }
}

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To do this,

you need to define a custom configuration for the classpath, then add some dependencies to the configuration.

This is described in more detail in .Section 44.4, “How to declare your dependencies”

Example 17.6. Declaring the classpath for a custom Ant task

build.gradle

configurations {
 pmd
}

dependencies {
 pmd group: , name: , version: 'pmd' 'pmd' '4.2.5'
}

http://groovy.codehaus.org/Using+Ant+from+Groovy

Page 104 of 331

To use the classpath configuration, use the property of the custom configuration.asPath

Example 17.7. Using a custom Ant task and dependency management together

build.gradle

task check << {
 ant.taskdef(name: , classname: , classpath: configurations.pmd.asPath)'pmd' 'net.sourceforge.pmd.ant.PMDTask'
 ant.pmd(shortFilenames: , failonruleviolation: , rulesetfiles: file().toURI().toString()) {'true' 'true' 'pmd-rules.xml'
 formatter(type: , toConsole:)'text' 'true'
 fileset(dir:)'src'
 }
}

17.2. Importing an Ant build
You can use the method to import an Ant build into your Gradle project. When youant.importBuild()

import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute the

Ant targets in exactly the same way as Gradle tasks.

Example 17.8. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>
 =<target name "hello">
 Hello, from Ant<echo> </echo>
 </target>
</project>

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You can add a task which depends on an Ant target:

Page 105 of 331

Example 17.9. Task that depends on Ant target

build.gradle

ant.importBuild 'build.xml'

task intro(dependsOn: hello) << {
 println 'Hello, from Gradle'
}

Output of gradle intro

> gradle intro
:hello
[ant:echo] Hello, from Ant
:intro
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

Or, you can add behaviour to an Ant target:

Example 17.10. Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello << {
 println 'Hello, from Gradle'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

It is also possible for an Ant target to depend on a Gradle task:

Page 106 of 331

Example 17.11. Ant target that depends on Gradle task

build.gradle

ant.importBuild 'build.xml'

task intro << {
 println 'Hello, from Gradle'
}

build.xml

<project>
 = =<target name "hello" depends "intro">
 Hello, from Ant<echo> </echo>
 </target>
</project>

Output of gradle hello

> gradle hello
:intro
Hello, from Gradle
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

17.3. Ant properties and references
There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set the

property directly on the instance. The Ant properties are also available as a Map which you canAntBuilder

change. You can also use the Ant task. Below are some examples of how to do this.property

Example 17.12. Setting an Ant property

build.gradle

ant.buildDir = buildDir
ant.properties.buildDir = buildDir
ant.properties[] = buildDir'buildDir'
ant.property(name: , location: buildDir)'buildDir'

build.xml

<echo>buildDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these properties.

You can get the property directly from the instance. The Ant properties are also available as aAntBuilder

Map. Below are some examples.

Page 107 of 331

Example 17.13. Getting an Ant property

build.xml

<property = =name "antProp" value "a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties[]'antProp'

There are several ways to set an Ant reference:

Example 17.14. Setting an Ant reference

build.gradle

ant.path(id: , location:)'classpath' 'libs'
ant.references.classpath = ant.path(location:)'libs'
ant.references[] = ant.path(location:)'classpath' 'libs'

build.xml

<path =refid "classpath"/>

There are several ways to get an Ant reference:

Example 17.15. Getting an Ant reference

build.xml

<path = =id "antPath" location "libs"/>

build.gradle

println ant.references.antPath
println ant.references[]'antPath'

17.4. API
The Ant integration is provided by .AntBuilder

[] 8 In Groovy you can execute Strings. To learn more about executing external processes with Groovy have a

look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/AntBuilder.html

Page 108 of 331

18
Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by this.

On the other hand you need the relevant information for figuring out if things have gone wrong. Gradle defines

6 log levels, as shown in . There are two Gradle-specific log levels, in addition to theTable 18.1, “Log levels”

ones you might normally see. Those levels are and . The latter is the default, and is used toQUIET LIFECYCLE

report build progress.

Table 18.1. Log levels

Level Used for

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

18.1. Choosing a log level
You can use the command line switches shown in to chooseTable 18.2, “Log level command-line options”

different log levels. In you find the command line switchesTable 18.3, “Stacktrace command-line options”

which affect stacktrace logging.

Table 18.2. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

 or -q --quiet QUIET and higher

 or -i --info INFO and higher

 or -d --debug DEBUG and higher (that is, all log messages)

Page 109 of 331

Table 18.3. Stacktrace command-line options

Option Meaning

No stacktrace options No stacktraces are printed to the console in case of a build error (e.g. a

compile error). Only in case of internal exceptions will stacktraces be printed.

If the log level is chosen, truncated stacktraces are always printed.DEBUG

 or -s --stacktrace Truncated stacktraces are printed. We recommend this over full stacktraces.

Groovy full stacktraces are extremely verbose (Due to the underlying dynamic

invocation mechanisms. Yet they usually do not contain relevant information

for what has gone wrong in code.)your

 or -S --full-stacktraceThe full stacktraces are printed out.

18.2. Writing your own log messages
A simple option for logging in your build file is to write messages to standard output. Gradle redirects anything

written to standard output to it's logging system at the log level.QUIET

Example 18.1. Using stdout to write log messages

build.gradle

println 'A message which is logged at QUIET level'

Gradle also provides a property to a build script, which is an instance of . This interfacelogger Logger

extends the SLF4J interface and adds a few Gradle specific methods to it. Below is an example of howLogger

this is used in the build script:

Example 18.2. Writing your own log messages

build.gradle

logger.quiet()'An info log message which is always logged.'
logger.error()'An error log message.'
logger.warn()'A warning log message.'
logger.lifecycle()'A lifecycle info log message.'
logger.info()'An info log message.'
logger.debug()'A debug log message.'
logger.trace()'A trace log message.'

You can also hook into Gradle's logging system from within other classes used in the build (classes from the buildSrc

directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the

provided logger in the build script.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/logging/Logger.html

Page 110 of 331

Example 18.3. Using SLF4J to write log messages

build.gradle

import org.slf4j.Logger
 org.slf4j.LoggerFactoryimport

Logger slf4jLogger = LoggerFactory.getLogger()'some-logger'
slf4jLogger.info()'An info log message logged using SLF4j'

18.3. Logging from external tools and libraries
Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output

into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to the Gradle log levels,

except the Ant/Ivy log level, which is mapped to Gradle log level. This means the defaultTRACE DEBUG

Gradle log level will not show any Ant/Ivy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects standard

output to the log level and standard error to the level. This behavior is configurable. The projectQUIET ERROR

object provides a , which allows you to change the log levels that standard out or error areLoggingManager

redirected to when your build script is evaluated.

Example 18.4. Configuring standard output capture

build.gradle

logging.captureStandardOutput LogLevel.INFO
println 'A message which is logged at INFO level'

To change the log level for standard out or error during task execution, tasks also provide a

.LoggingManager

Example 18.5. Configuring standard output capture for a task

build.gradle

task logInfo {
 logging.captureStandardOutput LogLevel.INFO
 doFirst {
 println 'A task message which is logged at INFO level'
 }
}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging

toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to

Gradle's logging system.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/logging/LoggingManager.html

Page 111 of 331

18.4. Changing what Gradle logs
You can replace much of Gradle's logging UI with your own. You might do this, for example, if you want to

customize the UI in some way - to log more or less information, or to change the formatting. You replace the

logging using the method. This is accessible from a build script, or an init script, orGradle.useLogger()

via the embedding API. Below is an example init script which changes how task execution and build completion

is logged.

Example 18.6. Customizing what Gradle logs

init.gradle

useLogger(CustomEventLogger())new

 CustomEventLogger BuildAdapter TaskExecutionListener {class extends implements

 beforeExecute(Task task) {public void
 println "[$task.name]"
 }

 afterExecute(Task task, TaskState state) {public void
 println()
 }

 buildFinished(BuildResult result) {public void
 println 'build completed'
 }
}

Output of gradle -I init.gradle build

> gradle -I init.gradle build
[compile]
compiling source

[testCompile]
compiling test source

[test]
running unit tests

[build]

build completed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the

logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched. You

can find out more about the listener interfaces in .Section 49.6, “Responding to the lifecycle in the build script”

BuildListener

ProjectEvaluationListener

TaskExecutionGraphListener

TaskExecutionListener

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskExecutionListener.html

Page 112 of 331

TaskActionListener

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskActionListener.html

Page 113 of 331

19
The Gradle Daemon

19.1. Enter the daemon
The Gradle daemon (sometimes referred as) aims to improve the startup and execution timethe build daemon

of Gradle.

We came up with several use cases where the daemon is very useful. For some workflows, the user invokes

Gradle many times to execute a small number of relatively quick tasks. For example:

When using test driven development, where the unit tests are executed many times.

When developing a web application, where the application is assembled many times.

When discovering what a build can do, where is executed a number of times.gradle tasks

For above sorts of workflows, it is important that the startup cost of invoking Gradle is as small as possible.

In addition, user interfaces can provide some interesting features if the Gradle model can be built relatively

quickly. For example, the daemon might be useful for following scenarios:

Content assistance in the IDE

Live visualisation of the build in a GUI

Tab completion in a CLI

In general, snappy behavior of the build tool is always handy. If you try using the daemon for your local builds

it's going to be hard for you to go back to regular use of Gradle.

The Tooling API (see) uses the daemon all the time, e.g. you cannot officiallyChapter 56, Embedding Gradle

use the Tooling API without the daemon. This means that if you use the STS Gradle plugin for Eclipse or new

Intellij IDEA plugin (IDEA>10) the daemon acts behind the hood.

In future the daemon will offer more features:

Snappy up-to-date checks: use native file system change notifications (eg via jdk7 nio.2) to preemptively

perform up-to-date analysis.

Even faster builds: preemptively evaluate projects, so that the model is ready when the user next invokes

Gradle.

Did we mention faster builds? The daemon can potentially preemptively download dependencies or check

for new versions of snapshot dependencies.

Utilize a pool of reusable processes available for compilation and testing. For example, both the Groovy and

Scala compilers have a large startup cost. The build daemon could maintain a process with Groovy and/or

Scala already loaded.

Page 114 of 331

Preemptive execution of certain tasks, for example compilation. Quicker feedback.

Fast and accurate bash tab completion.

Periodically garbage collect the Gradle caches.

19.2. Reusing and expiration of daemons
The basic idea is that the gradle command forks a daemon process, which performs the actual build. Subsequent

invocations of the gradle command will reuse the daemon, avoiding the startup costs. Sometimes we cannot use

an existing daemon because it is busy or its java version or jvm arguments are different. For exact details on

when exactly new daemon process is forked read the dedicated section below. The daemon process

automatically expire after 3 hours of idle time.

Here're all situations in which we fork a new daemon process:

If the daemon process is currently busy running some job, a brand new daemon process will be started.

We fork a separate daemon process per java home. So even if there is some idle daemon waiting for build

requests but you happen to run build with a different java home then a brand new daemon will be forked.

We fork a separate daemon process if the jvm arguments for the build are sufficiently different. For example

we will not fork a new daemon if a some system property has changed. However if -Xmx memory setting

change or some fundamental immutable system property changes (e.g. file.encoding) then new daemon will

be forked.

At the moment daemon is coupled with particular version of Gradle. This means that even if some daemon

is idle but you are running the build with a different version of Gradle, a new daemon will be started. This

also has a consequence for the command line instruction: You can only stop daemons that were--stop

started with the Gradle version you use when running .--stop

We plan to improve the ways of managing / pooling the daemons in future.

19.3. Usage and troubleshooting
For command line usage take a look dedicated section in . If you are tired ofAppendix C, Gradle Command Line

using the same command line options again and again, take a look at Section 20.1, “Configuring the build

. The section contains information on how to configure certain behavior ofenvironment via gradle.properties”

the daemon (including turning on the daemon by default) in a more 'persistent' way.

Some ways of troubleshooting the Gradle daemon:

If you have a problem with your build, try temporarily disabling the daemon (you can pass the command

line switch).--no-daemon

Occasionally, you may want to stop the daemons either via the command line option or in a more--stop

forceful way.

There is a daemon log file, which by default is located in the Gradle user home directory.

You may want to start the daemon in mode to observe how the build is executed.--foreground

Page 115 of 331

19.4. Configuring the daemon
Some daemon settings, such as JVM arguments, memory settings or the Java home, can be configured. Please

find more information in Section 20.1, “Configuring the build environment via gradle.properties”

Page 116 of 331

20
The Build Environment

20.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute your

build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA_OPTS,

certain settings like JVM memory settings, Java home, daemon on/off can be more useful if they can versioned

with the project in your VCS so that the entire team can work with consistent environment. Setting up a

consistent environment for your build is as simple as placing those settings into a file.gradle.properties

The configuration is applied in following order (in case an option is configured in multiple locations the last one

wins):

from located in project build dir.gradle.properties

from located in .gradle.properties gradle user home

from system properties, e.g. when is used in the command line.-Dsome.property

The following properties can be used to configure the Gradle build environment:

org.gradle.daemon

When set to the Gradle daemon is to run the build. For local developer builds this is our favoritetrue

property. The developer environment is optimized for speed and feedback so we nearly always run Gradle

jobs with the daemon. We don't run CI builds with the daemon (i.e. a long running process) as the CI

environment is optimized for consistency and reliability.

org.gradle.java.home

Specifies the java home for the Gradle build process. The value can be set to either or location,jdk jre

however, depending on what does your build do, is safer. Reasonable default is used if the setting isjdk

unspecified.

org.gradle.jvmargs

Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking memory

settings. At the moment the default settings are pretty generous with regards to memory.

Page 117 of 331

20.1.1. Forked java processes

Many settings (like the java version and maximum heap size) can only be specified when launching a new JVM

for the build process. This means that Gradle must launch a separate JVM process to execute the build after

parsing the various files. When running with the daemon, a JVM with the correctgradle.properties

parameters is started once and reused for each daemon build execution. When Gradle is executed without the

daemon, then a new JVM must be launched for every build execution, unless the JVM launched by the Gradle

start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why we highly

recommend that you use the Gradle Daemon if you are specifying or org.gradle.java.home org.gradle.jvmargs

. See for more details.Chapter 19, The Gradle Daemon

20.2. Accessing the web via a proxy
Configuring an HTTP proxy (for example for downloading dependencies) is done via standard JVM system

properties. These properties can be set directly in the build script; for example System.setProperty('http.proxyHost', 'www.somehost.org')

for the proxy host. Alternatively, the properties can be specified in a gradle.properties file, either in the build's

root directory or in the Gradle home directory.

Example 20.1. Configuring an HTTP proxy

gradle.properties

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost

There are separate settings for HTTPS.

Example 20.2. Configuring an HTTPS proxy

gradle.properties

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=8080
systemProp.https.proxyUser=userid
systemProp.https.proxyPassword=password
systemProp.https.nonProxyHosts=*.nonproxyrepos.com|localhost

We could not find a good overview for all possible proxy settings. One place to look are the constants in a file

from the Ant project. Here a to the Subversion view. The other is a from thelink Networking Properties page

JDK docs. If anyone knows a better overview, please let us know via the mailing list.

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

Page 118 of 331

20.2.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as the

username and password. There are 2 ways that you can provide the domain for authenticating to a NTLM proxy:

Set the system property to a value like .http.proxyUser /domain username

Provide the authentication domain via the system property.http.auth.ntlm.domain

Page 119 of 331

21
Gradle Plugins

Gradle at its core intentionally provides little useful functionality for real world automation. All of the useful

features, such as the ability to compile Java code for example, are added by . Plugins add new tasks (e.g.plugins

), domain objects (e.g.), conventions (e.g. main Java source is located at JavaCompile SourceSet src/main/java

) as well as extending core objects and objects from other plugins.

In this chapter we will discuss how to use plugins and the terminology and concepts surrounding plugins.

21.1. Applying plugins
Plugins are said to be , which is done via the method.applied Project.apply()

Example 21.1. Applying a plugin

build.gradle

apply plugin: 'java'

Plugins advertise a short name for themselves. In the above case, we are using the short name ‘ ’ to applyjava

the .JavaPlugin

We could also have used the following syntax:

Example 21.2. Applying a plugin by type

build.gradle

apply plugin: org.gradle.api.plugins.JavaPlugin

Thanks to Gradle's default imports (see) youAppendix D, Existing IDE Support and how to cope without it

could also write:

Example 21.3. Applying a plugin by type

build.gradle

apply plugin: JavaPlugin

The application of plugins is . That is, a plugin can be applied multiple times. If the plugin hasidempotent

previously been applied, any further applications will have no effect.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/plugins/JavaPlugin.html

Page 120 of 331

A plugin is simply any class that implements the interface. Gradle provides the core plugins as part ofPlugin

its distribution so simply applying the plugin as above is all you need to do. For 3rd party plugins however, you

need to make the plugins available to the build classpath. For more information on how to do this, see

.Section 53.5, “External dependencies for the build script”

For more on writing your own plugins, see .Chapter 52, Writing Custom Plugins

21.2. What plugins do
Applying a plugin to the project allows the plugin to extend the project's capabilities. It can do things such as:

Add tasks to the project (e.g. compile, test)

Pre-configure added tasks with useful defaults.

Add dependency configurations to the project (see).Section 8.3, “Dependency configurations”

Add new properties and methods to existing type via extensions.

Let's check this out:

Example 21.4. Tasks added by a plugin

build.gradle

apply plugin: 'java'

task show << {
 println relativePath(compileJava.destinationDir)
 println relativePath(processResources.destinationDir)
}

Output of gradle -q show

> gradle -q show
build/classes/main
build/resources/main

The Java plugin has added a task and a task to the project andcompileJava processResources

configured the property of both of these tasks.destinationDir

21.3. Conventions
Plugins can pre-configure the project in smart ways to support convention-over-configuration. Gradle provides

mechanisms and sophisticated support and it's a key ingredient in powerful-yet-concise build scripts.

We saw in the example above that the Java plugins adds a task named that has a propertycompileJava

named (that configures where the compiled Java source should be placed). The Java plugindestinationDir

defaults this property to point to in the project directory. This is an example ofbuild/classes/main

convention-over-configuration via a .reasonable default

We can change this property simply by giving it a new value.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/Plugin.html

Page 121 of 331

Example 21.5. Changing plugin defaults

build.gradle

apply plugin: 'java'

compileJava.destinationDir = file()"$buildDir/output/classes"

task show << {
 println relativePath(compileJava.destinationDir)
}

Output of gradle -q show

> gradle -q show
build/output/classes

However, the task is likely to not be the only task that needs to know where the class files are.compileJava

The Java plugin adds the concept of (see) to describe the aspects of a set of source,source sets SourceSet

one aspect being where the class files should be written to when it is compiled. The Java plugin maps the destinationDir

property of the task to this aspect of the source set.compileJava

We can change where the class files are written via the source set.

Example 21.6. Plugin convention object

build.gradle

apply plugin: 'java'

sourceSets.main.output.classesDir = file()"$buildDir/output/classes"

task show << {
 println relativePath(compileJava.destinationDir)
}

Output of gradle -q show

> gradle -q show
build/output/classes

In the above example, we applied the Java plugin which, among other things, did the following:

Added a new domain object type: SourceSet

Configured a source set with default (i.e. conventional) values for propertiesmain

Configured supporting tasks to use these properties to perform work

All of this happened during the step. In the example above we theapply plugin: "java" changed

desired location of the class files after this conventional configuration had been performed. Notice by the output

with the example that the value for also changed to reflect thecompileJava.destinationDir

configuration change.

Consider the case where another task is to consume the classes files. If this task is configured to use the value

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.SourceSet.html

Page 122 of 331

from , then changing it in this location will update both the sourceSets.main.output.classesDir compileJava

task and this other consumer task whenever it is changed.

This ability to configure properties of objects to reflect the value of another object's task at all times (i.e. even

when it changes) is known as “ ”. It allows Gradle to provide conciseness throughconvention mapping

convention-over-configuration and sensible defaults yet not require complete reconfiguration if a conventional

default needs to be changed. Without this, in the above example we would have had to reconfigure every object

that needs to work with the class files.

21.4. More on plugins
This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more information

on the inner workings of plugins, see .Chapter 52, Writing Custom Plugins

Page 123 of 331

22
Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

22.1. Language plugins
These plugins add support for various languages which can be compiled and executed in the JVM.

Table 22.1. Language plugins

Plugin

Id

Automatically

applies

Works

with

Description

java java-base - Adds Java compilation, testing and bundling capabilities to a

project. It serves as the basis for many of the other Gradle

plugins. See also .Chapter 7, Java Quickstart

groovy java, groovy-base- Adds support for building Groovy projects. See also Chapter 9,

.Groovy Quickstart

scala java, scala-base- Adds support for building Scala projects.

antlr java - Adds support for generating parsers using .Antlr

22.2. Incubating language plugins
These plugins add support for various languages:

http://www.antlr.org/

Page 124 of 331

Table 22.2. Language plugins

Plugin Id Automatically

applies

Works

with

Description

cpp - - Adds C++ source compilation capabilities to a project.

cpp-exe cpp - Adds C++ executable compilation and linking

capabilities to a project.

cpp-lib cpp - Adds C++ library compilation and linking capabilities to

a project.

22.3. Integration plugins
These plugins provide some integration with various build and runtime technologies.

Page 125 of 331

Table 22.3. Integration plugins

Plugin Id Automatically

applies

Works

with

Description

announce - - Publish messages to your favourite

platforms, such as Twitter or Growl.

application java - Adds tasks for running and bundling a

project as application.

build-announcements announce - Sends local announcements to your desktop

about interesting events in the build lifecycle.

ear - java Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web

container embedded in the build. See also

.Chapter 10, Web Application Quickstart

maven - java,

war

Adds support for deploying artifacts to

Maven repositories.

osgi java-base java Adds support for building OSGi bundles.

war java - Adds support for assembling web application

WAR files. See also Chapter 10, Web

.Application Quickstart

maven2Gradle - - Adds experimental support for converting an

existing maven build into a Gradle project.

22.4. Software development plugins
These plugins provide help with your software development process.

Table 22.4. Software development plugins

Plugin Id Automatically

applies

Works

with

Description

Page 126 of 331

checkstyle java-base - Performs quality checks on your project's

Java source files using andCheckstyle

generates reports from these checks.

codenarc groovy-base - Performs quality checks on your project's

Groovy source files using andCodeNarc

generates reports from these checks.

eclipse - java, groovy

, scala

Generates files that are used by ,Eclipse IDE

thus making it possible to import the project

into Eclipse. See also Chapter 7, Java

.Quickstart

eclipse-wtp - ear, war Does the same as the eclipse plugin plus

generates eclipse WTP (Web Tools

Platform) configuration files. After

importing to eclipse your war/ear projects

should be configured to work with WTP. See

also .Chapter 7, Java Quickstart

findbugs java-base - Performs quality checks on your project's

Java source files using andFindBugs

generates reports from these checks.

idea - java Generates files that are used by Intellij IDEA

, thus making it possible to import theIDE

project into IDEA.

jdepend java-base - Performs quality checks on your project's

source files using and generatesJDepend

reports from these checks.

pmd java-base - Performs quality checks on your project's

Java source files using and generatesPMD

reports from these checks.

project-report reporting-base - Generates reports containing useful

information about your Gradle build.

signing base - Adds the ability to digitally sign built files

and artifacts.

sonar - - Provides integration with the codeSonar

quality platform.

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net
http://www.sonarsource.org

Page 127 of 331

22.5. Base plugins
These plugins form the basic building blocks which the other plugins are assembled from. They are available for

you to use in your build files, and are listed here for completeness. However, be aware that they are not yet

considered part of Gradle's public API. As such, these plugins are not documented in the user guide. You might

refer to their API documentation to learn more about them.

Table 22.5. Base plugins

Plugin Id Description

base Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

adds build tasks. Those tasks assemble the artifactsConfigurationName

belonging to the specified configuration.

adds upload tasks. Those tasks assemble and upload theConfigurationName

artifacts belonging to the specified configuration.

configures reasonable default values for all archive tasks (e.g. tasks that inherit from

). For example, the archive tasks are tasks of types: , AbstractArchiveTask Jar

, . Specifically, , and propertiesTar Zip destinationDir baseName version

of the archive tasks are preconfigured with defaults. This is extremely useful because

it drives consistency across projects; the consistency regarding naming conventions of

archives and their location after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.

groovy-base Adds the Groovy source sets concept to the project.

scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

22.6. Third party plugins
You can find a list of external plugins on the .wiki

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://wiki.gradle.org/display/GRADLE/Plugins

Page 128 of 331

23
The Java Plugin

The Java plugin adds Java compilation, testing and bundling capabilities to a project. It serves as the basis for

many of the other Gradle plugins.

23.1. Usage
To use the Java plugin, include in your build script:

Example 23.1. Using the Java plugin

build.gradle

apply plugin: 'java'

23.2. Source sets
The Java plugin introduces the concept of a . A source set is simply a group of source files which aresource set

compiled and executed together. These source files may include Java source files and resource files. Other

plugins add the ability to include Groovy and Scala source files in a source set. A source set has an associated

compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For example,

you might use a source set to define an integration test suite, or you might use separate source sets to define the

API and implementation classes of your project.

The Java plugin defines two standard source sets, called and . The source set contains yourmain test main

production source code, which is compiled and assembled into a JAR file. The source set contains yourtest

unit test source code, which is compiled and executed using JUnit or TestNG.

23.3. Tasks
The Java plugin adds a number of tasks to your project, as shown below.

Table 23.1. Java plugin - tasks

Task name Depends on Type Description

Page 129 of 331

compileJava All tasks which produce the

compile classpath. This

includes the task forjar

project dependencies

included in the compile

configuration.

JavaCompile Compiles

production Java

source files using

javac.

processResources - Copy Copies production

resources into the

production classes

directory.

classes and compileJava processResources

. Some plugins add additional

compilation tasks.

Task Assembles the

production classes

directory.

compileTestJava , plus all taskscompile

which produce the test

compile classpath.

JavaCompile Compiles test Java

source files using

javac.

processTestResources - Copy Copies test

resources into the

test classes

directory.

testClasses and compileTestJava processTestResources

. Some plugins add additional

test compilation tasks.

Task Assembles the test

classes directory.

jar compile Jar Assembles the JAR

file

javadoc compile Javadoc Generates API

documentation for

the production Java

source, using

Javadoc

test , ,compile compileTest

plus all tasks which produce

the test runtime classpath.

Test Runs the unit tests

using JUnit or

TestNG.

uploadArchives The tasks which produce the

artifacts in the archives

configuration, including .jar

Upload Uploads the

artifacts in the archives

configuration,

including the JAR

file.

clean - Delete Deletes the project

build directory.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html

Page 130 of 331

cleanTaskName - Delete Deletes the output

files produced by

the specified task.

For example cleanJar

will delete the JAR

file created by the jar

task, and cleanTest

will delete the test

results created by

the task.test

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Table 23.2. Java plugin - source set tasks

Task name Depends on Type Description

compile JavaSourceSetAll tasks which produce the source set's compile

classpath.

JavaCompile Compiles

the given

source set's

Java source

files using

javac.

process ResourcesSourceSet- Copy Copies the

given

source set's

resources

into the

classes

directory.

ClassessourceSet and compile JavaSourceSet process ResourcesSourceSet

. Some plugins add additional compilation tasks for

the source set.

Task Assembles

the given

source set's

classes

directory.

The Java plugin also adds a number of tasks which form a lifecycle for the project:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html

Page 131 of 331

Table 23.3. Java plugin - lifecycle tasks

Task name Depends on Type Description

assemble All archive tasks in the project,

including . Some pluginsjar

add additional archive tasks to

the project.

Task Assembles all the archives in

the project.

check All verification tasks in the

project, including . Sometest

plugins add additional

verification tasks to the

project.

Task Performs all verification tasks

in the project.

build and check assemble Task Performs a full build of the

project.

buildNeeded and tasks in allbuild build

project lib dependencies of the testRuntime

configuration.

Task Performs a full build of the

project and all projects it

depends on.

buildDependents and tasks in allbuild build

projects with a project lib

dependency on this project in a

 configuration.testRuntime

Task Performs a full build of the

project and all projects which

depend on it.

buildConfigurationNameThe tasks which produce the

artifacts in configuration

.ConfigurationName

Task Assembles the artifacts in the

specified configuration. The

task is added by the Base

plugin which is implicitly

applied by the Java plugin.

uploadConfigurationNameThe tasks which uploads the

artifacts in configuration

.ConfigurationName

Upload Assembles and uploads the

artifacts in the specified

configuration. The task is

added by the Base plugin

which is implicitly applied by

the Java plugin.

The following diagram shows the relationships between these tasks.

Figure 23.1. Java plugin - tasks

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Upload.html

Page 132 of 331

23.4. Project layout
The Java plugin assumes the project layout shown below. None of these directories need exist or have anything

in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 23.4. Java plugin - default project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/test/java Test Java source

src/test/resources Test resources

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

23.4.1. Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in more detail in

the following sections. Here is a brief example which changes the main Java and resource source directories.

Example 23.2. Custom Java source layout

build.gradle

sourceSets {
 main {
 java {
 srcDir 'src/java'
 }
 resources {
 srcDir 'src/resources'
 }
 }
}

23.5. Dependency management
The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns those

configurations to tasks such as and .compileJava test

Page 133 of 331

Table 23.5. Java plugin - dependency configurations

Name Extends Used by tasks Meaning

compile - compileJava Compile time dependencies

runtime compile - Runtime dependencies

testCompile compile compileTestJava Additional dependencies for compiling tests.

testRuntime runtime,

testCompile

test Additional dependencies for running tests only.

archives - uploadArchives Artifacts (e.g. jars) produced by this project.

default runtime - The default configuration used by a project

dependency on this project. Contains the artifacts and

dependencies required by this project at runtime.

Figure 23.2. Java plugin - dependency configurations

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Table 23.6. Java plugin - source set dependency configurations

Name Extends Used by tasks Meaning

sourceSet

Compile

- compile

JavaSourceSet

Compile time dependencies for the given

source set

sourceSet

Runtime

sourceSet

Compile

- Runtime time dependencies for the given

source set

23.6. Convention properties
The Java plugin adds a number of convention properties to the project, shown below. You can use these

properties in your build script as though they were properties of the project object (see Section 21.3,

).“Conventions”

Table 23.7. Java plugin - directory properties

Property name Type Default value Description

Page 134 of 331

reportsDirName String reports The name of the

directory to

generate reports

into, relative to the

build directory.

reportsDir File

(read-only)

/buildDir reportsDirName The directory to

generate reports

into.

testResultsDirName String test-results The name of the

directory to

generate test result

.xml files into,

relative to the

build directory.

testResultsDir File

(read-only)

/buildDir testResultsDirNameThe directory to

generate test result

.xml files into.

testReportDirName String tests The name of the

directory to

generate the test

report into, relative

to the reports

directory.

testReportDir File

(read-only)

/reportsDir testReportDirNameThe directory to

generate the test

report into.

libsDirName String libs The name of the

directory to

generate libraries

into, relative to the

build directory.

libsDir File

(read-only)

/buildDir libsDirName The directory to

generate libraries

into.

distsDirName String distributions The name of the

directory to

generate

distributions into,

relative to the

build directory.

distsDir File

(read-only)

/buildDir distsDirName The directory to

generate

distributions into.

Page 135 of 331

docsDirName String docs The name of the

directory to

generate

documentation

into, relative to the

build directory.

docsDir File

(read-only)

/buildDir docsDirName The directory to

generate

documentation

into.

dependencyCacheDirName String dependency-cache The name of the

directory to use to

cache source

dependency

information,

relative to the

build directory.

dependencyCacheDir File

(read-only)

/buildDir dependencyCacheDirNameThe directory to

use to cache

source dependency

information.

Page 136 of 331

Table 23.8. Java plugin - other properties

Property name Type Default value Description

sourceSets SourceSetContainer

(read-only)

Not null Contains the

project's

source sets.

sourceCompatibility JavaVersion. Can also

set using a String or a

Number, eg or '1.5' 1.5

.

Value of the current used

JVM

Java version

compatibility

to use when

compiling

Java source.

targetCompatibility JavaVersion. Can also

set using a String or

Number, eg or '1.5' 1.5

.

sourceCompatibility Java version

to generate

classes for.

archivesBaseName String projectName The

basename to

use for

archives,

such as JAR

or ZIP files.

manifest Manifest an empty manifest The manifest

to include in

all JAR files.

These properties are provided by convention objects of type , JavaPluginConvention

 and .BasePluginConvention ReportingBasePluginConvention

23.7. Working with source sets
You can access the source sets of a project using the property. This is a container for thesourceSets

project's source sets, of type . There is also a script block,SourceSetContainer sourceSets { }

which you can pass a closure to configure the source set container. The source set container works pretty much

the same way as other containers, such as .tasks

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.ReportingBasePluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/SourceSetContainer.html

Page 137 of 331

Example 23.3. Accessing a source set

build.gradle

// Various ways to access the main source set
println sourceSets.main.output.classesDir
println sourceSets[].output.classesDir'main'
sourceSets {
 println main.output.classesDir
}
sourceSets {
 main {
 println output.classesDir
 }
}

// Iterate over the source sets
sourceSets.all {
 println name
}

To configure an existing source set, you simply use one of the above access methods to set the properties of the

source set. The properties are described below. Here is an example which configures the main Java and

resources directories:

Example 23.4. Configuring the source directories of a source set

build.gradle

sourceSets {
 main {
 java {
 srcDir 'src/java'
 }
 resources {
 srcDir 'src/resources'
 }
 }
}

23.7.1. Source set properties

The following table lists some of the important properties of a source set. You can find more details in the API

documentation for .SourceSet

Table 23.9. Java plugin - source set properties

Property name Type Default value Description

name (read-only)String Not null The name of the

source set, used

to identify it.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.SourceSet.html

Page 138 of 331

output SourceSetOutput

(read-only)

Not null The output files

of the source set,

containing its

compiled classes

and resources.

output.classesDir File /classes/buildDir nameThe directory to

generate the

classes of this

source set into.

output.resourcesDir File /resources/buildDir nameThe directory to

generate the

resources of this

source set into.

compileClasspath FileCollection compileSourceSet

configuration.

The classpath to

use when

compiling the

source files of

this source set.

runtimeClasspath FileCollection + output runtimeSourceSet

configuration.

The classpath to

use when

executing the

classes of this

source set.

java SourceDirectorySet

(read-only)

Not null The Java source

files of this

source set.

Contains only .java

files found in the

Java source

directories, and

excludes all

other files.

java.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[/src/ /java]projectDir nameThe source

directories

containing the

Java source files

of this source

set.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html

Page 139 of 331

resources SourceDirectorySet

(read-only)

Not null The resources of

this source set.

Contains only

resources, and

excludes any .java

files found in the

resource source

directories.

Other plugins,

such as the

Groovy plugin,

exclude

additional types

of files from this

collection.

resources.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[/src/ /resources]projectDir nameThe source

directories

containing the

resources of this

source set.

allJava SourceDirectorySet

(read-only)

java All files.java

of this source

set. Some

plugins, such as

the Groovy

plugin, add

additional Java

source files to

this collection.

allSource SourceDirectorySet

(read-only)

resources + java All source files

of this source

set. This include

all resource files

and all Java

source files.

Some plugins,

such as the

Groovy plugin,

add additional

source files to

this collection.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html

Page 140 of 331

23.7.2. Defining new source sets

To define a new source set, you simply reference it in the block. Here's an example:sourceSets { }

Example 23.5. Defining a source set

build.gradle

sourceSets {
 intTest
}

When you define a new source set, the Java plugin adds some dependency configurations for the source set, as

shown in . You can use these configurations toTable 23.6, “Java plugin - source set dependency configurations”

define the compile and runtime dependencies of the source set.

Example 23.6. Defining source set dependencies

build.gradle

sourceSets {
 intTest
}

dependencies {
 intTestCompile 'junit:junit:4.8.2'
 intTestRuntime 'org.ow2.asm:asm-all:4.0'
}

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in

. For example, for a source set called , you can run Table 23.2, “Java plugin - source set tasks” intTest gradle intTestClasses

to compile the int test classes.

Example 23.7. Compiling a source set

Output of gradle intTestClasses

> gradle intTestClasses
:compileIntTestJava
:processIntTestResources
:intTestClasses

BUILD SUCCESSFUL

Total time: 1 secs

23.7.3. Some source set examples

Adding a JAR containing the classes of a source set:

Page 141 of 331

Example 23.8. Assembling a JAR for a source set

build.gradle

task intTestJar(type: Jar) {
 from sourceSets.intTest.output
}

Generating Javadoc for a source set:

Example 23.9. Generating the Javadoc for a source set

build.gradle

task intTestJavadoc(type: Javadoc) {
 source sourceSets.intTest.allJava
}

Adding a test suite to run the tests in a source set:

Example 23.10. Running tests in a source set

build.gradle

task intTest(type: Test) {
 testClassesDir = sourceSets.intTest.output.classesDir
 classpath = sourceSets.intTest.runtimeClasspath
}

23.8. Javadoc
The task is an instance of . It supports the core javadoc options and the options of thejavadoc Javadoc

standard doclet described in the of the Javadoc executable. For a complete list ofreference documentation

supported Javadoc options consult the API documentation of the following classes: CoreJavadocOptions

and .StandardJavadocDocletOptions

Table 23.10. Java plugin - Javadoc properties

Task Property Type Default Value

classpath FileCollection sourceSets.main.output + sourceSets.main.compileClasspath

source FileTree. Can set

using anything

described in

Section 16.5,

“Specifying a set of

.input files”

sourceSets.main.allJava

destinationDir File /javadocdocsDir

title String The name and version of the project

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileTree.html

Page 142 of 331

23.9. Clean
The task is an instance of . It simply removes the directory denoted by its property.clean Delete dir

Table 23.11. Java plugin - Clean properties

Task Property Type Default Value

dir File buildDir

23.10. Resources
The Java plugin uses the task for resource handling. It adds an instance for each source set in the project.Copy

You can find out more about the copy task in .Section 16.6, “Copying files”

Table 23.12. Java plugin - ProcessResources properties

Task Property Type Default Value

srcDirs Object. Can set using anything described in

.Section 16.5, “Specifying a set of input files”

.resourcessourceSet

destinationDir File. Can set using anything described in

.Section 16.1, “Locating files”

.output.resourcesDirsourceSet

23.11. CompileJava
The Java plugin adds a instance for each source set in the project. Some of the most commonJavaCompile

configuration options are shown below.

Table 23.13. Java plugin - Compile properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source FileTree. Can set using anything described in

.Section 16.5, “Specifying a set of input files”

.javasourceSet

destinationDir File. .output.classesDirsourceSet

The compile task delegates to Ant's javac task. Setting to activates Gradle's directoptions.useAnt false

compiler integration, bypassing the Ant task. In a future Gradle release, this will become the default.

By default, the Java compiler runs in the Gradle process. Setting to causes compilationoptions.fork true

to occur in a separate process. In the case of the Ant javac task, this means that a new process will be forked for

each compile task, which can slow down compilation. Conversely, Gradle's direct compiler integration (see

above) will reuse the same compiler process as much as possible. In both cases, all fork options specified with options.forkOptions

will be honored.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileTree.html

Page 143 of 331

23.12. Test
The task is an instance of . It automatically detects and executes all unit tests in the sourcetest Test test

set. It also generates a report once test execution is complete. JUnit and TestNG are both supported. Have a look

at for the complete API.Test

23.12.1. Test execution

Tests are executed in a separate isolated JVM. The task's API allows you some control over how thisTest

happens.

There are a number of properties which control how the test process is launched. This includes things such as

system properties, JVM arguments, and the Java executable to use. The task also provides a property,debug

which when set to true, starts the test process in debug mode, suspended and listening on port 5005. This makes

it very easy to debug your tests. You may also enable this using a system property as specified below.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test execution by

running multiple test processes concurrently. Each test process executes only a single test at a time, so you

generally don't need to do anything special to your tests to take advantage of this. The maxParallelForks

property specifies the maximum number of test processes to run at any given time. The default is 1, that is, do

not execute the tests in parallel.

The test process sets the system property to a unique identifier for that testorg.gradle.test.worker

process, which you can use, for example, in files names or other resource identifiers.

You can specify that test processes should be restarted after it has executed a certain number of test classes. This

can be a useful alternative to giving your test process a very large heap. The property specifies theforkEvery

maximum number of test classes to execute in a test process. The default is to execute an unlimited number of

tests in each test process.

The task has an property to control the behavior when tests fail. Test always executesignoreFailures

every test that it detects. It stops the build afterwards if is false and there are failing tests.ignoreFailures

The default value of is false.ignoreFailures

The property allows to configure which test events are going to be logged and at which detailtestLogging

level. By default, a concise message will be logged for every failed test. See forTestLoggingContainer

how to tune test logging to your preferences.

23.12.2. System properties

There are two system properties that can affect test execution. Both of these are based off of the name of the test

task with a suffix.

Setting a system property of = will only execute tests that matchtaskName.single testNamePattern

the specified . The can be a full multi-project path like ":sub1:sub2:test" ortestNamePattern taskName

just the task name. The will be used to form an include pattern oftestNamePattern

"**/testNamePattern*.class". If no tests with this pattern can be found an exception is thrown. This is to shield

you from false security. If tests of more then one subproject are executed, the pattern is applied to each

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html

Page 144 of 331

subproject. An exception is thrown if no tests can be found for a particular subproject. In such a case you can

use the path notation of the pattern, so that the pattern is applied only to the test task of a specific subproject.

Alternatively you can specify the fully qualified task name to be executed. You can also specify multiple

patterns. Examples:

gradle -Dtest.single=ThisUniquelyNamedTest test

gradle -Dtest.single=a/b/ test

gradle -DintegTest.single=*IntegrationTest integTest

gradle -Dtest.single=:proj1:test:Customer build

gradle -DintegTest.single=c/d/ :proj1:integTest

Setting a system property of will run the tests in debug mode, suspended and listening ontaskName.debug

port 5005. For example: gradle test -Dtest.single=ThisUniquelyNamedTest -Dtest.debug

23.12.3. Test detection

The task detects which classes are test classes by inspecting the compiled test classes. By default it scansTest

all files. You can set custom includes / excludes, only those classes will be scanned. Depending on the.class

test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the class is

considered to be a JUnit test class:

Class or a super class extends or TestCase GroovyTestCase

Class or a super class is annotated with @RunWith

Class or a super class contain a method annotated with @Test

When using TestNG, we scan for methods annotated with .@Test

Note that abstract classes are not executed. Gradle also scan up the inheritance tree into jar files on the test

classpath.

In case you don't want to use the test class detection, you can disable it by setting toscanForTestClasses

false. This will make the test task only use the includes / excludes to find test classes. If scanForTestClasses

is disabled and no include or exclude patterns are specified, the respective defaults are used. For include this is "**/*Tests.class", "**/*Test.class"

and the for exclude it is ."**/Abstract*.class"

23.12.4. Convention values

Table 23.14. Java plugin - test properties

Task Property Type Default Value

testClassesDir File sourceSets.test.output.classesDir

classpath FileCollection sourceSets.test.runtimeClasspath

testResultsDir File testResultsDir

testReportDir File testReportDir

testSrcDirs List<File> sourceSets.test.java.srcDirs

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html

Page 145 of 331

23.13. Jar
The task creates a JAR file containing the class files and resources of the project. The JAR file is declaredjar

as an artifact in the dependency configuration. This means that the JAR is available in the classpatharchives

of a dependent project. If you upload your project into a repository, this JAR is declared as part of the

dependency descriptor. You can learn more about how to work with archives in Section 16.8, “Creating

 and artifact configurations in .archives” Chapter 45, Publishing artifacts

23.13.1. Manifest

Each jar or war object has a property with a separate instance of . When the archive ismanifest Manifest

generated, a corresponding file is written into the archive.MANIFEST.MF

Example 23.11. Customization of MANIFEST.MF

build.gradle

jar {
 manifest {
 attributes(: , : version)"Implementation-Title" "Gradle" "Implementation-Version"
 }
}

You can create stand alone instances of a . You can use that for example, to share manifestManifest

information between jars.

Example 23.12. Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {
 attributes(: , : version)"Implementation-Title" "Gradle" "Implementation-Version"
}
task fooJar(type: Jar) {
 manifest = project.manifest {
 from sharedManifest
 }
}

You can merge other manifests into any object. The other manifests might be either described by aManifest

file path or, like in the example above, by a reference to another object.Manifest

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html

Page 146 of 331

Example 23.13. Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {
 manifest {
 attributes key1: 'value1'
 from sharedManifest, 'src/config/basemanifest.txt'
 from(,) {'src/config/javabasemanifest.txt' 'src/config/libbasemanifest.txt'
 eachEntry { details ->
 (details.baseValue != details.mergeValue) {if
 details.value = baseValue
 }
 (details.key ==) {if 'foo'
 details.exclude()
 }
 }
 }
 }
}

Manifest are merged in the order they are declared by the statement. If the based manifest and the mergedfrom

manifest both define values for the same key, the merged manifest wins by default. You can fully customize the

merge behavior by adding actions in which you have access to a eachEntry ManifestMergeDetails

instance for each entry of the resulting manifest. The merge is not immediately triggered by the from statement.

It is done lazily, either when generating the jar, or by calling or writeTo effectiveManifest

You can easily write a manifest to disk.

Example 23.14. Separate MANIFEST.MF for a particular archive

build.gradle

jar.manifest.writeTo()"$buildDir/mymanifest.mf"

23.14. Uploading
How to upload your archives is described in .Chapter 45, Publishing artifacts

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

Page 147 of 331

24
The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy-only

projects and with mixed Java/Groovy projects. It can even deal with Java-only projects. The Groovy plugin[]9

supports joint compilation of Java and Groovy. This means that your project can contain Groovy classes which

use Java classes, and vice versa.

24.1. Usage
To use the Groovy plugin, include in your build script:

Example 24.1. Using the Groovy plugin

build.gradle

apply plugin: 'groovy'

24.2. Tasks
The Groovy plugin adds the following tasks to the project.

Table 24.1. Groovy plugin - tasks

Task name Depends on Type Description

compileGroovy compileJava GroovyCompile Compiles production

Groovy source files using

groovyc.

compileTestGroovy compileTestJava GroovyCompile Compiles test Groovy

source files using groovyc.

compile GroovySourceSet compile JavaSourceSet GroovyCompile Compiles the given source

set's Groovy source files

using groovyc.

groovydoc - Groovydoc Generates API

documentation for the

production Groovy source

files using groovydoc.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Page 148 of 331

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 24.2. Groovy plugin - additional task dependencies

Task name Depends on

classes compileGroovy

testClasses compileTestGroovy

sourceSetClasses compile GroovySourceSet

Figure 24.1. Groovy plugin - tasks

24.3. Project layout
The Groovy plugin assumes the project layout shown in . All theTable 24.3, “Groovy plugin - project layout”

Groovy source directories can contain Groovy Java code. The Java source directories may only containand

Java source code. None of these directories need exist or have anything in them. The Groovy plugin will[]10

compile whatever it finds, and handles anything which is missing.

Table 24.3. Groovy plugin - project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/main/groovy Production Groovy source. May also contain Java source for joint

compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/groovy Test Groovy source. May also contain Java source for joint compilation.

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

src/ /groovysourceSet Groovy source for the given source set. May also contain Java source for

joint compilation.

Page 149 of 331

24.3.1. Changing the project layout

TBD

Example 24.2. Custom Groovy source layout

build.gradle

sourceSets {
 main {
 groovy {
 srcDir 'src/groovy'
 }
 }
}

24.4. Dependency management
The Groovy plugin adds a dependency configuration called .groovy

Gradle is written in Groovy and allows you to write your build scripts in Groovy. But this is an internal aspect

of Gradle which is strictly separated from building Groovy projects. You are free to choose the Groovy version

your project should be build with. This Groovy version is not just used for compiling your code and running

your tests. The compiler and the tool are also taken from the Groovy version yougroovyc groovydoc

provide. As usual, with freedom comes responsibility ;). You are not just free to choose a Groovy version, you

have to provide one. Gradle expects that the groovy libraries are assigned to the dependencygroovy

configuration. Here is an example using the public Maven repository:

Example 24.3. Configuration of Groovy plugin

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 groovy group: , name: , version: 'org.codehaus.groovy' 'groovy' '1.7.10'
}

And here is an example using the Groovy JARs checked into the directory of the source tree:lib

Page 150 of 331

Example 24.4. Configuration of Groovy plugin

build.gradle

repositories {
 flatDir { dirs }'lib'
}

dependencies {
 groovy module() {':groovy:1.6.0'
 dependency()'asm:asm-all:2.2.3'
 dependency()'antlr:antlr:2.7.7'
 dependency()'commons-cli:commons-cli:1.2'
 module() {':ant:1.7.0'
 dependencies(,)':ant-junit:1.7.0:jar' ':ant-launcher:1.7.0'
 }
 }
}

24.5. Convention properties
The Groovy plugin does not add any convention properties to the project.

24.6. Source set properties
The Groovy plugin adds the following convention properties to each source set in the project. You can use these

properties in your build script as though they were properties of the source set object (see Section 21.3,

).“Conventions”

Table 24.4. Groovy plugin - source set properties

Property name Type Default value Description

groovy SourceDirectorySet

(read-only)

Not null The Groovy source files of this

source set. Contains all .groovy

and files found in the.java

Groovy source directories, and

excludes all other types of files.

groovy.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[/src/ /groovy]projectDir nameThe source directories containing

the Groovy source files of this

source set. May also contain Java

source files for joint compilation.

allGroovy (read-only)FileTree Not null All Groovy source files of this

source set. Contains only the .groovy

files found in the Groovy source

directories.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileTree.html

Page 151 of 331

These properties are provided by a convention object of type .GroovySourceSet

The Groovy plugin also modifies some source set properties:

Table 24.5. Groovy plugin - source set properties

Property name Change

allJava Adds all files found in the Groovy source directories..java

allSource Adds all source files found in the Groovy source directories.

24.7. CompileGroovy
The Groovy plugin adds a instance for each source set in the project. The task type extendsGroovyCompile

the task (see). The compile task delegates to the Ant Groovyc task toCompile Section 23.11, “CompileJava”

do the compile. Via the compile task you can set most of the properties of Ants Groovyc task.

Table 24.6. Groovy plugin - CompileGroovy properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source FileTree. Can set using anything described in

.Section 16.5, “Specifying a set of input files”

.groovysourceSet

destinationDir File. .output.classesDirsourceSet

groovyClasspath FileCollection groovy configuration

[] 9 We don't recommend this, as the Groovy plugin uses the Ant task to compile the sources. For pureGroovyc

Java projects you might rather stick with . In particular as you would have to supply a groovy jar forjavac

doing this.

[] 10 We are using the same conventions as introduced by Russel Winders Gant tool ().http://gant.codehaus.org

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileCollection.html
http://gant.codehaus.org

Page 152 of 331

25
The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala-only projects

and with mixed Java/Scala projects. It can even deal with Java-only projects. The Scala plugin supports joint

compilation of Java and Scala source. This means your project can contain Scala classes which use Java classes,

and vice versa.

25.1. Usage
To use the Scala plugin, include in your build script:

Example 25.1. Using the Scala plugin

build.gradle

apply plugin: 'scala'

25.2. Tasks
The Scala plugin adds the following tasks to the project.

Table 25.1. Scala plugin - tasks

Task name Depends on Type Description

compileScala compileJava ScalaCompile Compiles production Scala

source files using scalac.

compileTestScala compileTestJava ScalaCompile Compiles test Scala source files

using scalac.

compile ScalaSourceSet compile JavaSourceSet ScalaCompile Compiles the given source set's

Scala source files using scalac.

scaladoc - ScalaDoc Generates API documentation

for the production Scala source

files using scaladoc.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Page 153 of 331

Table 25.2. Scala plugin - additional task dependencies

Task name Depends on

classes compileScala

testClasses compileTestScala

ClassessourceSet compile ScalaSourceSet

Figure 25.1. Scala plugin - tasks

25.3. Project layout
The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala

 Java code. The Java source directories may only contain Java source code. None of these directories needand

exist or have anything in them. The Scala plugin will compile whatever it finds, and handles anything which is

missing.

Table 25.3. Scala plugin - project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/main/scala Production Scala source. May also contain Java source for joint

compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/scala Test Scala source. May also contain Java source for joint compilation.

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

src/ /scalasourceSet Scala source for the given source set. May also contain Java source for

joint compilation.

25.3.1. Changing the project layout

TBD

Page 154 of 331

Example 25.2. Custom Scala source layout

build.gradle

sourceSets {
 main {
 scala {
 srcDir 'src/scala'
 }
 }
}

25.4. Dependency Management
The Scala plugin adds a configuration, which it uses to locate the Scala tools, such as scalac, toscalaTools

use. You must specify the version of Scala to use. Below is an example.

Example 25.3. Declaring the Scala version to use

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 // Libraries needed to run the scala tools
 scalaTools 'org.scala-lang:scala-compiler:2.8.1'
 scalaTools 'org.scala-lang:scala-library:2.8.1'

 // Libraries needed for scala api
 compile 'org.scala-lang:scala-library:2.8.1'
}

25.5. Convention Properties
The Scala plugin does not add any convention properties to the project.

25.6. Source set properties
The Scala plugin adds the following convention properties to each source set in the project. You can use these

properties in your build script as though they were properties of the source set object (see Section 21.3,

).“Conventions”

Page 155 of 331

Table 25.4. Scala plugin - source set properties

Property name Type Default value Description

scala SourceDirectorySet

(read-only)

Not null The Scala source files of this

source set. Contains all .scala

and files found in the.java

Scala source directories, and

excludes all other types of files.

scala.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[/src/ /scala]projectDir nameThe source directories containing

the Scala source files of this

source set. May also contain Java

source files for joint compilation.

allScala (read-only)FileTree Not null All Scala source files of this

source set. Contains only the .scala

files found in the Scala source

directories.

These convention properties are provided by a convention object of type .ScalaSourceSet

The Scala plugin also modifies some source set properties:

Table 25.5. Scala plugin - source set properties

Property name Change

allJava Adds all files found in the Scala source directories..java

allSource Adds all source files found in the Scala source directories.

25.7. Fast Scala Compiler
The Scala plugin includes support for , the Fast Scala Compiler. runs in a separate daemon process andfsc fsc

can speed up compilation significantly.

Example 25.4. Enabling the Fast Scala Compiler

build.gradle

compileScala {
 scalaCompileOptions.useCompileDaemon = true

 // optionally specify host and port of the daemon:
 scalaCompileOptions.daemonServer = "localhost:4243"
}

Note that expects to be restarted whenever the of its compile class path change. (It does detectfsc contents

changes to the compile class path itself.) This makes it less suitable for multi-project builds.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.ScalaSourceSet.html
http://www.scala-lang.org/docu/files/tools/fsc.html

Page 156 of 331

26
The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It disables

the default JAR archive generation of the Java plugin and adds a default WAR archive task.

26.1. Usage
To use the War plugin, include in your build script:

Example 26.1. Using the War plugin

build.gradle

apply plugin: 'war'

26.2. Tasks
The War plugin adds the following tasks to the project.

Table 26.1. War plugin - tasks

Task name Depends on Type Description

war compile War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 26.2. War plugin - additional task dependencies

Task name Depends on

assemble war

Figure 26.1. War plugin - tasks

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.War.html

Page 157 of 331

26.3. Project layout
Table 26.3. War plugin - project layout

Directory Meaning

src/main/webapp Web application sources

26.4. Dependency management
The War plugin adds two dependency configurations: and . ThoseprovidedCompile providedRuntime

configurations have the same scope as the respective and configurations, except that theycompile runtime

are not added to the WAR archive. It is important to note that those configurations workprovided

transitively. Let's say you add to any of thecommons-httpclient:commons-httpclient:3.0

provided configurations. This dependency has a dependency on . This means neither commons-codec httpclient

nor is added to your WAR, even if were an explicit dependency of your commons-codec commons-codec compile

configuration. If you don't want this transitive behavior, simply declare your dependencies like provided commons-httpclient:commons-httpclient:3.0@jar

.

26.5. Convention properties
Table 26.4. War plugin - directory properties

Property name Type Default value Description

webAppDirName String src/main/webapp The name of the web application source

directory, relative to the project directory.

webAppDir File

(read-only)

/projectDir webAppDirNameThe web application source directory.

These properties are provided by a convention object.WarPluginConvention

26.6. War
The default behavior of the War task is to copy the content of to the root of the archive.src/main/webapp

Your directory may of course contain a sub-directory, which again may contain a webapp WEB-INF web.xml

file. Your compiled classes are compiled to . All the dependencies of the WEB-INF/classes runtime []11

configuration are copied to .WEB-INF/lib

Have also a look at .War

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.War.html

Page 158 of 331

26.7. Customizing
Here is an example with the most important customization options:

Example 26.2. Customization of war plugin

build.gradle

configurations {
 moreLibs
}

repositories {
 flatDir { dirs }"lib"
 mavenCentral()
}

dependencies {
 compile module() {":compile:1.0"
 dependency ":compile-transitive-1.0@jar"
 dependency ":providedCompile-transitive:1.0@jar"
 }
 providedCompile "javax.servlet:servlet-api:2.5"
 providedCompile module() {":providedCompile:1.0"
 dependency ":providedCompile-transitive:1.0@jar"
 }
 runtime ":runtime:1.0"
 providedRuntime ":providedRuntime:1.0@jar"
 testCompile "junit:junit:4.8.2"
 moreLibs ":otherLib:1.0"
}

war {
 from 'src/rootContent' // adds a file-set to the root of the archive
 webInf { from } 'src/additionalWebInf' // adds a file-set to the WEB-INF dir.
 classpath fileTree() 'additionalLibs' // adds a file-set to the WEB-INF/lib dir.
 classpath configurations.moreLibs // adds a configuration to the WEB-INF/lib dir.
 webXml = file() 'src/someWeb.xml' // copies a file to WEB-INF/web.xml
}

Of course one can configure the different file-sets with a closure to define excludes and includes.

[] 11 The configuration extends the configuration.runtime compile

Page 159 of 331

27
The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task. It

doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR archive

generation.

27.1. Usage
To use the Ear plugin, include in your build script:

Example 27.1. Using the Ear plugin

build.gradle

apply plugin: 'ear'

27.2. Tasks
The Ear plugin adds the following tasks to the project.

Table 27.1. Ear plugin - tasks

Task

name

Depends on Type Description

ear (only if the Java plugin is alsocompile

applied)

Ear Assembles the application EAR

file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 27.2. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 160 of 331

27.3. Project layout
Table 27.3. Ear plugin - project layout

Directory Meaning

src/main/application Ear resources, such as a META-INF directory

27.4. Dependency management
The Ear plugin adds two dependency configurations: and . All dependencies in the deploy earlib deploy

configuration are placed in the root of the EAR archive, and are transitive. All dependencies in the not earlib

configuration are placed in the 'lib' directory in the EAR archive and transitive.are

27.5. Convention properties
Table 27.4. Ear plugin - directory properties

Property name Type

appDirName String

libDirName String

deploymentDescriptor org.gradle.plugins.ear.descriptor.DeploymentDescriptor

These properties are provided by a convention object.EarPluginConvention

27.6. Ear
The default behavior of the Ear task is to copy the content of to the root of thesrc/main/application

archive. If your directory doesn't contain a deploymentapplication META-INF/application.xml

descriptor then one will be generated for you.

Also have a look at .Ear

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ear.EarPluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 161 of 331

27.7. Customizing
Here is an example with the most important customization options:

Example 27.2. Customization of ear plugin

build.gradle

apply plugin: 'ear'
apply plugin: 'java'

repositories { mavenCentral() }

dependencies {
 //following dependencies will become the ear modules and placed in the ear root
 deploy project()':war'

 //following dependencies will become ear libs and placed in a dir configured via libDirName property
 earlib group: , name: , version: , ext: 'log4j' 'log4j' '1.2.15' 'jar'
}

ear {
 appDirName 'src/main/app' // use application metadata found in this folder
 libDirName 'APP-INF/lib' // put dependency libraries into APP-INF/lib inside the generated EAR;
 // also modify the generated deployment descriptor accordingly
 deploymentDescriptor { // custom entries for application.xml:
// fileName = "application.xml" // same as the default value
// version = "6" // same as the default value
 applicationName = "customear"
 initializeInOrder = true
 displayName = "Custom Ear" // defaults to project.name
 description = "My customized EAR for the Gradle documentation" // defaults to project.description
// libraryDirectory = "APP-INF/lib" // not needed, because setting libDirName above did this for us
// module("my.jar", "java") // wouldn't deploy since my.jar isn't a deploy dependency
// webModule("my.war", "/") // wouldn't deploy since my.war isn't a deploy dependency
 securityRole "admin"
 securityRole "superadmin"
 withXml { provider -> // add a custom node to the XML
 provider.asNode().appendNode(,)"data-source" "my/data/source"
 }
 }
}

You can also use customization options that the task provides, such as and .Ear from metaInf

27.8. Using custom descriptor file
Let's say you already have the and want to use it instead of configuring the application.xml ear.deploymentDescriptor

section. To accommodate that place the in the right place inside your sourceMETA-INF/application.xml

folders (see the property). The existing file contents will be used and the explicit configurationappDirName

in the will be ignored.ear.deploymentDescriptor

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 162 of 331

28
The Jetty Plugin

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web application to a Jetty

web container embedded in the build.

28.1. Usage
To use the Jetty plugin, include in your build script:

Example 28.1. Using the Jetty plugin

build.gradle

apply plugin: 'jetty'

28.2. Tasks
The Jetty plugin defines the following tasks:

Table 28.1. Jetty plugin - tasks

Task name Depends

on

Type Description

jettyRun compile JettyRun Starts a Jetty instance and deploys the exploded web

application to it.

jettyRunWar war JettyRunWar Starts a Jetty instance and deploys the WAR to it.

jettyStop - JettyStop Stops the Jetty instance.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.jetty.JettyStop.html

Page 163 of 331

Figure 28.1. Jetty plugin - tasks

28.3. Project layout
The Jetty plugin uses the same layout as the War plugin.

28.4. Dependency management
The Jetty plugin does not define any dependency configurations.

28.5. Convention properties
The Jetty plugin defines the following convention properties:

Table 28.2. Jetty plugin - properties

Property

name

Type Default

value

Description

httpPort Integer 8080 The TCP port which Jetty should listen for HTTP

requests on.

stopPort Integer null The TCP port which Jetty should listen for admin

requests on.

stopKey String null The key to pass to Jetty when requesting it to stop.

These properties are provided by a convention object.JettyPluginConvention

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.jetty.JettyPluginConvention.html

Page 164 of 331

29
The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using andCheckstyle

generates reports from these checks.

29.1. Usage
To use the Checkstyle plugin, include in your build script:

Example 29.1. Using the Checkstyle plugin

build.gradle

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

29.2. Tasks
The Checkstyle plugin adds the following tasks to the project:

Table 29.1. Checkstyle plugin - tasks

Task name Depends on Type Description

checkstyleMain classes Checkstyle Runs Checkstyle against the production

Java source files.

checkstyleTest testClasses Checkstyle Runs Checkstyle against the test Java

source files.

checkstyleSourceSet ClassessourceSet Checkstyle Runs Checkstyle against the given source

set's Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Page 165 of 331

Table 29.2. Checkstyle plugin - additional task dependencies

Task name Depends on

check All Checkstyle tasks, including and .checkstyleMain checkstyleTest

29.3. Project layout
The Checkstyle plugin expects the following project layout:

Table 29.3. Checkstyle plugin - project layout

File Meaning

config/checkstyle/checkstyle.xml Checkstyle configuration file

29.4. Dependency management
The Checkstyle plugin adds the following dependency configurations:

Table 29.4. Checkstyle plugin - dependency configurations

Name Meaning

checkstyle The Checkstyle libraries to use

29.5. Configuration
See .CheckstyleExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

Page 166 of 331

30
The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using andCodeNarc

generates reports from these checks.

30.1. Usage
To use the CodeNarc plugin, include in your build script:

Example 30.1. Using the CodeNarc plugin

build.gradle

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

30.2. Tasks
The CodeNarc plugin adds the following tasks to the project:

Table 30.1. CodeNarc plugin - tasks

Task name Depends

on

Type Description

codenarcMain - CodeNarc Runs CodeNarc against the production Groovy

source files.

codenarcTest - CodeNarc Runs CodeNarc against the test Groovy source files.

codenarcSourceSet- CodeNarc Runs CodeNarc against the given source set's

Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Page 167 of 331

Table 30.2. CodeNarc plugin - additional task dependencies

Task name Depends on

check All CodeNarc tasks, including and .codenarcMain codenarcTest

30.3. Project layout
The CodeNarc plugin expects the following project layout:

Table 30.3. CodeNarc plugin - project layout

File Meaning

config/codenarc/codenarc.xml CodeNarc configuration file

30.4. Dependency management
The CodeNarc plugin adds the following dependency configurations:

Table 30.4. CodeNarc plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

30.5. Configuration
See .CodeNarcExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

Page 168 of 331

31
The FindBugs Plugin

The FindBugs plugin performs quality checks on your project's Java source files using and generatesFindBugs

reports from these checks.

31.1. Usage
To use the FindBugs plugin, include in your build script:

Example 31.1. Using the FindBugs plugin

build.gradle

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

31.2. Tasks
The FindBugs plugin adds the following tasks to the project:

Table 31.1. FindBugs plugin - tasks

Task name Depends on Type Description

findbugsMain classes FindBugs Runs FindBugs against the production Java

source files.

findbugsTest testClasses FindBugs Runs FindBugs against the test Java source

files.

findbugsSourceSet ClassessourceSet FindBugs Runs FindBugs against the given source set's

Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

http://findbugs.sourceforge.net
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.FindBugs.html

Page 169 of 331

Table 31.2. FindBugs plugin - additional task dependencies

Task name Depends on

check All FindBugs tasks, including and .findbugsMain findbugsTest

31.3. Dependency management
The FindBugs plugin adds the following dependency configurations:

Table 31.3. FindBugs plugin - dependency configurations

Name Meaning

findbugs The FindBugs libraries to use

31.4. Configuration
See .FindBugsExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html

Page 170 of 331

32
The JDepend Plugin

The JDepend plugin performs quality checks on your project's source files using and generates reportsJDepend

from these checks.

32.1. Usage
To use the JDepend plugin, include in your build script:

Example 32.1. Using the JDepend plugin

build.gradle

apply plugin: 'jdepend'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

32.2. Tasks
The JDepend plugin adds the following tasks to the project:

Table 32.1. JDepend plugin - tasks

Task name Depends on Type Description

jdependMain classes JDepend Runs JDepend against the production Java

source files.

jdependTest testClasses JDepend Runs JDepend against the test Java source files.

jdependSourceSet ClassessourceSet JDepend Runs JDepend against the given source set's

Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Table 32.2. JDepend plugin - additional task dependencies

Task name Depends on

check All JDepend tasks, including and .jdependMain jdependTest

http://clarkware.com/software/JDepend.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.JDepend.html

Page 171 of 331

32.3. Dependency management
The JDepend plugin adds the following dependency configurations:

Table 32.3. JDepend plugin - dependency configurations

Name Meaning

jdepend The JDepend libraries to use

32.4. Configuration
See .JDependExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.JDependExtension.html

Page 172 of 331

33
The PMD Plugin

The PMD plugin performs quality checks on your project's Java source files using and generates reportsPMD

from these checks.

33.1. Usage
To use the PMD plugin, include in your build script:

Example 33.1. Using the PMD plugin

build.gradle

apply plugin: 'pmd'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

33.2. Tasks
The PMD plugin adds the following tasks to the project:

Table 33.1. PMD plugin - tasks

Task name Depends on Type Description

pmdMain - Pmd Runs PMD against the production Java source files.

pmdTest - Pmd Runs PMD against the test Java source files.

pmdSourceSet - Pmd Runs PMD against the given source set's Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 33.2. PMD plugin - additional task dependencies

Task name Depends on

check All PMD tasks, including and .pmdMain pmdTest

http://pmd.sourceforge.net
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.Pmd.html

Page 173 of 331

33.3. Dependency management
The PMD plugin adds the following dependency configurations:

Table 33.3. PMD plugin - dependency configurations

Name Meaning

pmd The PMD libraries to use

33.4. Configuration
See .PmdExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.quality.PmdExtension.html

Page 174 of 331

34
The Sonar Plugin

The Sonar plugin provides integration with , a web-based platform for monitoring code quality. TheSonar

plugin adds a task that analyzes the project to which the plugin is applied and its subprojects.sonarAnalyze

The results are stored in the Sonar database. The plugin requires Sonar 2.9 or higher.

The task is a standalone task that needs to be executed explicitly and doesn't depend on anysonarAnalyze

other tasks. Apart from source code, the task also analyzes class files and test result files (if available). For best

results, it is therefore recommended to run a full build before the analysis. In a typical setup, analysis would be

performed once per day on a build server.

34.1. Usage
At a minimum, the Sonar plugin has to be applied to the project.

Example 34.1. Applying the Sonar plugin

build.gradle

apply plugin: "sonar"

Unless Sonar is run locally and with default settings, it is also necessary to configure connection settings for the

Sonar server and database.

Example 34.2. Configuring Sonar connection settings

build.gradle

sonar {
 server {
 url = "http://my.server.com"
 }
 database {
 url = "jdbc:mysql://my.server.com/sonar"
 driverClassName = "com.mysql.jdbc.Driver"
 username = "Fred Flintstone"
 password = "very clever"
 }
}

Project settings determine how the project is going to be analyzed. The default configuration works well for

analyzing standard Java projects and can be customized in many ways.

http://www.sonarsource.org

Page 175 of 331

Example 34.3. Configuring Sonar project settings

build.gradle

sonar {
 project {
 coberturaReportPath = file()"$buildDir/cobertura.xml"
 }
}

The , , , and blocks in the examples above configure objects of type sonar server database project

, , , and , respectively. See their APISonarRootModel SonarServer SonarDatabase SonarProject

documentation for further information.

34.2. Analyzing Multi-Project Builds
The Sonar plugin is capable of analyzing a whole project hierarchy at once. This yields a hierarchical view in

the Sonar web interface with aggregated metrics and the ability to drill down into subprojects. It is also faster

and less likely to run into out-of-memory problems than analyzing each project separately.

To analyze a project hierarchy, the Sonar plugin needs to be applied to the top-most project of the hierarchy.

Typically (but not necessarily) this will be the root project. The block in that project configures ansonar

object of type . It holds all global configuration, most importantly server and databaseSonarRootModel

connection settings.

Example 34.4. Global configuration in a multi-project build

build.gradle

apply plugin: "sonar"

sonar {
 server {
 url = "http://my.server.com"
 }
 database {
 url = "jdbc:mysql://my.server.com/sonar"
 driverClassName = "com.mysql.jdbc.Driver"
 username = "Fred Flintstone"
 password = "very clever"
 }
}

Each project in the hierarchy has its own project configuration. Common values can be set from a parent build

script.

http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarServer.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarDatabase.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html

Page 176 of 331

Example 34.5. Common project configuration in a multi-project build

build.gradle

subprojects {
 sonar {
 project {
 sourceEncoding = "UTF-8"
 }
 }
}

The block in a subproject configures an object of type .sonar SonarProjectModel

Projects can also be configured individually. For example, setting the property to prevents a projectskip true

(and its subprojects) from being analyzed. Skipped projects will not be displayed in the Sonar web interface.

Example 34.6. Individual project configuration in a multi-project build

build.gradle

project() {":project1"
 sonar {
 project {
 skip = true
 }
 }
}

Another typical per-project configuration is the programming language to be analyzed. Note that Sonar can only

analyze one language per project.

Example 34.7. Configuring the language to be analyzed

build.gradle

project() {":project2"
 sonar {
 project {
 language = "groovy"
 }
 }
}

When setting only a single property at a time, the equivalent property syntax is more succinct:

Example 34.8. Using property syntax

build.gradle

project().sonar.project.language = ":project2" "groovy"

http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProjectModel.html

Page 177 of 331

34.3. Analyzing Custom Source Sets
By default, the Sonar plugin will analyze the production sources in the source set and the test sources inmain

the source set. This works independent of the project's source directory layout. Additional source sets cantest

be added as needed.

Example 34.9. Analyzing custom source sets

build.gradle

sonar.project {
 sourceDirs += sourceSets.custom.allSource.srcDirs
 testDirs += sourceSets.integTest.allSource.srcDirs
}

34.4. Setting Custom Sonar Properties
Eventually, most configuration is passed to the Sonar code analyzer in the form of key-value pairs known as

Sonar properties. The annotations in the API documentation show how properties of theSonarProperty

plugin's object model get mapped to the corresponding Sonar properties. The Sonar plugin offers hooks to

post-process Sonar properties before they get passed to the code analyzer. The same hooks can be used to add

additional properties which aren't covered by the plugin's object model.

For global Sonar properties, use the hook on :withGlobalProperties SonarRootModel

Example 34.10. Setting custom global properties

build.gradle

sonar.withGlobalProperties { props ->
 props[] = "some.global.property" "some value"
}

For per-project Sonar properties, use the hook on :withProjectProperties SonarProject

Example 34.11. Setting custom project properties

build.gradle

sonar.project.withProjectProperties { props ->
 props[] = "some.project.property" "some value"
}

The Sonar documentation provides a complete list of Sonar properties. (Note that most of these properties are

already covered by the plugin's object model.) For configuring third-party Sonar plugins, consult their

documentation.

http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProperty.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html

Page 178 of 331

34.5. Tasks
The Sonar plugin adds the following tasks to the project.

Table 34.1. Sonar plugin - tasks

Task name Depends

on

Type Description

sonarAnalyze - SonarAnalyze Analyzes a project hierarchy and stores the results

in the Sonar database.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.sonar.SonarAnalyze.html

Page 179 of 331

35
The OSGi Plugin

The OSGi plugin provides a factory method to create an object. extends OsgiManifest OsgiManifest

. To learn more about generic manifest handling, see . If the JavaManifest Section 23.13.1, “Manifest”

plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an OsgiManifest

object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens .BND tool

35.1. Usage
To use the OSGi plugin, include in your build script:

Example 35.1. Using the OSGi plugin

build.gradle

apply plugin: 'osgi'

35.2. Implicitly applied plugins
Applies the Java base plugin.

35.3. Tasks
This plugin does not add any tasks.

35.4. Dependency management
TBD

35.5. Convention object
The OSGi plugin adds the following convention object: OsgiPluginConvention

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Code/Bnd
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html

Page 180 of 331

35.5.1. Convention properties

The OSGi plugin does not add any convention properties to the project.

35.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the API documentation of the convention

object.

Table 35.1. OSGi methods

Method Return Type Description

osgiManifest() OsgiManifest Returns an OsgiManifest object.

osgiManifest(Closure

cl)

OsgiManifest Returns an OsgiManifest object configured by the

closure.

The classes in the classes dir are analyzed regarding there package dependencies and the packages they expose.

Based on this the and the values of the OSGi Manifest are calculated. If theImport-Package Export-Package

classpath contains jars with an OSGi bundle, the bundle information is used to specify version information for

the value. Beside the explicit properties of the object you can addImport-Package OsgiManifest

instructions.

Example 35.2. Configuration of OSGi MANIFEST.MF file

build.gradle

jar {
 manifest { // the manifest of the default jar is of type OsgiManifest
 name = 'overwrittenSpecialOsgiName'
 instruction ,'Private-Package'
 ,'org.mycomp.package1'
 'org.mycomp.package2'
 instruction , 'Bundle-Vendor' 'MyCompany'
 instruction , 'Bundle-Description' 'Platform2: Metrics 2 Measures Framework'
 instruction , 'Bundle-DocURL' 'http://www.mycompany.com'
 }
}
task fooJar(type: Jar) {
 manifest = osgiManifest {
 instruction , 'Bundle-Vendor' 'MyCompany'
 }
}

The first argument of the instruction call is the key of the property. The other arguments form the value. They

are joined by Gradle with the separator. To learn more about the available instructions have a look at the , BND

.tool

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Code/Bnd
http://www.aqute.biz/Code/Bnd

Page 181 of 331

36
The Eclipse Plugin

The Eclipse plugin generates files that are used by the , thus making it possible to import the projectEclipse IDE

into Eclipse (- -). Both external dependencies (includingFile Import... Existing Projects into Workspace

associated source and javadoc files) and project dependencies are considered.

Since 1.0-milestone-4 WTP-generating code was refactored into a separate plugin called . So ifeclipse-wtp

you are interested in WTP integration then only apply the plugin. Otherwise applying eclipse-wtp eclipse

plugin is enough. This change was requested by Eclipse users who take advantage of or plugin butwar ear

they don't use Eclipse WTP. Internally, also applies the plugin so you don't need toeclipse-wtp eclipse

apply both of those plugins.

What exactly the Eclipse plugin generates depends on which other plugins are used:

Table 36.1. Eclipse plugin behavior

Plugin Description

None Generates minimal file..project

Java Adds Java configuration to . Generates and JDT settings file..project .classpath

Groovy Adds Groovy configuration to file..project

Scala Adds Scala support to file..project

War Adds web application support to file. Generates WTP settings files only if .project eclipse-wtp

plugin was applied.

Ear Adds ear application support to file. Generates WTP settings files only if .project eclipse-wtp

plugin was applied.

The Eclipse plugin is open to customization and provides a standardized set of hooks for adding and removing

content from the generated files.

36.1. Usage
To use the Eclipse plugin, include this in your build script:

http://eclipse.org

Page 182 of 331

Example 36.1. Using the Eclipse plugin

build.gradle

apply plugin: 'eclipse'

The Eclipse plugin adds a number of tasks to your projects. The main tasks that you will use are the eclipse

and tasks.cleanEclipse

36.2. Tasks
The Eclipse plugin adds the tasks shown below to a project.

Table 36.2. Eclipse plugin - tasks

Task name Depends on Type

eclipse eclipseProject, eclipseClasspath

, , eclipseJdt eclipseWtpComponent

, cleanEclipseWtpFacet

Task

cleanEclipse , cleanEclipseProject cleanEclipseClasspath

, , cleanEclipseJdt cleanEclipseWtpComponent

, cleanEclipseWtpFacet

Delete

cleanEclipseProject - Delete

cleanEclipseClasspath - Delete

cleanEclipseJdt - Delete

cleanEclipseWtpComponent - Delete

cleanEclipseWtpFacet - Delete

eclipseProject - GenerateEclipseProject

eclipseClasspath - GenerateEclipseClasspath

eclipseJdt - GenerateEclipseJdt

eclipseWtpComponent - GenerateEclipseWtpComponent

eclipseWtpFacet - GenerateEclipseWtpFacet

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html

Page 183 of 331

36.3. Configuration
Table 36.3. Configuration of the Eclipse plugin

Model Reference name Description

EclipseModel eclipse Top level element that enables

configuration of the Eclipse plugin in a

DSL-friendly fashion

EclipseProject eclipse.project Allows configuring project information

EclipseClasspath eclipse.classpath Allows configuring classpath

information

EclipseJdt eclipse.jdt Allows configuring jdt information

(source/target java compatibility)

EclipseWtpComponent eclipse.wtp.component Allows configuring wtp component

information only if eclipse-wtp

plugin was applied.

EclipseWtpFacet eclipse.wtp.facet Allows configuring wtp facet

information only if eclipse-wtp

plugin was applied.

36.4. Customizing the generated files
The Eclipse plugin allows you to customise the generated metadata files. The plugin provides a DSL for

configuring model objects that model the Eclipse view of the project. These model objects are then merged with

the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide lower level

hooks for working with domain objects representing the file content before and after merging with the model

configuration. They also provide a very low level hook for working directly with the raw XML for adjustment

before it is persisted, for fine tuning and configuration that the Eclipse plugin does not model.

36.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

36.4.1.1. Disabling merging with a complete overwrite

To completely overwrite existing Eclipse files, execute a clean task together with its corresponding generation

task, for example (in that order). If you want to make this the defaultgradle cleanEclipse eclipse

behavior, add to your build script. This makes ittasks.eclipse.dependsOn(cleanEclipse)

unnecessary to execute the clean task explicitly.

Complete overwrite works equally well for individual files, for example by executing gradle cleanEclipseClasspath eclipseClasspath

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

Page 184 of 331

1.

2.

3.

4.

5.

6.

.

36.4.2. Hooking into the generation lifecycle

The Eclipse plugin provides objects modeling the sections of the Eclipse files that are generated by Gradle. The

generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in

the eclipse DSL

The hook is executed with a domain object representing contents of the file to be persistedwhenMerged

The hook is executed with a raw representation of the xml that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 36.4. Advanced configuration hooks

Model beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

EclipseProject Project Project XmlProvider

EclipseClasspath Classpath Classpath XmlProvider

EclipseJdt Jdt Jdt

EclipseWtpComponent WtpComponent WtpComponent XmlProvider

EclipseWtpFacet WtpFacet WtpFacet XmlProvider

36.4.2.1. Partial overwrite of existing content

A causes all existing content to be discarded, thereby losing any changes made directly incomplete overwrite

the IDE. Alternatively, the hook makes it possible to overwrite just certain parts of thebeforeMerged

existing content. The following example removes all existing dependencies from the domainClasspath

object:

Example 36.2. Partial Overwrite for Classpath

build.gradle

eclipse.classpath.file {
 beforeMerged { classpath ->
 classpath.entries.removeAll { entry -> entry.kind == || entry.kind == }'lib' 'var'
 }
}

The resulting file will only contain Gradle-generated dependency entries, but not any other.classpath

dependency entries that may have been present in the original file. (In the case of dependency entries, this is

also the default behavior.) Other sections of the file will be either left as-is or merged. The same.classpath

could be done for the natures in the file:.project

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html

Page 185 of 331

Example 36.3. Partial Overwrite for Project

build.gradle

eclipse.project.file.beforeMerged { project ->
 project.natures.clear()
}

36.4.2.2. Modifying the fully populated domain objects

The hook allows to manipulate the fully populated domain objects. Often this is the preferredwhenMerged

way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:

Example 36.4. Export Dependencies

build.gradle

eclipse.classpath.file {
 whenMerged { classpath ->
 classpath.entries.findAll { entry -> entry.kind == }*.exported = false'lib'
 }
}

36.4.2.3. Modifying the XML representation

The hook allows to manipulate the in-memory XML representation just before the file gets written towithXml

disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than manipulating

the domain objects. In return, you get total control over the generated file, including sections not modeled by the

domain objects.

Example 36.5. Customizing the XML

build.gradle

apply plugin: 'eclipse-wtp'

eclipse.wtp.facet.file.withXml { provider ->
 provider.asNode().fixed.find { it. == }. = @facet 'jst.java' @facet 'jst2.java'
}

Page 186 of 331

37
The IDEA Plugin

The IDEA plugin generates files that are used by , thus making it possible to open the project fromIntelliJ IDEA

IDEA (-). Both external dependencies (including associated source and javadoc files) andFile Open Project

project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 37.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace file if the

project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of hooks

for adding and removing content from the generated files.

37.1. Usage
To use the IDEA plugin, include this in your build script:

Example 37.1. Using the IDEA plugin

build.gradle

apply plugin: 'idea'

The IDEA plugin adds a number of tasks to your project. The main tasks that you will use are the and idea cleanIdea

tasks.

37.2. Tasks
The IDEA plugin adds the tasks shown below to a project. Notice that does not depend on clean cleanIdeaWorkspace

. It's because workspace contains a lot of user specific temporary data and typically it is not desirable to

manipulate it outside IDEA.

http://www.jetbrains.com/idea/

Page 187 of 331

Table 37.2. IDEA plugin - Tasks

Task name Depends on Type Description

idea ideaProject, ideaModule

, ideaWorkspace

- Generates all

IDEA

configuration

files

cleanIdea cleanIdeaProject

, cleanIdeaModule

Delete Removes all

IDEA

configuration

files

cleanIdeaProject - Delete Removes the

IDEA project

file

cleanIdeaModule - Delete Removes the

IDEA

module file

cleanIdeaWorkspace - Delete Removes the

IDEA

workspace

file

ideaProject - GenerateIdeaProject Generates

the .ipr

file. This

task is only

added to the

root project.

ideaModule - GenerateIdeaModule Generates

the .iml

file

ideaWorkspace - GenerateIdeaWorkspace Generates

the .iws

file. This

task is only

added to the

root project.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

Page 188 of 331

1.

2.

3.

4.

37.3. Configuration
Table 37.3. Configuration of the idea plugin

Model Reference name Description

IdeaModel idea Top level element that enables configuration of the idea

plugin in a DSL-friendly fashion

IdeaProject idea.project Allows configuring project information

IdeaModule idea.module Allows configuring module information

IdeaWorkspace idea.workspace Allows configuring the workspace xml

37.4. Customizing the generated files
IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file can

effectively only be manipulated via the hook because its corresponding domain object is essentiallywithXml

empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

37.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

37.4.1.1. Disabling merging with a complete overwrite

To completely overwrite existing IDEA files, execute a clean task together with its corresponding generation

task, for example (in that order). If you want to make this the default behavior,gradle cleanIdea idea

add to your build script. This makes it unnecessary to execute thetasks.idea.dependsOn(cleanIdea)

clean task explicitly.

Complete overwrite works equally well for individual files, for example by executing gradle cleanIdeaModule ideaModule

.

37.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The

generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in

the eclipse DSL

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

Page 189 of 331

4.

5.

6.

The hook is executed with a domain object representing contents of the file to be persistedwhenMerged

The hook is executed with a raw representation of the xml that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the model types:

Table 37.4. Idea plugin hooks

Model beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

IdeaProject Project Project XmlProvider

IdeaModule Module Module XmlProvider

IdeaWorkspace Workspace Workspace XmlProvider

37.4.2.1. Partial overwrite of existing content

A causes all existing content to be discarded, thereby losing any changes made directly incomplete overwrite

the IDE. The hook makes it possible to overwrite just certain parts of the existing content.beforeMerged

The following example removes all existing dependencies from the domain object:Module

Example 37.2. Partial Overwrite for Module

build.gradle

idea.module.iml {
 beforeMerged { module ->
 module.dependencies.clear()
 }
}

The resulting module file will only contain Gradle-generated dependency entries, but not any other dependency

entries that may have been present in the original file. (In the case of dependency entries, this is also the default

behavior.) Other sections of the module file will be either left as-is or merged. The same could be done for the

module paths in the project file:

Example 37.3. Partial Overwrite for Project

build.gradle

idea.project.ipr {
 beforeMerged { project ->
 project.modulePaths.clear()
 }
}

37.4.2.2. Modifying the fully populated domain objects

The hook allows to manipulate the fully populated domain objects. Often this is the preferredwhenMerged

way to customize IDEA files. Here is how you would export all the dependencies of an IDEA module:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/XmlProvider.html

Page 190 of 331

Example 37.4. Export Dependencies

build.gradle

idea.module.iml {
 whenMerged { module ->
 module.dependencies*.exported = true
 }
}

37.4.2.3. Modifying the XML representation

The hook allows to manipulate the in-memory XML representation just before the file gets written towithXml

disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than manipulating

the domain objects. In return, you get total control over the generated file, including sections not modeled by the

domain objects.

Example 37.5. Customizing the XML

build.gradle

idea.project.ipr {
 withXml { provider ->
 provider.node.component.find { it. == }.mapping. = @name 'VcsDirectoryMappings' @vcs 'Git'
 }
}

37.5. Further things to consider
The paths of the dependencies in the generated IDEA files are absolute. If you manually define a path variable

pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths with

this path variable. If you use such a path variable, you need to configure this path variable via idea.pathVariables

, so that it can do a proper merge without creating duplicates.

Page 191 of 331

38
The Antlr Plugin

The Antlr plugin extends the Java plugin to add support for generating parsers using .Antlr

38.1. Usage
To use the Antlr plugin, include in your build script:

Example 38.1. Using the Antlr plugin

build.gradle

apply plugin: 'antlr'

38.2. Tasks
The Antlr plugin adds a number of tasks to your project, as shown below.

Table 38.1. Antlr plugin - tasks

Task name Depends

on

Type Description

generateGrammarSource - AntlrTask Generates the source files for all

production Antlr grammars.

generateTestGrammarSource - AntlrTask Generates the source files for all

test Antlr grammars.

generate GrammarSourceSourceSet - AntlrTask Generates the source files for all

Antlr grammars for the given

source set.

The Antlr plugin adds the following dependencies to tasks added by the Java plugin.

http://www.antlr.org/
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Page 192 of 331

Table 38.2. Antlr plugin - additional task dependencies

Task name Depends on

compileJava generateGrammarSource

compileTestJava generateTestGrammarSource

compile JavaSourceSet generate GrammarSourceSourceSet

38.3. Project layout
Table 38.3. Antlr plugin - project layout

Directory Meaning

src/main/antlr Production Antlr grammar files.

src/test/antlr Test Antlr grammar files.

src/ /antlrsourceSet Antlr grammar files for the given source set.

38.4. Dependency management
The Antlr plugin adds an dependency configuration. You use this to declare the version of Antlr youantlr

wish to use.

Example 38.2. Declare Antlr version

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 antlr 'antlr:antlr:2.7.7'
}

38.5. Convention properties
The Antlr plugin does not add any convention properties.

38.6. Source set properties
The Antlr plugin adds the following properties to each source set in the project.

Page 193 of 331

Table 38.4. Antlr plugin - source set properties

Property name Type Default value Description

antlr SourceDirectorySet

(read-only)

Not null The Antlr grammar files of this

source set. Contains all found.g

in the Antlr source directories,

and excludes all other types of

files.

antlr.srcDirs . Can setSet<File>

using anything described in

Section 16.5, “Specifying a

.set of input files”

[/src/ /antlr]projectDir nameThe source directories containing

the Antlr grammar files of this

source set.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/SourceDirectorySet.html

Page 194 of 331

39
The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful information

about your build. Those tasks generate exactly the same content as the command line reports triggered by gradle tasks

, and (seegradle dependencies gradle properties Section 11.6, “Obtaining information about

). In contrast to the command line reports, the report plugin generates the reports into a file. There isyour build”

also an aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

39.1. Usage
To use the Project report plugin, include in your build script:

apply plugin: 'project-report'

39.2. Tasks
The project report plugin defines the following tasks:

Page 195 of 331

Table 39.1. Project report plugin - tasks

Task name Depends on Type Description

dependencyReport - DependencyReportTask Generates

the project

dependency

report.

propertyReport - PropertyReportTask Generates

the project

property

report.

taskReport - TaskReportTask Generates

the project

task report.

projectReport , dependencyReport propertyReport

, taskReport

Task Generates

all project

reports.

39.3. Project layout
The project report plugin does not require any particular project layout.

39.4. Dependency management
The project report plugin does not define any dependency configurations.

39.5. Convention properties
The project report defines the following convention properties:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Task.html

Page 196 of 331

Table 39.2. Project report plugin - convention properties

Property name Type Default value

reportsDirName String reports

reportsDir (read-only)File /buildDir reportsDirName

projects Set<Project> A one element set with the project the plugin was applied to.

projectReportDirName String project

projectReportDir (read-only)File /reportsDir projectReportDirName

These convention properties are provided by a convention object of type

.ProjectReportsPluginConvention

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

Page 197 of 331

40
The Announce Plugin

The Gradle announce allows to send custom announcements during a build. The following notification systems

are supported:

Twitter

notify-send (Ubuntu)

Snarl (Windows)

Growl (Mac OS X)

40.1. Usage
To use the announce plugin, apply it to your build script:

Example 40.1. Using the announce plugin

build.gradle

apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are

available):

Example 40.2. Configure the announce plugin

build.gradle

announce {
 username = 'myId'
 password = 'myPassword'
}

Finally, send announcements with the method:announce

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Page 198 of 331

Example 40.3. Using the announce plugin

build.gradle

task helloWorld << {
 println "Hello, world!"
}

helloWorld.doLast {
 announce.announce(,)"helloWorld completed!" "twitter"
 announce.announce(,)"helloWorld completed!" "local"
}

The method takes two String arguments: The message to be sent, and the notification service to beannounce

used. The following table lists supported notification services and their configuration properties.

Table 40.1. Announce Plugin Notification Services

Notification

Service

Operating

System

Configuration

Properties

Further Information

twitter Any username,

password

snarl Windows

growl Mac OS X

notify-send Ubuntu Requires the notify-send package to be installed. Use sudo apt-get install libnotify-bin

to install it.

local Windows,

Mac OS X,

Ubuntu

Automatically chooses between snarl, growl, and

notify-send depending on the current operating

system.

40.2. Configuration
See .AnnouncePluginExtension

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

Page 199 of 331

41
The Build Announcements Plugin

The build announcements is incubating and should not be considered stable.

The build announcements plugin uses the plugin to send local announcements on important events inannounce

the build.

41.1. Usage
To use the build announcements plugin, include in your build script:

Example 41.1. Using the build announcements plugin

build.gradle

apply plugin: 'build-announcements'

That's it. If you want to tweak where the announcements go, you can configure the plugin to changeannounce

the local announcer.

You can also apply the plugin from an init script:

Example 41.2. Using the build announcements plugin from an init script

init.gradle

rootProject {
 apply plugin: 'build-announcements'
}

Page 200 of 331

42
The Application Plugin

The Gradle application plugin extends the language plugins with common application related tasks. It allows

running and bundling applications for the jvm.

42.1. Usage
To use the application plugin, include in your build script:

Example 42.1. Using the application plugin

build.gradle

apply plugin:'application'

To define the main-class for the application you have to set the property as shown belowmainClassName

Example 42.2. Configure the application main class

build.gradle

mainClassName = "org.gradle.sample.Main"

Then, you can run the application by running . Gradle will take care of building the applicationgradle run

classes, along with their runtime dependencies, and starting the application with the correct classpath.

The plugin can also build a distribution for your application. The distribution will package up the runtime

dependencies of the application along with some OS specific start scripts. All files stored in will besrc/dist

added to the root of the distribution. You can run to create an image of the applicationgradle installApp

in . You can run to create a ZIP containing thebuild/install/projectName gradle distZip

distribution.

42.2. Tasks
The Application plugin adds the following tasks to the project.

Page 201 of 331

Table 42.1. Application plugin - tasks

Task name Depends on Type Description

run classes JavaExec Starts the application.

startScripts jar CreateStartScripts Creates OS specific scripts to run

the project as a JVM application.

installApp , jar startScriptsSync Installs the application into a

specified directory.

distZip , jar startScriptsZip Creates a full distribution ZIP

archive including runtime

libraries and OS specific scripts.

42.3. Convention properties
The application plugin adds some properties to the project, which you can use to configure its behaviour. See

.Project

42.4. Including other resources in the distribution
One of the convention properties added by the plugin is which is a applicationDistribution

. This specification is used by the and tasks as the specification of what isCopySpec installApp distZip

to be include in the distribution. Above copying the starting scripts to the dir and necessary jars to inbin lib

the distribution, all of the files from the directory are also copied. To include any static files in thesrc/dist

distribution, simply arrange them in the directory.src/dist

If your project generates files to be included in the distribution, e.g. documentation, you can add these files to

the distribution by adding to the copy spec.applicationDistribution

Example 42.3. Include output from other tasks in the application distribution

build.gradle

task createDocs {
 def docs = file()"$buildDir/docs"
 outputs.dir docs
 doLast {
 docs.mkdirs()
 File(docs,).write()new "readme.txt" "Read me!"
 }
}

applicationDistribution.from(createDocs) {
 into "docs"
}

By specifying that the distribution should include the task's output files (see Section 15.8.1, “Declaring a task's

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.application.CreateStartScripts.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/file/CopySpec.html

Page 202 of 331

), Gradle knows that the task that produces the files must be invoked before the distributioninputs and outputs”

can be assembled and will take care of this for you.

Example 42.4. Automatically creating files for distribution

Output of gradle distZip

> gradle distZip
:createDocs
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:startScripts
:distZip

BUILD SUCCESSFUL

Total time: 1 secs

Page 203 of 331

43
Bootstrap Plugin

The Gradle bootstrap plugin prepares the current project for Gradle. Typically it will create the relevant

build.gradle, settings.gradle files. At the moment only conversion from maven3 is supported.

The plugin is currently *incubating* which means it is already useful but not everything might work perfectly.

The api, plugin and task names may change before the final release. Please let us know your feedback or report

any issues.

The plugin works by obtaining the effective pom of the current project by executing external 'mvn' command.

Then it reads the dependencies and other information to generate build.gradle scripts.

The plugin is inspired by the founded and maintained by recognized leaders of Gradlemaven2gradle tool

community; created by Baruch Sadogursky with contributions from Antony Stubbs, Matthew McCullough and

others.

43.1. Maven conversion - features
Uses effective pom and effective settings (support for pom inheritance, dependency management,

properties)

Supports both single module and multimodule projects. Generates settings.gradle for multimodule projects

(*).

Supports custom module names (that differ from directory names)

Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)

Generates download repositories (inc. local maven repository)

Adjusts java compiler settings

Supports packaging of sources and tests

Supports testng runner

Generates global exclusions from Maven enforcer plugin settings

(*) - Note: Your project will be considered multi-module only if your reactor is also a parent of at least one of

your modules. Why so? Reactor project is built last, when Parent project is built first. The reactor has to be built

first, because effective-pom Mojo generates needed output only if it finds modules in first project it encounters.

Making reactor also a parent achieves this.

https://github.com/jbaruch/maven2gradle

Page 204 of 331

43.2. Usage
To convert a maven project follow the steps:

Make sure your maven project builds and uses maven3.

Make sure command can be executed and it runs maven3.mvn

Create file in the root folder of your maven project.build.gradle

Specify and nothing else in the file.apply plugin: 'maven2Gradle' build.gradle

Make sure you are using the Gradle version that contains the plugin. If necessary download the required

Gradle version. Until Gradle 1.2 is released you should use the . You only need this version fornightly build

conversion of the maven project. When converting is complete feel free to use the desired Gradle version,

for example 1.1.

Run . You should see task available.gradle tasks maven2Gradle

Run .gradle maven2Gradle

Advanced users: you can configure following boolean properties on the task: maven2Gradle verbose

(shows more output, including the effective pom) and (keeps the obtained effective pom file).keepFile

http://www.gradle.org/nightly

Page 205 of 331

44
Dependency Management

44.1. Introduction
Gradle offers a very good support for dependency management. If you are familiar with Maven or Ivy approach

you will be delighted to learn that:

Gradle fully supports transitive dependency management. Gradle also works with your existentperfectly

dependency management infrastructure, be it Maven or Ivy. All the repositories you have set up with your

custom POM or ivy files can be used as they are. No changes necessary.

If you don't use transitive dependency management and your external libraries live just as files in version

control or on some shared drive, Gradle provides powerful functionality to support this.

Gradle provides an additional, optional support for transitive dependency management that is not based on

XML descriptor files called Module Dependencies, where you describe the dependency hierarchy in the

build script.

The job of a build system is to support all major patterns for how people deal with dependencies, not to

force people in a certain way of doing things. In particular for migration scenarios it is extremely important

that any current approach is supported so that you can use the same input structure in the new evolving

Gradle build than in the existing build as long as it is in production. That enables you to compare the results.

Gradle is extremely flexible. So even if your project is using a custom dependency management or say an

Eclipse .classpath file as master data for dependency management, it would be very easy to write a little

adaptor plugin to use this data in Gradle. For migration purposes this is a common technique with Gradle.

Once you have migrated, it might be a good idea though not to use a .classpath file for dependency metadata

any longer :).

44.2. Dependency Management Best Practices.
We have an opinion on what are dependency management best practices. As usual, Gradle does not force our

opinion onto you, but supports any kind of pattern you want to use. Nonetheless we would like to share our

opinion.

We think good dependency management is very important for almost any project. Yet the kind of dependency

management you need depends on the complexity and the environment of your project. Is your project a

distribution or a library? Is it part of an enterprise environment, where it is integrated into other projects builds

or not? But all types of projects should follow the rules below:

Page 206 of 331

44.2.1. Versioning the jar name

The version of the jar must be easy to recognize. Sometimes the version is in the Manifest file of the jar, often

not. And even if, it is rather painful to always look into the Manifest file to learn about the version. Therefore

we think that you should only use jars which have their version as part of their file name. If you are using

transitive dependency management you are forced to do this in any case.

Why do we think this is important? Without a dependency management as described above, your are likely to

burn your fingers sooner or later. If it is unclear which version of a jar your are using, this can introduce subtle

bugs which are very hard to find. For example there might be a project which uses Hibernate 3.0.4. There are

some problems with Hibernate so a developer installs version 3.0.5 of Hibernate on her machine. This did not

solve the problem but she forgot to roll back Hibernate to 3.0.4. Weeks later there is an exception on the

integration machine which can't be reproduced on the developer machine. Without a version in the jar name this

problem might take a long time to debug. Version in the jar names increases the expressiveness of your project

and makes it easier to maintain.

44.2.2. Use some form of transitive dependency management

When we talk about transitive dependency management, we mean any technique that enables to distinguish

between what are the first level dependencies and what are the transitive ones. We will about different

techniques for this later on.

Why is transitive dependency management so important? If you don't know which dependencies are first level

dependencies and which ones are transitive you will soon lose control over your build. Even a non enterprise

project Gradle has already 100+ jars. An enterprise project using Spring, Hibernate, etc. easily ends up with

many more jars. There is no way to memorize where all these jars come from. If you want to get rid of a first

level dependency you can't be sure which other jars you should remove. Because a dependency of a first level

dependency might also be a first level dependency itself. Or it might be a transitive dependency of another of

your first level dependencies. Many first level dependencies are runtime dependencies and the transitive

dependencies are of course all runtime dependencies. So the compiler won't help you much here. The end of the

story is, as we have seen very often, no one dares to remove any jar any longer. The project classpath is a

complete mess and if a classpath problem arises, hell on earth invites you for a ride. In one of our former

projects, we found some ldap related jar in the classpath, whose sheer presence, as we found out after much

research, accelerated LDAP access. So removing this jar would not have led to any errors at compile or runtime.

Gradle offers you different ways to express what are first level and what are transitive dependencies. Gradle

allows you for example to store your jars in CVS or SVN without XML descriptor files and still use transitive

dependency management. Also, not all techniques for transitive dependency management deal with the problem

described above equally well.

Page 207 of 331

44.2.3. Version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you don't

use transitive dependency management, version conflicts are undetected and the mostly accidental fragile order

of the classpath will determine, what version of a dependency will win. For example adding a dependency with

a particular version to a subproject might change that order and then will led to all kind of surprising side

effects. You might also want to learn where conflicting versions are used as you might want to consolidate on a

particular version of an dependency across your organization. With a good conflict reporting that information

can be used to communicate with the teams to solve this.

It is common that different dependencies rely on different versions of another dependency which leads to a

version conflictm as The JVM unfortunately does not offer yet any easy way, to have different versions of the

same jar in the classpath (see).Section 44.2.5, “Dependency management and Java”

Gradle offers following conflict resolution strategies:

Newest - used by default by Gradle - the newest version of the dependency is used. This strategy has been in

Gradle since early days.

Fail - fail eagerly on version conflict. Useful if you need extra control and manage the conflicts manually.

Introduced in . See for reference on managing the conflict1.0-milestone-6 ResolutionStrategy

resolution strategies.

We are working on making conflict resolution fully customizable.

Gradle provides means to resolve version conflicts:

Configuring a first level dependency as . The feature has been in Gradle since early days. Thisforced

approach is useful if the dependency incurring conflict is already a first level dependency. See examples in

DependencyHandler

Configuring any dependency (transitive or not) as . The feature was introduced in forced

. This approach is useful if the dependency incurring conflict is a transitive1.0-milestone-7

dependency. It also can be used to force versions of first level dependencies. See examples in

ResolutionStrategy

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such

reports are another feature of dependency management.

44.2.4. Dynamic Versions and Changing Modules

Sometimes, you always want to use the latest version of a particular dependency, or the latest in a range of

versions. You can easily do this using a . A dynamic version can be either a version range (eg. dynamic version 2.+

) or it can be a placeholder for the latest version available (eg.).latest.integration

Alternatively, sometimes the module you request can change over time, even for the same version. An example

of this type of is a maven module, which always points at the latest artifactschanging module SNAPSHOT

published.

The main difference between a and a is that when you resolve a dynamic version changing module dynamic

, you'll get the real, static version as the module name. When you resolve a , theversion changing module

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Page 208 of 331

artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the default

cache modes using . You can change the cache expiry times in your build using the command line options resolution strategy

(see).Section 44.8.3, “Fine-tuned control over dependency caching”

44.2.5. Dependency management and Java

Traditionally, Java has offered no support at all for dealing with libraries and versions. There are no standard

ways to say that depends on a . This has led to proprietary solutions. The mostfoo-1.0.jar bar-2.0.jar

popular ones are Maven and Ivy. Maven is a complete build system whereas Ivy focuses solely on dependency

management.

Both approaches rely on descriptor XML files, which contains information about the dependencies of a

particular jar. Both also use repositories where the actual jars are placed together with their descriptor files. And

both offer resolution for conflicting jar versions in one form or the other. Yet we think the differences of both

approaches are significant in terms of flexibility and maintainability. Originally Gradle did use Ivy under the

hood for its dependency management. This has been replaced with a native Gradle dependency resolution

engine. This resolution engine supports both pom and ivy descriptor files.

44.3. Dependency configurations
In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other

properties, and they can extend each other. Many Gradle plugin add pre-defined configurations to your project.

The Java plugin, for example, adds some configurations to represent the various classpaths it needs. see

 for details. Of course you can add your add custom configurations onSection 23.5, “Dependency management”

top of that. There are many use cases for custom configurations. This is very handy for example for adding

dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped with

your distribution).

A project's configurations are managed by a object. The closure you pass to theconfigurations

configurations object is applied against its API. To learn more about this API have a look at

.ConfigurationContainer

To define a configuration:

Example 44.1. Definition of a configuration

build.gradle

configurations {
 compile
}

To access a configuration:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Page 209 of 331

Example 44.2. Accessing a configuration

build.gradle

println configurations.compile.name
println configurations[].name'compile'

To configure a configuration:

Example 44.3. Configuration of a configuration

build.gradle

configurations {
 compile {
 description = 'compile classpath'
 transitive = true
 }
 runtime {
 extendsFrom compile
 }
}
configurations.compile {
 description = 'compile classpath'
}

44.4. How to declare your dependencies
There are several different types of dependencies that you can declare:

Table 44.1. Dependency types

Type Description

External module dependency A dependency on an external module in some repository.

Project dependency A dependency on another project in the same build.

File dependency A dependency on a set of files on the local filesystem.

Client module dependency A dependency on an external module, where the artifacts are located in

some repository but the module meta-data is specified by the local build.

You use this kind of dependency when you want to override the meta-data

for the module.

Gradle API dependency A dependency on the API of the current Gradle version. You use this kind

of dependency when you are developing custom Gradle plugins and task

types.

Local Groovy dependency A dependency on the Groovy version used by the current Gradle version.

You use this kind of dependency when you are developing custom Gradle

plugins and task types.

Page 210 of 331

44.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external

repository.

Example 44.4. Module dependencies

build.gradle

dependencies {
 runtime group: , name: , version: 'org.springframework' 'spring-core' '2.5'
 runtime , 'org.springframework:spring-core:2.5' 'org.springframework:spring-aop:2.5'
 runtime(
 [group: , name: , version:],'org.springframework' 'spring-core' '2.5'
 [group: , name: , version:]'org.springframework' 'spring-aop' '2.5'
)
 runtime() {'org.hibernate:hibernate:3.0.5'
 transitive = true
 }
 runtime group: , name: , version: , transitive: true'org.hibernate' 'hibernate' '3.0.5'
 runtime(group: , name: , version:) {'org.hibernate' 'hibernate' '3.0.5'
 transitive = true
 }
}

Please see the for more examples and complete reference. Please read on to getDependencyHandler

thorough understanding of the Gradle's dependency management.

Gradle provides different notations for module dependencies. There is a string notation and a map notation. A

module dependency has an API which allows for further configuration. Have a look at

 to learn all about the API. This API provides properties and configurationExternalModuleDependency

methods. Via the string notation you can define a subset the properties. With the map notation you can define all

properties. To have access to the complete API, either with the map or with the string notation, you can assign a

single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a corresponding module descriptor file (or pom.xml ivy.xml

) in the repositories. If such a module descriptor file exists, it is parsed and the artifacts of this module (e.g. hibernate-3.0.5.jar

) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle looks

for a file called to retrieve. In Maven a module can only have one and only onehibernate-3.0.5.jar

artifact. In Gradle and Ivy a module can have multiple artifacts. Each artifact can have a different set of

dependencies.

44.4.1.1. Depending on modules with multiple artifacts

As mentioned earlier, a maven module has only one artifact. So, when your project depends on a maven module

it's obvious what artifact is the actual dependency. With Gradle or Ivy the case is different. Ivy model of

dependencies () can declare multiple artifacts. For more information, see Ivy reference for .ivy.xml ivy.xml

In Gradle, when you declare a dependency on an ivy module you actually declare dependency on the 'default'

configuration of that module. So the actual list of artifacts (typically jars) your project depends on, are all

artifacts that are attached to the configuration of that module. This is very important in followingdefault

exemplary use cases:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

Page 211 of 331

The configuration of some module contains some artifacts you don't want on the classpath. Youdefault

might need to configure a dependency on specific artifact(s) of given module, rather than pulling all artifacts

of the dependencydefault

The artifact you need on the classpath has been published in a different configuration than the default

one. This means this artifact will not be pulled in by Gradle. Unless you explicitly declare what

configuration of the module you depend on.

There are other situations where it is necessary to fine-tune the dependency declaration. Please see the

 for examples and complete reference on declaring dependencies.DependencyHandler

44.4.1.2. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of the

module. But sometimes, even if the repository contains module descriptors, you want to download only the

artifact jar, without the dependencies. And sometimes you want to download a zip from a repository, that[]12

does not have module descriptors. Gradle provides an notation for those use cases - simply prefixartifact only

the extension that you want to be downloaded with sign:'@'

Example 44.5. Artifact only notation

build.gradle

dependencies {
 runtime "org.groovy:groovy:1.8.7@jar"
 runtime group: , name: , version: , ext: 'org.groovy' 'groovy' '1.8.7' 'jar'
}

An artifact only notation creates a module dependency which downloads only the artifact file with the specified

extension. Existing module descriptors are ignored.

44.4.1.3. Classifiers

The Maven dependency management has the notion of classifiers. Gradle supports this. To retrieve[]13

classified dependencies from a maven repository you can write:

Example 44.6. Dependency with classifier

build.gradle

compile "org.gradle.test.classifiers:service:1.0:jdk15@jar"
 otherConf group: , name: , version: , classifier: 'org.gradle.test.classifiers' 'service' '1.0' 'jdk14'

As you can see in the example, classifiers can be used together with setting an explicit extension (artifact only

notation).

To use the external dependencies of a configuration:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Page 212 of 331

Example 44.7. Usage of external dependency of a configuration

build.gradle

task listJars << {
 configurations.compile.each { File file -> println file.name }
}

Output of gradle -q listJars

> gradle -q listJars
hibernate-core-3.6.7.Final.jar
antlr-2.7.6.jar
commons-collections-3.1.jar
dom4j-1.6.1.jar
slf4j-api-1.6.1.jar
hibernate-commons-annotations-3.2.0.Final.jar
hibernate-jpa-2.0-api-1.0.1.Final.jar
jta-1.1.jar

44.4.2. Client module dependencies

Client module dependencies enable you to declare dependencies directly in your build script. Theytransitive

are a replacement for a module descriptor XML file in an external repository.

Example 44.8. Client module dependencies - transitive dependencies

build.gradle

dependencies {
 runtime module() {"org.codehaus.groovy:groovy-all:1.8.7"
 dependency() {"commons-cli:commons-cli:1.0"
 transitive = false
 }
 module(group: , name: , version:) {'org.apache.ant' 'ant' '1.8.4'
 dependencies , "org.apache.ant:ant-launcher:1.8.4@jar" "org.apache.ant:ant-junit:1.8.4"
 }
 }
}

This declares a dependency of your project on Groovy. Groovy itself has dependencies. But Gradle does not

look for an XML descriptor to figure them out but gets the information from the build file. The dependencies of

a client module can be normal module dependencies or artifact dependencies or another client module. Have

also a look at the API documentation: ClientModule

In the current release client modules have one limitation. Let's say your project is a library and you want this

library to be uploaded to your company's Maven or Ivy repository. Gradle uploads the jars of your project to the

company repository together with the XML descriptor file of the dependencies. If you use client modules the

dependency declaration in the XML descriptor file is not correct. We will improve this in a future release of

Gradle.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/ClientModule.html

Page 213 of 331

44.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the same

multi-project build. For the latter you can declare .Project Dependencies

Example 44.9. Project dependencies

build.gradle

dependencies {
 compile project()':shared'
}

For more information see the API documentation for ProjectDependency

Multi-project builds are discussed in .Chapter 50, Multi-project Builds

44.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a

repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you do

not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a as a dependency:file collection

Example 44.10. File dependencies

build.gradle

dependencies {
 runtime files(,)'libs/a.jar' 'libs/b.jar'
 runtime fileTree(dir: , include:)'libs' '*.jar'
}

File dependencies are not included in the published dependency descriptor for your project. However, file

dependencies are included in transitive project dependencies within the same build. This means they cannot be

used outside the current build, but they can be used with the same build.

You can declare which tasks produce the files for a file dependency. You might do this when, for example, the

files are generated by the build.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Page 214 of 331

Example 44.11. Generated file dependencies

build.gradle

dependencies {
 compile files() {"$buildDir/classes"
 builtBy 'compile'
 }
}

task compile << {
 println 'compiling classes'
}

task list(dependsOn: configurations.compile) << {
 println "classpath = ${configurations.compile.collect {File file -> file.name}}"
}

Output of gradle -q list

> gradle -q list
compiling classes
classpath = [classes]

44.4.5. Gradle API Dependency

You can declare a dependency on the API of the current version of Gradle by using the

 method. This is useful when you are developing custom GradleDependencyHandler.gradleApi()

tasks or plugins.

Example 44.12. Gradle API dependencies

build.gradle

dependencies {
 compile gradleApi()
}

44.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the

 method. This is useful when you are developing custom GradleDependencyHandler.localGroovy()

tasks or plugins in Groovy.

Example 44.13. Gradle's Groovy dependencies

build.gradle

dependencies {
 groovy localGroovy()
}

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

Page 215 of 331

44.4.7. Excluding transitive dependencies

You can exclude a dependency either by configuration or by dependency:transitive

Example 44.14. Excluding transitive dependencies

build.gradle

configurations {
 compile.exclude module: 'commons'
 all*.exclude group: , module: 'org.gradle.test.excludes' 'reports'
}

dependencies {
 compile() {"org.gradle.test.excludes:api:1.0"
 exclude module: 'shared'
 }
}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered for all

dependencies when resolving this configuration or any inheriting configuration. If you want to exclude a

transitive dependency from all your configurations you can use the Groovy spread-dot operator to express this

in a concise way, as shown in the example. When defining an exclude, you can specify either only the

organization or only the module name or both. Have also a look at the API documentation of andDependency

.Configuration

Not every transitive dependency can be excluded - some transitive dependencies might be essential for correct

runtime behavior of the application. Generally, one can exclude transitive dependencies that are either not

required by runtime or that are guaranteed to be available on the target environment/platform.

Should you exclude per-dependency or per-configuration? It turns out that in majority of cases you want to use

the per-configuration exclusion. Here are the some exemplary reasons why one might want to exclude a

transitive dependency. Bear in mind that for some of those use cases there are better solutions than exclusions!

The dependency is undesired due to licensing reasons.

The dependency is not available in any of remote repositories.

The dependency is not needed for runtime.

The dependency has a version that conflicts with a desired version. For that use case please refer to

 and the documentation on for a potentiallySection 44.2.3, “Version conflicts” ResolutionStrategy

better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This way

the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude rule

does not guarantee the given transitive dependency does not show up in the configuration. For example, some

other dependency, which does not have any exclude rules, might pull in that unwanted transitive dependency.

Other examples of the dependency exclusions can be found in the reference for or ModuleDependency

.DependencyHandler

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Page 216 of 331

44.4.8. Optional attributes

All attributes for a dependency are optional, except the name. It depends on the repository type, which

information is need for actually finding the dependencies in the repository. See . IfSection 44.6, “Repositories”

you work for example with Maven repositories, you need to define the group, name and version. If you work

with filesystem repositories you might only need the name or the name and the version.

Example 44.15. Optional attributes of dependencies

build.gradle

dependencies {
 runtime , ":junit:4.10" ":testng"
 runtime name: 'testng'
}

You can also assign collections or arrays of dependency notations to a configuration:

Example 44.16. Collections and arrays of dependencies

build.gradle

List groovy = [,"org.codehaus.groovy:groovy-all:1.8.7@jar"
 ,"commons-cli:commons-cli:1.0@jar"
]"org.apache.ant:ant:1.8.4@jar"
List hibernate = [,]'org.hibernate:hibernate:3.0.5@jar' 'somegroup:someorg:1.0@jar'
dependencies {
 runtime groovy, hibernate
}

44.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different configurations). If

you don't specify anything explicitly, Gradle uses the default configuration of the dependency. For dependencies

from a Maven repository, the default configuration is the only available one anyway. If you work with Ivy

repositories and want to declare a non-default configuration for your dependency you have to use the map

notation and declare:

Example 44.17. Dependency configurations

build.gradle

dependencies {
 runtime group: , name: , version: , configuration: 'org.somegroup' 'somedependency' '1.0' 'someConfiguration'
}

To do the same for project dependencies you need to declare:

Page 217 of 331

Example 44.18. Dependency configurations for project

build.gradle

dependencies {
 compile project(path: , configuration:)':api' 'spi'
}

44.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 11.6.3, “Listing project

). With the help of the Project report plugin (see) such adependencies” Chapter 39, The Project Report Plugin

report can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The

dependency reports (see the previous paragraph) are using this API behind the hood. The API lets you to walk

the resolved dependency graph and provides information about the dependencies. With the coming releases the

API will grow to provide more information about the resolution result. For more information about the API

please refer to the javadocs on . PotentialResolvedConfiguration.getResolutionResult()

usages of the API:ResolutionResult

Creation of advanced dependency reports tailored to your use case.

Enabling the build logic to make decisions based on the content of the dependency graph.

44.5. Working with dependencies
For the examples below we have the following dependencies setup:

Example 44.19. Configuration.copy

build.gradle

configurations {
 sealife
 alllife
}

dependencies {
 sealife , , "sea.mammals:orca:1.0" "sea.fish:shark:1.0" "sea.fish:tuna:1.0"
 alllife configurations.sealife
 alllife "air.birds:albatros:1.0"
}

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/ResolvedConfiguration.html#getResolutionResult()
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Page 218 of 331

You can use the configuration to access the declared dependencies or a subset of those:

Example 44.20. Accessing declared dependencies

build.gradle

task dependencies << {
 configurations.alllife.dependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.allDependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.allDependencies.findAll { dep -> dep.name != }.each { dep -> println dep.name }'orca'
}

Output of gradle -q dependencies

> gradle -q dependencies
albatros

albatros
orca
shark
tuna

albatros
shark
tuna

dependencies returns only the dependencies belonging explicitly to the configuration.

 includes the dependencies from extended configurations.allDependencies

To get the library files of the configuration dependencies you can do:

Example 44.21. Configuration.files

build.gradle

task allFiles << {
 configurations.sealife.files.each { file ->
 println file.name
 }
}

Output of gradle -q allFiles

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar
seal-2.0.jar
herring-1.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single

dependency).

Page 219 of 331

Example 44.22. Configuration.files with spec

build.gradle

task files << {
 configurations.sealife.files { dep -> dep.name == }.each { file ->'orca'
 println file.name
 }
}

Output of gradle -q files

> gradle -q files
orca-1.0.jar
seal-2.0.jar

The method always retrieves all artifacts of the configuration. It then filtersConfiguration.files whole

the retrieved files by specified dependencies. As you can see in the example, transitive dependencies are

included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the

original configuration should be copied. The copying methods come in two flavors. The method copiescopy

only the dependencies belonging explicitly to the configuration. The method copies all thecopyRecursive

dependencies, including the dependencies from extended configurations.

Example 44.23. Configuration.copy

build.gradle

task copy << {
 configurations.alllife.copyRecursive { dep -> dep.name != }.allDependencies.each { dep ->'orca'
 println dep.name
 }
 println()
 configurations.alllife.copy().allDependencies.each { dep ->
 println dep.name
 }
}

Output of gradle -q copy

> gradle -q copy
albatros
shark
tuna

albatros

It is important to note that the returned files of the copied configuration are often but not always the same than

the returned files of the dependency subset of the original configuration. In case of version conflicts between

dependencies of the subset and dependencies not belonging to the subset the resolve result might be different.

Page 220 of 331

Example 44.24. Configuration.copy vs. Configuration.files

build.gradle

task copyVsFiles << {
 configurations.sealife.copyRecursive { dep -> dep.name == }.each { file ->'orca'
 println file.name
 }
 println()
 configurations.sealife.files { dep -> dep.name == }.each { file ->'orca'
 println file.name
 }
}

Output of gradle -q copyVsFiles

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal-2.0.jar

In the example above, has a dependency on whereas has a dependency on orca seal-1.0 shark

. The original configuration has therefore a version conflict which is resolved to the newer seal-2.0

 version. The method therefore returns as a transitive dependency of . Theseal-2.0 files seal-2.0 orca

copied configuration only has as a dependency and therefore there is no version conflict and orca seal-1.0

is returned as a transitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies will

cause an exception. You can always copy a resolved configuration. The copied configuration is in the

unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the API documentation: .Configuration

44.6. Repositories
Gradle repository management, based on Apache Ivy, gives you a lot of freedom regarding repository layout

and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured

repositories.

You may configure any number of repositories, each of which is treated independently by Gradle. If Gradle

finds a module descriptor in a particular repository, it will attempt to download all of the artifacts for that

module from . Although module meta-data and module artifacts must be located in the samethe same repository

repository, it is possible to compose a single repository of multiple URLs, giving multiple locations to search for

meta-data files and jar files.

There are several different types of repositories you can declare:

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.Configuration.html

Page 221 of 331

Table 44.2. Repository types

Type Description

Maven central repository A pre-configured repository that looks for dependencies in Maven Central.

Maven local repository A pre-configured repository that looks for dependencies in the local Maven

repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some remote

location.

Ivy repository An Ivy repository. Can be located on the local filesystem or at some remote

location.

Flat directory repository A simple repository on the local filesystem. Does not support any meta-data

formats.

44.6.1. Maven central repository

To add the central Maven 2 repository () simply add this to your build script:http://repo1.maven.org/maven2

Example 44.25. Adding central Maven repository

build.gradle

repositories {
 mavenCentral()
}

Now Gradle will look for your dependencies in this repository.

44.6.2. Local Maven repository

To use the local Maven cache as a repository you can do:

Example 44.26. Adding the local Maven cache as a repository

build.gradle

repositories {
 mavenLocal()
}

Gradle uses the same logic as maven to identify the location of your local maven cache. If a local repository

location is defined in a , this location will be used. The in settings.xml settings.xml /.m2USER_HOME

takes precedence over the in . If no is available, Gradlesettings.xml /confM2_HOME settings.xml

uses the default location ./.m2/repositoryUSER_HOME

44.6.3. Maven repositories

For adding a custom Maven repository you can do:

http://repo1.maven.org/maven2

Page 222 of 331

Example 44.27. Adding custom Maven repository

build.gradle

repositories {
 maven {
 url "http://repo.mycompany.com/maven2"
 }
}

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts

published at another location. To define such a repository, you can do:

Example 44.28. Adding additional Maven repositories for JAR files

build.gradle

repositories {
 maven {
 // Look for POMs and artifacts, such as JARs, here
 url "http://repo2.mycompany.com/maven2"
 // Look for artifacts here if not found at the above location
 artifactUrls "http://repo.mycompany.com/jars"
 artifactUrls "http://repo.mycompany.com/jars2"
 }
}

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact URLs

are used to look for JARs.

44.6.3.1. Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to use

when you define the repository:

Example 44.29. Accessing password protected Maven repository

build.gradle

repositories {
 maven {
 credentials {
 username 'user'
 password 'password'
 }
 url "http://repo.mycompany.com/maven2"
 }
}

It is advisable to keep your username and password in rather than directly in the buildgradle.properties

file.

44.6.4. Flat directory repository

If you want to use a (flat) filesystem directory as a repository, simply type:

Page 223 of 331

Example 44.30. Flat repository resolver

build.gradle

repositories {
 flatDir {
 dirs 'lib'
 }
 flatDir {
 dirs , 'lib1' 'lib2'
 }
}

This adds repositories which look into one or more directories for finding dependencies. If you only work with

flat directory resolvers you don't need to set all attributes of a dependency. See Section 44.4.8, “Optional

attributes”

44.6.5. Ivy repositories

To use an Ivy repository with a standard layout:

Example 44.31. Ivy repository

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout "maven"
 }
}

See for details.IvyArtifactRepository

44.6.5.1. Defining custom patterns for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a pattern layout for the repository:

Example 44.32. Ivy repository with pattern layout

build.gradle

repositories {
 ivy {
 url "http://repo.mycompany.com/repo"
 layout , {'pattern'
 artifact "[module]/[revision]/[artifact].[ext]"
 ivy "[module]/[revision]/ivy.xml"
 }
 }
}

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/repositories/IvyArtifactRepository.html

Page 224 of 331

44.6.5.2. Defining different artifact and ivy file locations for an Ivy repository

To define an Ivy repository which fetches ivy files and artifacts from different locations, you can explicitly

define complete URL patterns for artifacts and ivy files:

Example 44.33. Ivy repository with custom patterns

build.gradle

repositories {
 ivy {
 artifactPattern "http://repo.mycompany.com/3rd-party-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 artifactPattern "http://repo.mycompany.com/company-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 ivyPattern "http://repo.mycompany.com/ivy-files/[organisation]/[module]/[revision]/ivy.xml"
 }
}

Each or specified for a repository adds an pattern, on top ofivyPattern artifactPattern additional

any url/layout based patterns defined. Values supplied as or should beivyPattern artifactPattern

fully qualified URLs as they are not resolved relative to the parameter for the repository. Any unqualifiedurl

patterns will be resolved as a file path, relative to the project base directory.

44.6.5.3. Accessing password protected Ivy repositories

To access an Ivy repository which uses basic authentication, you specify the username and password to use

when you define the repository:

Example 44.34. Ivy repository

build.gradle

repositories {
 ivy {
 credentials {
 username 'user'
 password 'password'
 }
 artifactPattern "http://repo.mycompany.com/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
 }
}

44.6.6. Working with repositories

To access a repository:

Example 44.35. Accessing a repository

build.gradle

println repositories.localRepository.name
 println repositories[].name'localRepository'

To configure a repository:

Page 225 of 331

Example 44.36. Configuration of a repository

build.gradle

repositories {
 flatDir {
 name 'localRepository'
 }
}
repositories {
 localRepository {
 dirs 'lib'
 }
}
repositories.localRepository {
 dirs 'lib'
}

44.6.7. More about Ivy resolvers

Gradle, thanks to Ivy under its hood, is extremely flexible regarding repositories:

There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh, ...)

Each repository can have its own layout.

Let's say, you declare a dependency on the library. Now how does Gradle find it in thejunit:junit:3.8.2

repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven, where

this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here are some

examples: []14

// Maven2 layout (if a repository is marked as Maven2 compatible, the organization (group) is split into subfolders according to the dots.)
someroot/[organisation]/[module]/[revision]/[module]-[revision].[ext]

// Typical layout for an ivy repository (the organization is not split into subfolder)
someroot/[organisation]/[module]/[revision]/[type]s/[artifact].[ext]

// Simple layout (the organization is not used, no nested folders.)
someroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Example 44.37. Definition of a custom repository

build.gradle

repositories {
 ivy {
 ivyPattern "$projectDir/repo/[organisation]/[module]-ivy-[revision].xml"
 artifactPattern "$projectDir/repo/[organisation]/[module]-[revision](-[classifier]).[ext]"
 }
}

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found . With Gradle youhere

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

Page 226 of 331

just don't configure them via XML but directly via their API.

44.7. How dependency resolution works
Gradle takes your dependency declarations and repository definitions and attempts to download all of your

dependencies by a process called . Below is a brief outline of how this process works.dependency resolution

Given a required dependency, Gradle first attempts to resolve the for that dependency. Eachmodule

repository is inspected in order, searching first for a file (pom or ivy file) that indicatesmodule descriptor

the presence of that module. If no module descriptor is found, Gradle will search for the presence of the

primary file indicating that the module exists in the repository.module artifact

If the dependency is declared as a dynamic version (like), Gradle will resolve this to the newest1.+

available static version (like) in the repository. For maven repositories, this is done using the 1.2 maven-metadata.xml

file, while for ivy repositories this is done by directory listing.

If the module descriptor is a file that has a parent pom declared, Gradle will recursively attempt topom

resolve each of the parent modules for the pom.

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is

done using the following criteria:

For a dynamic version, a 'higher' static version is preferred over a 'lower' version.

Modules declared by a module descriptor file (ivy or pom file) are preferred over modules that have an

artifact file only.

Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a static version and a module descriptor file is found in a repository,

there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the that was chosen in thesame repository

process above.

44.8. The dependency cache
Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the number of

remote requests made in dependency resolution, while striving to guarantee that the results of dependency

resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded meta-data

like pom files and ivy files. The storage path for a downloaded artifact includes the SHA1 checksum,

meaning that 2 artifacts with the same name but different content can easily be cached.

A binary store of resolved module meta-data, including the results of resolving dynamic versions, module

descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful

things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and creating mysterious and difficult to debug

behavior that has been a challenge with many build tools. This new behavior is implemented in a bandwidth and

storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

Page 227 of 331

44.8.1. Key features of the Gradle dependency cache

44.8.1.1. Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache. The

information stored in the metadata cache includes:

The result of resolving a dynamic version (eg 1.+) to a concrete version (eg 1.2).

The resolved module metadata for a particular module, including module artifacts and module dependencies.

The resolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

The of a particular module or artifact in a particular repository, eliminating repeated attempts toabsence

access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well as a

timestamp that can be used for cache expiry.

44.8.1.2. Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its

URL, type and layout. If a module or artifact has not been previously resolved from , Gradle willthis repository

attempt to resolve the module against the repository. This will always involve a remote lookup on the

repository, however in many cases no download will be required (see , below).Section 44.8.1.3, “Artifact reuse”

Dependency resolution will fail if the required artifacts are not available in any repository specified by the build,

regardless whether the local cache has retrieved this artifact from a different repository. Repository

independence allows builds to be isolated from each other in an advanced way that no build tool has done

before. This is a key feature to create builds that are reliable and reproducible in any environment.

44.8.1.3. Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by downloading

the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not downloaded if an

artifact already exists with the same id and checksum. If the checksum cannot be retrieved from the remote

server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse

artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle

will use this artifact if it can be verified to match the checksum declared by the remote server.

44.8.1.4. Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact

identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which is

republished without changing it's identifier. By caching artifacts based on their SHA1 checksum, Gradle is able

to maintain multiple versions of the same artifact. This means that when resolving against one repository Gradle

will never overwrite the cached artifact file from a different repository. This is done without requiring a separate

artifact file store per repository.

Page 228 of 331

44.8.1.5. Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle

processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is

released for slow operations such as downloading remote artifacts.

44.8.2. Command line options to override caching

44.8.2.1. Offline

The command line switch tells Gradle to always use dependency modules from the cache,--offline

regardless if they are due to be checked again. When running with offline, Gradle will never attempt to access

the network to perform dependency resolution. If required modules are not present in the dependency cache,

build execution will fail.

44.8.2.2. Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured repositories.

Perhaps a repository was initially misconfigured, or perhaps a "non-changing" module was published

incorrectly. To refresh all dependencies in the dependency cache, use the --refresh-dependencies

option on the command line.

The option tells Gradle to ignore all cached entries for resolved modules and--refresh-dependencies

artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions

recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will attempt to if

the previously downloaded artifacts are valid before downloading again. This is done by comparing published

SHA1 values in the repository with the SHA1 values for existing downloaded artifacts.

44.8.3. Fine-tuned control over dependency caching

You can fine-tune certain aspects of caching using the for a configuration.ResolutionStrategy

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the resolved

version for a dynamic version, use:

Example 44.38. Dynamic version cache control

build.gradle

configurations.all {
 resolutionStrategy.cacheDynamicVersionsFor , 10 'minutes'
}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the meta-data

and artifacts for a changing module, use:

Page 229 of 331

Example 44.39. Changing module cache control

build.gradle

configurations.all {
 resolutionStrategy.cacheChangingModulesFor , 30 'days'
}

For more details, take a look at the API documentation for .ResolutionStrategy

44.9. Strategies for transitive dependency
management

Many projects rely on the . This is not without problems.Maven Central repository

The Maven Central repository can be down or has a very long response time.

The 's of many projects have wrong information (as one example, the POM of pom.xml commons-httpclient-3.0

declares JUnit as a runtime dependency).

For many projects there is not one right set of dependencies (as more or less imposed by the format).pom

If your project relies on the Maven Central repository you are likely to need an additional custom repository,

because:

You might need dependencies that are not uploaded to Maven Central yet.

You want to deal properly with wrong metadata in a Maven Central .pom.xml

You don't want to expose people who want to build your project, to the downtimes or sometimes very long

response times of Maven Central.

It is not a big deal to set-up a custom repository. But it can be tedious, to keep it up to date. For a new[]15

version, you have always to create the new XML descriptor and the directories. And your custom repository is

another infrastructure element which might have downtimes and needs to be updated. To enable historical

builds, you need to keep all the past libraries and you need a backup. It is another layer of indirection. Another

source of information you have to lookup. All this is not really a big deal but in its sum it has an impact.

Repository Manager like Artifactory or Nexus make this easier. But for example open source projects don't

usually have a host for those products.

This is a reason why some projects prefer to store their libraries in their version control system. This approach is

fully supported by Gradle. The libraries can be stored in a flat directory without any XML module descriptor

files. Yet Gradle offers complete transitive dependency management. You can use either client module

dependencies to express the dependency relations, or artifact dependencies in case a first level dependency has

no transitive dependencies. People can check out such a project from svn and have everything necessary to build

it.

If you are working with a distributed version control system like Git you probably don't want to use the version

control system to store libraries as people check out the whole history. But even here the flexibility of Gradle

can make your life easier. For example you can use a shared flat directory without XML descriptors and yet you

can have full transitive dependency management as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the and maintainingpom.xml

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://repo1.maven.org/maven2

Page 230 of 331

custom XML descriptors, offer an alternative. But you can of course still use Maven2 repo andClient Modules

your custom repository as a repository for and still enjoy dependency management. Or youjars only transitive

can only provide client modules for POMs with bad metadata. For the jars and the correct POMs you still use

the remote repository.

44.9.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies XML descriptor files. You can do this withwithout

Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with other build

tools.

The trick is to use only artifact dependencies and group them in lists. That way you have somehow expressed,

what are your first level dependencies and what are transitive dependencies (see Section 44.4.8, “Optional

). But the draw-back is, that for the Gradle dependency management all dependencies are consideredattributes”

first level dependencies. The dependency reports don't show your real dependency graph and the taskcompile

uses all dependencies, not just the first level dependencies. All in all, your build is less maintainable and reliable

than it could be when using client modules. And you don't gain anything.

[] 12 Gradle supports partial multiproject builds (see).Chapter 50, Multi-project Builds

[] 13 http://www.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships.html

[] 14 At you can learn more about ivy patterns.http://ant.apache.org/ivy/history/latest-milestone/concept.html

[] 15 If you want to shield your project from the downtimes of Maven Central things get more complicated. You

probably want to set-up a repository proxy for this. In an enterprise environment this is rather common. For an

open source project it looks like overkill.

http://www.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

Page 231 of 331

45
Publishing artifacts

45.1. Introduction
This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.

upload them). We define the artifacts of the projects as the files the project provides to the outside world. This

might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it wants.

45.2. Artifacts and configurations
Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts

and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks and uploadConfigurationName buildConfigurationName

. Execution of these tasks will build or upload the artifacts belonging to the respective configuration.[]16

Table shows the configurations added by the Java plugin.Table 23.5, “Java plugin - dependency configurations”

Two of the configurations are relevant for the usage with artifacts. The configuration is the standardarchives

configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this

configuration. We will talk more about the configuration in runtime Section 45.5, “More about project

. As with dependencies, you can declare as many custom configurations as you like and assign artifactslibraries”

to them.

Page 232 of 331

45.3. Declaring artifacts

45.3.1. Archive task artifacts

You can use an archive task to define an artifact:

Example 45.1. Defining an artifact using an archive task

build.gradle

task myJar(type: Jar)

artifacts {
 archives myJar
}

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

45.3.2. File artifacts

You can also use a file to define an artifact:

Example 45.2. Defining an artifact using a file

build.gradle

def someFile = file()'build/somefile.txt'

artifacts {
 archives someFile
}

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Example 45.3. Customizing an artifact

build.gradle

task myTask(type: MyTaskType) {
 destFile = file()'build/somefile.txt'
}

artifacts {
 archives(myTask.destFile) {
 name 'my-artifact'
 type 'text'
 builtBy myTask
 }
}

Page 233 of 331

There is a map-based syntax for defining an artifact using a file. The map must include a entry thatfile

defines the file. The map may include other artifact properties:

Example 45.4. Map syntax for defining an artifact using a file

build.gradle

task generate(type: MyTaskType) {
 destFile = file()'build/somefile.txt'
}

artifacts {
 archives file: generate.destFile, name: , type: , builtBy: generate'my-artifact' 'text'
}

45.4. Publishing artifacts
We have said that there is a specific upload task for each configuration. But before you can do an upload, you

have to configure the upload task and define where to publish the artifacts to. The repositories you have defined

(as described in) are not automatically used for uploading. In fact, some of thoseSection 44.6, “Repositories”

repositories allow only for artifact downloading. Here is an example how you can configure the upload task of a

configuration:

Example 45.5. Configuration of the upload task

build.gradle

repositories {
 flatDir {
 name "fileRepo"
 dirs "repo"
 }
}

uploadArchives {
 repositories {
 add project.repositories.fileRepo
 ivy {
 credentials {
 username "username"
 password "pw"
 }
 url "http://repo.mycompany.com"
 }
 }
}

As you can see, you can either use a reference to an existing repository or create a new repository. As described

in , you can use all the Ivy resolvers suitable for the purpose ofSection 44.6.7, “More about Ivy resolvers”

uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading each

file. By default, Gradle will upload to the pattern defined by the parameter, combined with the optional url layout

Page 234 of 331

parameter. If no parameter is supplied, then Gradle will use the first defined forurl artifactPattern

uploading, or the first defined for uploading ivy files, if this is set.ivyPattern

Uploading to a Maven repository is described in .Section 46.6, “Interacting with Maven repositories”

45.5. More about project libraries
If your project is supposed to be used as a library, you need to define what are the artifacts of this library and

what are the dependencies of these artifacts. The Java plugin adds a configuration for this purpose,runtime

with the implicit assumption that the dependencies are the dependencies of the artifact you want toruntime

publish. Of course this is fully customizable. You can add your own custom configuration or let the existing

configurations extend from other configurations. You might have different group of artifacts which have a

different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare on which configuration of the

dependency to depend on. A Gradle dependency offers the property to declare this. If this isconfiguration

not specified, the configuration is used (see). Usingdefault Section 44.4.9, “Dependency configurations”

your project as a library can either happen from within a multi-project build or by retrieving your project from a

repository. In the latter case, an ivy.xml descriptor in the repository is supposed to contain all the necessary

information. If you work with Maven repositories you don't have the flexibility as described above. For how to

publish to a Maven repository, see the section .Section 46.6, “Interacting with Maven repositories”

[] 16 To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the Java

plugin.

Page 235 of 331

46
The Maven Plugin

This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

46.1. Usage
To use the Maven plugin, include in your build script:

Example 46.1. Using the Maven plugin

build.gradle

apply plugin: 'maven'

46.2. Tasks
The Maven plugin defines the following tasks:

Table 46.1. Maven plugin - tasks

Task

name

Depends

on

Type Description

install All tasks

that build

the

associated

archives.

Upload Installs the associated artifacts to the local Maven cache,

including Maven metadata generation. By default the install task

is associated with the configuration. Thisarchives

configuration has by default only the default jar as an element. To

learn more about installing to the local repository, see:

Section 46.6.3, “Installing to the local repository”

46.3. Dependency management
The Maven plugin does not define any dependency configurations.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.Upload.html

Page 236 of 331

46.4. Convention properties
The Maven plugin defines the following convention properties:

Table 46.2. Maven plugin - properties

Property name Type Default value Description

pomDirName String poms The path of the

directory to

write the

generated

POMs, relative

to the build

directory.

pomDir File (read-only) /buildDir pomDirNameThe directory

where the

generated POMs

are written to.

conf2ScopeMappings Conf2ScopeMappingContainer n/a Instructions for

mapping Gradle

configurations

to Maven

scopes. See

Section 46.6.4.2,

“Dependency

.mapping”

These properties are provided by a convention object.MavenPluginConvention

46.5. Convention methods
The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without the

context of uploading to a Maven repo.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Page 237 of 331

Example 46.2. Creating a stand alone pom.

build.gradle

task writeNewPom << {
 pom {
 project {
 inceptionYear '2008'
 licenses {
 license {
 name 'The Apache Software License, Version 2.0'
 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 distribution 'repo'
 }
 }
 }
 }.writeTo()"$buildDir/newpom.xml"
}

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the

Gradle Maven POM object, see . See also: MavenPom MavenPluginConvention

46.6. Interacting with Maven repositories

46.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This

includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's deployment is

100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle can generate

this POM for you using the dependency information it has.

46.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote

Maven repository.

Example 46.3. Upload of file to remote Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 }
 }
}

That is all. Calling the task will generate the POM and deploys the artifact and the pom touploadArchives

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Page 238 of 331

the specified repository.

There is some more work to do if you need support for other protocols than . In this case the native Mavenfile

code we delegate to needs additional libraries. Which libraries depend on the protocol you need. The available

protocols and the corresponding libraries are listed in (thoseTable 46.3, “Protocol jars for Maven deployment”

libraries have again transitive dependencies which have transitive dependencies). For example to use the ssh[]17

protocol you can do:

Example 46.4. Upload of file via SSH

build.gradle

configurations {
 deployerJars
}

repositories {
 mavenCentral()
}

dependencies {
 deployerJars "org.apache.maven.wagon:wagon-ssh:1.0-beta-2"
}

uploadArchives {
 repositories.mavenDeployer {
 name = 'sshDeployer' // optional
 configuration = configurations.deployerJars
 repository(url:) {"scp://repos.mycompany.com/releases"
 authentication(userName: , password:)"me" "myPassword"
 }
 }
}

There are many configuration options for the Maven deployer. The configuration is done via a Groovy builder.

All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the bean

elements. To add another bean elements to its parent, you use a closure. In the example above and repository

 are such bean elements. lists theauthentication Table 46.4, “Configuration elements of the MavenDeployer”

available bean elements and a link to the javadoc of the corresponding class. In the javadoc you can see the

possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is defined,

releases and snapshots are both deployed to the element. Otherwise snapshots are deployed torepository

the element.snapshotRepository

Page 239 of 331

Table 46.3. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:1.0-beta-2

ssh org.apache.maven.wagon:wagon-ssh:1.0-beta-2

ssh-external org.apache.maven.wagon:wagon-ssh-external:1.0-beta-2

scp org.apache.maven.wagon:wagon-scp:1.0-beta-2

ftp org.apache.maven.wagon:wagon-ftp:1.0-beta-2

webdav org.apache.maven.wagon:wagon-webdav-jackrabbit:1.0-beta-6

file -

Table 46.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDeployer

repository org.apache.maven.artifact.ant.RemoteRepository

authentication org.apache.maven.artifact.ant.Authentication

releases org.apache.maven.artifact.ant.RepositoryPolicy

snapshots org.apache.maven.artifact.ant.RepositoryPolicy

proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

46.6.3. Installing to the local repository

The Maven plugin adds an task to your project. This task depends on all the archives task of the install archives

configuration. It installs those archives to your local Maven repository. If the default location for the local

repository is redefined in a Maven , this is considered by this task.settings.xml

46.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The ,groupId

, and elements used for the POM default to the values shown in theartifactId version packaging

table below. The elements are created from the project's dependency declarations.dependency

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Authentication.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Proxy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html

Page 240 of 331

Table 46.5. Default Values for Maven POM generation

Maven

Element

Default Value

groupId project.group

artifactId uploadTask.repositories.mavenDeployer.pom.artifactId (if set) or

archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here, and refer to the tasks used for uploading and generating the archive,uploadTask archiveTask

respectively (for example and). defaults to uploadArchives jar archiveTask.baseName project.archivesBaseName

which in turn defaults to .project.name

When you set to a value other than the default, make sure to set archiveTask.baseName uploadTask.repositories.mavenDeployer.pom.artifactId

to the same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from

generated POMs for other projects in the same build.

Generated POMs can be found in . They can be further customized via the <buildDir>/poms MavenPom

API. For example, you might want the artifact deployed to the Maven repository to have a different version or

name than the artifact generated by Gradle. To customize these you can do:

Example 46.5. Customization of pom

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 pom.version = '1.0Maven'
 pom.artifactId = 'myMavenName'
 }
 }
}

To add additional content to the POM, the builder can be used. With this builder, any elementpom.project

listed in the can be added.Maven POM reference

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

Page 241 of 331

Example 46.6. Builder style customization of pom

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 pom.project {
 licenses {
 license {
 name 'The Apache Software License, Version 2.0'
 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 distribution 'repo'
 }
 }
 }
 }
 }
}

Note: , , , and should always be set directly on the object.groupId artifactId version packaging pom

Example 46.7. Modifying auto-generated content

build.gradle

[installer, deployer]*.pom*.whenConfigured {pom ->
 pom.dependencies.find {dep -> dep.groupId == && dep.artifactId == }.optional = true'group3' 'runtime'
}

If you have more than one artifact to publish, things work a little bit differently. SeeSection 46.6.4.1, “Multiple

.artifacts per project”

To customize the settings for the Maven installer (see), youSection 46.6.3, “Installing to the local repository”

can do:

Example 46.8. Customization of Maven installer

build.gradle

install {
 repositories.mavenInstaller {
 pom.version = '1.0Maven'
 pom.artifactId = 'myName'
 }
}

46.6.4.1. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We

think there are many situations where it makes sense to have more than one artifact per project. In such a case

you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you want to

publish to a Maven repository. The and the MavenInstaller both provide an API for this:MavenDeployer

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html

Page 242 of 331

Example 46.9. Generation of multiple poms

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url:)"file://localhost/tmp/myRepo/"
 addFilter() {artifact, file ->'api'
 artifact.name == 'api'
 }
 addFilter() {artifact, file ->'service'
 artifact.name == 'service'
 }
 pom().version = 'api' 'mySpecialMavenVersion'
 }
 }
}

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for

which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn

more about this have a look at and its associated classes.PomFilterContainer

46.6.4.2. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and

War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this

section. The mapping works like the following. You can map a configuration to one and only one scope.

Different configurations can be mapped to one or different scopes. One can assign also a priority to a particular

configuration-to-scope mapping. Have a look at to learn more. To accessConf2ScopeMappingContainer

the mapping configuration you can say:

Example 46.10. Accessing a mapping configuration

build.gradle

task mappings << {
 println conf2ScopeMappings.mappings
}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the Gradle

exclude rule the group as well as the module name is specified (as Maven needs both in contrast to Ivy).

Per-configuration excludes are also included in the Maven POM, if they are convertible.

[] 17 It is planned for a future release to provide out-of-the-box support for this

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Page 243 of 331

47
The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then be

used to prove who built the artifact the signature is attached to as well as other information such as when the

signature was generated.

The signing plugin currently only provides support for generating (which is the signature formatPGP signatures

).required for publication to the Maven Central Repository

47.1. Usage
To use the Signing plugin, include in your build script:

Example 47.1. Using the Signing plugin

build.gradle

apply plugin: 'signing'

47.2. Signatory credentials
In order to create PGP signatures, you will need a key pair (instructions on creating a key pair using the GnuPG

 can be found in the). You need to provide the signing plugin with your key information,tools GnuPG HOWTOs

which means three things:

The public key ID (an 8 character hexadecimal string).

The absolute path to the secret key ring file containing your private key.

The passphrase used to protect your private key.

These items must be supplied as the property projects , and signing.keyId signing.password signing.secretKeyRingFile

respectively. Given the personal and private nature of these values, a good practice is to store them in the user gradle.properties

file (described in).Section 14.2, “Gradle properties and system properties”

signing.keyId=24875D73
signing.password=secret
signing.secretKeyRingFile=/Users/me/.gnupg/secring.gpg

If specifying this information in the user file is not feasible for your environment, yougradle.properties

can source the information however you need to and set the project properties manually.

http://www.pgpi.org/
https://docs.sonatype.org/display/Repository/Central+Sync+Requirements
http://www.gnupg.org/
http://www.gnupg.org/
http://www.gnupg.org/documentation/howtos.html

Page 244 of 331

import org.gradle.plugins.signing.Sign

gradle.taskGraph.whenReady { taskGraph ->
 if (taskGraph.allTasks.any { it instanceof Sign }) {
 // Use Java 6's console to read from the console (no good for a CI environment)
 Console console = System.console()
 console.printf "\n\nWe have to sign some things in this build.\n\nPlease enter your signing details.\n\n"

 def id = console.readLine("PGP Key Id: ")
 def file = console.readLine("PGP Secret Key Ring File (absolute path): ")
 def password = console.readPassword("PGP Private Key Password: ")

 allprojects { ext."signing.keyId" = id }
 allprojects { ext."signing.secretKeyRingFile" = file }
 allprojects { ext."signing.password" = password }

 console.printf "\nThanks.\n\n"
 }
}

47.3. Specifying what to sign
As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify what

is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or configurations

that should be signed.

47.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the configures a jar toJava plugin

built and this jar artifact is added to the configuration. Using the Signing DSL, you can specify thatarchives

all of the artifacts of this configuration should be signed.

Example 47.2. Signing a configuration

build.gradle

signing {
 sign configurations.archives
}

This will create a task (of type) in your project named “ ”, that will build any Sign signArchives archives

artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the

artifacts being signed.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.signing.Sign.html

Page 245 of 331

Example 47.3. Signing a configuration output

Output of gradle signArchives

> gradle signArchives
:compileJava
:processResources
:classes
:jar
:signArchives

BUILD SUCCESSFUL

Total time: 1 secs

47.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can directly

sign the task that produces the artifact to sign.

Example 47.4. Signing a task

build.gradle

task stuffZip (type: Zip) {
 baseName = "stuff"
 from "src/stuff"
}

signing {
 sign stuffZip
}

This will create a task (of type) in your project named “ ”, that will build the input task'sSign signStuffZip

archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.

Example 47.5. Signing a task output

Output of gradle signStuffZip

> gradle signStuffZip
:stuffZip
:signStuffZip

BUILD SUCCESSFUL

Total time: 1 secs

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the , , , Tar Zip Jar

 and tasks.War Ear

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 246 of 331

47.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not wish

to sign artifacts for non release versions. To achieve this, you can specify that signing is only required under

certain conditions.

Example 47.6. Conditional signing

build.gradle

version = '1.0-SNAPSHOT'
ext.isReleaseVersion = !version.endsWith()"SNAPSHOT"

signing {
 required { isReleaseVersion && gradle.taskGraph.hasTask() }"uploadArchives"
 sign configurations.archives
}

In this example, we only want to require signing if we are building a release version and we are going to publish

it. Because we are inspecting the task graph to determine if we are going to be publishing, we must set the signing.required

property to a closure to defer the evaluation. See for moreSigningExtension.setRequired()

information.

47.4. Publishing the signatures
When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically

added to the and dependency configurations. This means that if you want to uploadsignatures archives

your signatures to your distribution repository along with the artifacts you simply execute the uploadArchives

task as normal.

47.5. Signing POM files
When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published

POM file. The signing plugin adds a (see:)signing.signPom() SigningExtension.signPom()

method that can be used in the block in your upload task configuration.beforeDeployment()

Example 47.7. Signing a POM for deployment

build.gradle

uploadArchives {
 repositories {
 mavenDeployer {
 beforeDeployment { MavenDeployment deployment -> signing.signPom(deployment) }
 }
 }
}

When signing is not required and the pom cannot be signed due to insufficient configuration (i.e. no credentials

http://www.gradle.org/doc/1.2-rc-1/groovydoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

Page 247 of 331

for signing) then the method will silently do nothing.signPom()

Page 248 of 331

48
C++ Support

The Gradle C++ support is in very early stages of development. Please be aware that the DSL and other

configuration may change in later Gradle versions.

The C++ plugins add support for building software comprised of C++ source code, and managing the process of

building “native” software in general. While many excellent build tools exist for this space of software

development, Gradle brings the dependency management practices more traditionally found in the JVM

development space to C++ developers.

The following platforms are supported:

Operating

System

Compiler Notes

Linux GCC Tested with GCC 4.6.1 on Ubuntu 11.10

Mac OS X GCC Tested with XCode 4.2.1 on OS X 10.7

Windows Visual

C++

Tested with Windows 7 and Visual C++ 2010

Windows MinGW Tested with Windows 7 and MinGW 4.6.2. Note: G++ support is currently

broken under cygwin

Currently, there is no direct support for creating multiple variants of the same binary (e.g. 32 bit vs. 64 bit) and

there is no direct support for cross platform source configuration (à la) at this time. Support forautoconf

different compiler chains, managing multiple variants and cross platform source configuration will be added

over time, making Gradle a fully capable build tool for C++ (and other “native” language) projects.

48.1. Usage
The build scripts DSLs, model elements and tasks used to manage C++ projects are added by the plugin.cpp

However, it is typically more convenient to use either the or plugins that sit on top of the cpp-lib cpp-exe cpp

plugin to preconfigure the project to build either a shared library or executable binary respectively.

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.microsoft.com/visualstudio/en-us
http://www.microsoft.com/visualstudio/en-us
http://www.mingw.org/
http://www.gnu.org/s/autoconf/

Page 249 of 331

Example 48.1. Using the 'cpp-exe' plugin

build.gradle

apply plugin: "cpp-exe"

Example 48.2. Using the 'cpp-lib' plugin

build.gradle

apply plugin: "cpp-lib"

The plugin configures the project to build a single executable (at cpp-exe /binaries/$buildDir $project.name

) and the plugin configures the project to build a single shared library (at cpp-lib /binaries/lib .so$buildDir $project.name

).

48.2. Source code locations
Both plugins configure the project to look for and source files in and use the .cpp .c src/main/cpp src/main/headers

directory as a header include root. For a library, the header files in are considered thesrc/main/headers

“public” or “exported” headers. Header files that should not be exported (but are used internally) should be

placed inside the directory (though be aware that such header files should always besrc/main/cpp

referenced in a manner relative to the file including them).

The plugin is also very flexible in where it looks for source and header files, aand you can configure thecpp

above conventions to look however you like.

48.3. Compiling
For both the and plugins, you can run to compile and link thecpp-lib cpp-exe gradle compileMain

binary.

48.3.1. Compiling on UNIX

The UNIX C++ support is currently based on the tool which must be installed and on the for theg++ PATH

Gradle process.

48.3.2. Compiling on Windows

The Windows C++ support can use either the MinGW or the Microsoft Visual C++ tool, either ofg++ cl

which must be installed and on the for the Gradle process. Gradle searches first for Microsoft VisualPATH

C++, and then MinGW.

48.4. Configuring the compiler
Arbitrary arguments can be provided to the compiler by using the following syntax:

Page 250 of 331

Example 48.3. Supplying arbitrary args to the compiler

build.gradle

executables {
 main {
 spec {
 args , "-fno-access-control" "-fconserve-space"
 }
 }
}

The above example applies to the plugin, to supply arguments for the plugin replace “cpp-exe cpp-lib executables

” with “ ”.libraries

48.5. Working with shared libraries
The C++ plugin provides an task, which creates a development install of the executable, alonginstallMain

with the shared libraries it requires. This allows you to run the executable without needing to install the shared

libraries in their final locations.

48.6. Dependencies
Dependencies for C++ projects are binary libraries that export header files. The header files are used during

compilation, with the compiled binary dependency being used during the linking.

48.6.1. External Dependencies

External dependencies (i.e. from a repository, not a subproject) must be specified using the following syntax:

Example 48.4. Declaring dependencies

build.gradle

cpp {
 sourceSets {
 main {
 dependency group: , name: , version: "some-org" "some-lib" "1.0"
 }
 }
}

Each dependency must be specified with the method as above and must be declared as part ofdependency

the source set. The , and arguments be supplied.group name version must

For each declared dependency, two actual dependencies are created. One with the classifier “ ” andheaders

extension “ ” which is a zip file of the exported headers, and another with the classifier “ ” and extensionzip so

“ ” which is the compiled library binary to link against (which is supplied as a direct input to the g++ linkso

operation).

Page 251 of 331

48.6.2. Project Dependencies

The notation for project dependencies is slightly different.

Example 48.5. Declaring project dependencies

build.gradle

project() {":lib"
 apply plugin: "cpp-lib"
}

project() {":exe"
 apply plugin: "cpp-exe"
 cpp {
 sourceSets {
 main {
 libs << project().libraries.main":lib"
 }
 }
 }
}

48.7. Publishing
The and plugins configure their respective output binaries to be publishable as part of the cpp-exe cpp-lib archives

configuration. To publish, simply configure the task as per usual.uploadArchives

Example 48.6. Uploading exe or lib

build.gradle

group = "some-org"
archivesBaseName = "some-lib"
version = 1.0

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url: uri())"${buildDir}/repo"
 }
 }
}

The plugin publishes a single artifact with extension “ ”. The plugin publishes twocpp-exe exe cpp-lib

artifacts; one with classifier “ ” and extension “ ”, and one with classifier “ ” and extension “headers zip so so

” (which is the format used when consuming dependencies).

Currently, there is no support for publishing the dependencies of artifacts in POM or Ivy files. Future

versions will support this.

Page 252 of 331

Page 253 of 331

49
The Build Lifecycle

We said earlier, that the core of Gradle is a language for dependency based programming. In Gradle terms this

means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are

executed in the order of their dependencies, and that each task is executed only once. Those tasks form a

. There are build tools that build up such a dependency graph as they execute their tasks.Directed Acyclic Graph

Gradle builds the complete dependency graph any task is executed. This lies at the heart of Gradle andbefore

makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration

.scripts

49.1. Build phases
A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which

projects are going to take part in the build, and creates a instance for each of these projects.Project

Configuration

The build scripts of projects which are part of the build are executed. This configures the project objects.all

Execution

Gradle determines the subset of the tasks, created and configured during the configuration phase, to be

executed. The subset is determined by the task name arguments passed to the command and thegradle

current directory. Gradle then executes each of the selected tasks.

49.2. Settings file
Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a

naming convention. The default name for this file is . Later in this chapter we explain,settings.gradle

how Gradle looks for a settings file.

The settings file gets executed during the initialization phase. A multiproject build must have a settings.gradle

file in the root project of the multiproject hierarchy. It is required because in the settings file it is defined, which

projects are taking part in the multi-project build (see). For a single-projectChapter 50, Multi-project Builds

build, a settings file is optional. You might need it for example, to add libraries to your build script classpath

(see). Let's first do some introspection with a single project build:Chapter 53, Organizing Build Logic

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html

Page 254 of 331

Example 49.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

task configured {
 println 'This is also executed during the configuration phase.'
}

task test << {
 println 'This is executed during the execution phase.'
}

Output of gradle test

> gradle test
This is executed during the initialization phase.
This is executed during the configuration phase.
This is also executed during the configuration phase.
:test
This is executed during the execution phase.

BUILD SUCCESSFUL

Total time: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property

access and method calls within the settings file is delegated to a settings object. Have a look at .Settings

49.3. Multi-project builds
A multi-project build is a build where you build more than one project during a single execution of Gradle. You

have to declare the projects taking part in the multiproject build in the settings file. There is much more to say

about multi-project builds in the chapter dedicated to this topic (see).Chapter 50, Multi-project Builds

49.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents a

project. A project has a path which denotes the position of the project in the multi-project build tree. In majority

of cases the project path is consistent with the physical location of the project in the file system. However, this

behavior is configurable. The project tree is created in the file. By default it is assumedsettings.gradle

that the location of the settings file is also the location of the root project. But you can redefine the location of

the root project in the settings file.

49.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical layouts

get special support.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.initialization.Settings.html

Page 255 of 331

49.3.2.1. Hierarchical layouts

Example 49.2. Hierarchical layout

settings.gradle

include , , 'project1' 'project2' 'project2:child1'

The method takes project paths as arguments. The project path is assumed to be equal to the relativeinclude

physical file system path. For example a path 'services:api' by default is mapped to a folder 'services/api'

(relative from the project root). You only need to specify the leafs of the tree. This means that the inclusion of

path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and 'services:hotels:api'.

49.3.2.2. Flat layouts

Example 49.3. Flat layout

settings.gradle

includeFlat , 'project3' 'project4'

The method takes directory names as an argument. Those directories need to exist at the sameincludeFlat

level as the root project directory. The location of those directories are considered as child projects of the root

project in the multi-project tree.

49.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called . You can modifyproject descriptors

these descriptors in the settings file at any time. To access a descriptor you can do:

Example 49.4. Modification of elements of the project tree

settings.gradle

println rootProject.name
println project().name':projectA'

Using this descriptor you can change the name, project directory and build file of a project.

Example 49.5. Modification of elements of the project tree

settings.gradle

rootProject.name = 'main'
project().projectDir = File(settingsDir,)':projectA' new '../my-project-a'
project().buildFileName = ':projectA' 'projectA.gradle'

Have a look at for more details.ProjectDescriptor

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

Page 256 of 331

49.4. Initialization
How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from the

directory where the settings file is, things are easy. But Gradle also allows you to execute the build from within

any subproject taking part in the build. If you execute Gradle from within a project that has no []18 settings.gradle

file, Gradle does the following:

It searches for a in a directory called which has the same nesting level assettings.gradle master

the current dir.

If no is found, it searches the parent directories for the existence of a settings.gradle settings.gradle

file.

If no file is found, the build is executed as a single project build.settings.gradle

If a file is found, Gradle checks if the current project is part of the multiprojectsettings.gradle

hierarchy defined in the found file. If not, the build is executed as a single projectsettings.gradle

build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Somehow Gradle has to find out, whether the project you are into, is a

subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent

projects are build. But Gradle needs to create the build configuration for the whole multiproject build (see

). Via the command line option, you can tell Gradle not to look in the parentChapter 50, Multi-project Builds -u

hierarchy for a file. The current project is then always build as a single project build. Ifsettings.gradle

the current project contains a file, the option has no meaning. Such a build is alwayssettings.gradle -u

executed as:

a single project build, if the file does not define a multiproject hierarchysettings.gradle

a multiproject build, if the file does define a multiproject hierarchy.settings.gradle

The auto search for a settings file does only work for multi-project builds with a physical hierarchical or flat

layout. For a flat layout you must additionally obey to the naming convention described above. Gradle supports

arbitrary physical layouts for a multiproject build. But for such arbitrary layouts you need to execute the build

from the directory where the settings file is located. For how to run partial builds from the root see Section 50.4,

. In our next release we want to enable partial builds from subprojects by“Running tasks by their absolute path”

specifying the location of the settings file as a command line parameter. Gradle creates Project objects for every

project taking part in the build. For a single project build this is only one project. For a multi-project build these

are the projects specified in Settings object (plus the root project). Each project object has by default a name

equals to the name of its top level directory. Every project except the root project has a parent project and might

have child projects.

Page 257 of 331

49.5. Configuration and execution of a single
project build

For a single project build, the workflow of the phases are pretty simple. The build script isafter initialization

executed against the project object that was created during the initialization phase. Then Gradle looks for tasks

with names equal to those passed as command line arguments. If these task names exist, they are executed as a

separate build in the order you have passed them. The configuration and execution for multi-project builds is

discussed in .Chapter 50, Multi-project Builds

49.6. Responding to the lifecycle in the build script
Your build script can receive notifications as the build progresses through its lifecycle. These notifications

generally take 2 forms: You can either implement a particular listener interface, or you can provide a closure to

execute when the notification is fired. The examples below use closures. For details on how to use the listener

interfaces, refer to the API documentation.

49.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do things

like performing additional configuration once all the definitions in a build script have been applied, or for some

custom logging or profiling.

Below is an example which adds a task to each project with the property set to true.test hasTests

Example 49.6. Adding of test task to each project which has certain property set

build.gradle

allprojects {
 afterEvaluate { project ->
 (project.hasTests) {if
 println "Adding test task to $project"
 project.task() << {'test'
 println "Running tests for $project"
 }
 }
 }
}

projectA.gradle

hasTests = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':projectA'
Running tests for project ':projectA'

Page 258 of 331

This example uses method to add a closure which is executed after theProject.afterEvaluate()

project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some custom

logging of project evaluation. Notice that the notification is received regardless of whetherafterProject

the project evaluates successfully or fails with an exception.

Example 49.7. Notifications

build.gradle

gradle.afterProject {project, projectState ->
 (projectState.failure) {if
 println "Evaluation of $project FAILED"
 } {else
 println "Evaluation of $project succeeded"
 }
}

Output of gradle -q test

> gradle -q test
Evaluation of root project 'buildProjectEvaluateEvents' succeeded
Evaluation of project ':projectA' succeeded
Evaluation of project ':projectB' FAILED

You can also add a to the to receive these events.ProjectEvaluationListener Gradle

49.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some

default values or add behaviour before the task is made available in the build file.

The following example sets the property of each task as it is created.srcDir

Example 49.8. Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->
 task.srcDir = 'src/main/java'
}

task a

println "source dir is $a.srcDir"

Output of gradle -q a

> gradle -q a
source dir is src/main/java

You can also add an to a to receive these events.Action TaskContainer

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/Action.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/TaskContainer.html

Page 259 of 331

49.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have seen this

already in .Section 6.13, “Configure by DAG”

You can also add a to the to receive theseTaskExecutionGraphListener TaskExecutionGraph

events.

49.6.4. Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the notification isafterTask

received regardless of whether the task completes successfully or fails with an exception.

Example 49.9. Logging of start and end of each task execution

build.gradle

task ok

task broken(dependsOn: ok) << {
 RuntimeException()throw new 'broken'
}

gradle.taskGraph.beforeTask { Task task ->
 println "executing $task ..."
}

gradle.taskGraph.afterTask { Task task, TaskState state ->
 (state.failure) {if
 println "FAILED"
 }
 {else
 println "done"
 }
}

Output of gradle -q broken

> gradle -q broken
executing task ':ok' ...
done
executing task ':broken' ...
FAILED

You can also use a to the to receive these events.TaskExecutionListener TaskExecutionGraph

[] 18 Gradle supports partial multiproject builds (see).Chapter 50, Multi-project Builds

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 260 of 331

50
Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the most

intellectually challenging.

50.1. Cross project configuration
Let's start with a very simple multi-project build. After all Gradle is a general purpose build tool at its core, so

the projects don't have to be java projects. Our first examples are about marine life.

50.1.1. Defining common behavior

We have the following project tree. This is a multi-project build with a root project and a subproject water bluewhale

.

Example 50.1. Multi-project tree - water & bluewhale projects

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/

Note: The code for this example can be found at samples/userguide/multiproject/firstExample/water

which is in both the binary and source distributions of Gradle.

settings.gradle

include 'bluewhale'

And where is the build script for the project? In Gradle build scripts are optional. Obviously for abluewhale

single project build, a project without a build script doesn't make much sense. For multiproject builds the

situation is different. Let's look at the build script for the project and execute it:water

Page 261 of 331

Example 50.2. Build script of water (parent) project

build.gradle

Closure cl = { task -> println }"I'm $task.project.name"
task hello << cl
project() {':bluewhale'
 task hello << cl
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale

Gradle allows you to access any project of the multi-project build from any build script. The Project API

provides a method called , which takes a path as an argument and returns the Project object for thisproject()

path. The capability to configure a project build from any build script we call .cross project configuration

Gradle implements this via .configuration injection

We are not that happy with the build script of the project. It is inconvenient to add the task explicitly forwater

every project. We can do better. Let's first add another project called to our multi-project build.krill

Example 50.3. Multi-project tree - water, bluewhale & krill projects

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 krill/

Note: The code for this example can be found at samples/userguide/multiproject/addKrill/water

which is in both the binary and source distributions of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

Now we rewrite the build script and boil it down to a single line.water

Page 262 of 331

Example 50.4. Water project build script

build.gradle

allprojects {
 task hello << { task -> println }"I'm $task.project.name"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
I'm krill

Is this cool or is this cool? And how does this work? The Project API provides a property allprojects

which returns a list with the current project and all its subprojects underneath it. If you call allprojects

with a closure, the statements of the closure are delegated to the projects associated with . Youallprojects

could also do an iteration via , but that would be more verbose.allprojects.each

Other build systems use inheritance as the primary means for defining common behavior. We also offer

inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of

defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject

builds.

50.2. Subproject configuration
The Project API also provides a property for accessing the subprojects only.

50.2.1. Defining common behavior

Example 50.5. Defining common behaviour of all projects and subprojects

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
I'm krill
- I depend on water

Page 263 of 331

50.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior in

the build script of the project where we want to apply this specific behavior. But as we have already seen, we

don't have to do it this way. We could add project specific behavior for the project like this:bluewhale

Example 50.6. Defining specific behaviour for particular project

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}
project().hello << {':bluewhale'
 println "- I'm the largest animal that has ever lived on this planet."
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's

refactor and also add some project specific behavior to the project.krill

Page 264 of 331

Example 50.7. Defining specific behaviour for project krill

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/spreadSpecifics/water

which is in both the binary and source distributions of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

bluewhale/build.gradle

hello.doLast { println }"- I'm the largest animal that has ever lived on this planet."

krill/build.gradle

hello.doLast {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.

50.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called and addtropicalFish

more behavior to the build via the build script of the project.water

Page 265 of 331

50.2.3.1. Filtering by name

Example 50.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle
 tropicalFish/

Note: The code for this example can be found at samples/userguide/multiproject/addTropical/water

which is in both the binary and source distributions of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello << {println }"- I depend on water"
}
configure(subprojects.findAll {it.name != }) {'tropicalFish'
 hello << {println }'- I love to spend time in the arctic waters.'
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I love to spend time in the arctic waters.
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- I love to spend time in the arctic waters.
- The weight of my species in summer is twice as heavy as all human beings.
I'm tropicalFish
- I depend on water

The method takes a list as an argument and applies the configuration to the projects in this list.configure()

Page 266 of 331

50.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See Section 13.4.2,

 for more information on extra properties.)“Extra properties”

Example 50.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle
 tropicalFish/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/tropicalWithProperties/water

which is in both the binary and source distributions of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

bluewhale/build.gradle

ext.arctic = true
hello.doLast { println }"- I'm the largest animal that has ever lived on this planet."

krill/build.gradle

ext.arctic = true
hello.doLast {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

tropicalFish/build.gradle

ext.arctic = false

build.gradle

allprojects {
 task hello << {task -> println }"I'm $task.project.name"
}
subprojects {
 hello {
 doLast {println }"- I depend on water"
 afterEvaluate { Project project ->
 (project.arctic) { doLast {if
 println }'- I love to spend time in the arctic waters.'
 }
 }
 }
}

Page 267 of 331

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

In the build file of the project we use an notification. This means that the closure wewater afterEvaluate

are passing gets evaluated the build scripts of the subproject are evaluated. As the property is setafter arctic

in those build scripts, we have to do it this way. You will find more on this topic in Section 50.6, “Dependencies

- Which dependencies?”

50.3. Execution rules for multi-project builds
When we have executed the task from the root project dir things behaved in an intuitive way. All the hello hello

tasks of the different projects were executed. Let's switch to the dir and see what happens if webluewhale

execute Gradle from there.

Example 50.10. Running build from subproject

Output of gradle -q hello

> gradle -q hello
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.

The basic rule behind Gradle's behavior is simple. Gradle looks down the hierarchy, starting with the current

, for tasks with the name an executes them. One thing is very important to note. Gradle dir hello always

evaluates project of the multi-project build and creates all existing task objects. Then, according to theevery

task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of Gradle's

cross project configuration project has to be evaluated before task gets executed. We will have aevery any

closer look at this in the next section. Let's now have our last marine example. Let's add a task to bluewhale

and .krill

Page 268 of 331

Example 50.11. Evaluation and execution of projects

bluewhale/build.gradle

ext.arctic = true
hello << { println }"- I'm the largest animal that has ever lived on this planet."

task distanceToIceberg << {
 println '20 nautical miles'
}

krill/build.gradle

ext.arctic = true
hello << { println }"- The weight of my species in summer is twice as heavy as all human beings."

task distanceToIceberg << {
 println '5 nautical miles'
}

Output of gradle -q distanceToIceberg

> gradle -q distanceToIceberg
20 nautical miles
5 nautical miles

Here the output without the option:-q

Example 50.12. Evaluation and execution of projects

Output of gradle distanceToIceberg

> gradle distanceToIceberg
:bluewhale:distanceToIceberg
20 nautical miles
:krill:distanceToIceberg
5 nautical miles

BUILD SUCCESSFUL

Total time: 1 secs

The build is executed from the project. Neither nor have a task with the namewater water tropicalFish

. Gradle does not care. The simple rule mentioned already above is: Execute all tasksdistanceToIceberg

down the hierarchy which have this name. Only complain if there is such task!no

50.4. Running tasks by their absolute path
As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from

there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle

also offers to execute tasks by their absolute path (see also):Section 50.5, “Project and task paths”

Page 269 of 331

Example 50.13. Running tasks by their absolute path

Output of gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello
I'm water
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

The build is executed from the project. We execute the tasks of the , the tropicalFish hello water krill

and the project. The first two tasks are specified by there absolute path, the last task istropicalFish

executed on the name matching mechanism described above.

50.5. Project and task paths
A project path has the following pattern: It starts always with a colon, which denotes the root project. The root

project is the only project in a path that is not specified by its name. The path corresponds to the:bluewhale

file system path in the case of the example above.water/bluewhale

The path of a task is simply its project path plus the task name. For example . Within a:bluewhale:hello

project you can address a task of the same project just by its name. This is interpreted as a relative path.

Originally Gradle has used the character as a natural path separator. With the introduction of directory'/'

tasks (see) this was no longer possible, as the name of the directory taskSection 14.1, “Directory creation”

contains the character.'/'

50.6. Dependencies - Which dependencies?
The examples from the last section were special, as the projects had no . They had onlyExecution Dependencies

. Here is an example where this is different:Configuration Dependencies

Page 270 of 331

50.6.1. Execution dependencies

50.6.1.1. Dependencies and execution order

Example 50.14. Dependencies and execution order

Build layout

messages/
 settings.gradle
 consumer/
 build.gradle
 producer/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/firstMessages/messages

which is in both the binary and source distributions of Gradle.

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action << {
 println(+"Consuming message: "
 (rootProject.hasProperty() ? rootProject.producerMessage :))'producerMessage' 'null'
}

producer/build.gradle

task action << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q action

> gradle -q action
Consuming message: null
Producing message:

This did not work out. If nothing else is defined, Gradle executes the task in alphanumeric order. Therefore :consumer:action

is executed before . Let's try to solve this with a hack and rename the producer project to:producer:action

.aProducer

Page 271 of 331

Example 50.15. Dependencies and execution order

Build layout

messages/
 settings.gradle
 aProducer/
 build.gradle
 consumer/
 build.gradle

settings.gradle

include , 'consumer' 'aProducer'

aProducer/build.gradle

task action << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

consumer/build.gradle

task action << {
 println(+"Consuming message: "
 (rootProject.hasProperty() ? rootProject.producerMessage :))'producerMessage' 'null'
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

Now we take the air out of this hack. We simply switch to the dir and execute the build.consumer

Example 50.16. Dependencies and execution order

Output of gradle -q action

> gradle -q action
Consuming message: null

For Gradle the two tasks are just not related. If you execute the build from the projectaction messages

Gradle executes them both because they have the same name and they are down the hierarchy. In the last

example only one was down the hierarchy and therefore it was the only task that got executed. Weaction

need something better than this hack.

Page 272 of 331

50.6.1.2. Declaring dependencies

Example 50.17. Declaring dependencies

Build layout

messages/
 settings.gradle
 consumer/
 build.gradle
 producer/
 build.gradle

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/messagesWithDependencies/messages

which is in both the binary and source distributions of Gradle.

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action(dependsOn:) << {":producer:action"
 println(+"Consuming message: "
 (rootProject.hasProperty() ? rootProject.producerMessage :))'producerMessage' 'null'
}

producer/build.gradle

task action << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

Running this from the directory gives:consumer

Example 50.18. Declaring dependencies

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

We have now declared that the task in the project has an on the action consumer execution dependency action

task on the project.producer

Page 273 of 331

50.6.1.3. The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's change

the naming of our tasks and execute the build.

Example 50.19. Cross project task dependencies

consumer/build.gradle

task consume(dependsOn:) << {':producer:produce'
 println(+"Consuming message: "
 (rootProject.hasProperty() ? rootProject.producerMessage :))'producerMessage' 'null'
}

producer/build.gradle

task produce << {
 println "Producing message:"
 rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message: Watch the order of execution.

50.6.2. Configuration time dependencies

Let's have one more example with our producer-consumer build before we enter land. We add a propertyJava

to the producer project and create now a configuration time dependency from consumer on producer.

Example 50.20. Configuration time dependencies

consumer/build.gradle

message = rootProject.hasProperty() ? rootProject.producerMessage : 'producerMessage' 'null'

task consume << {
 println(+ message)"Consuming message: "
}

producer/build.gradle

rootProject.producerMessage = 'Watch the order of evaluation.'

Output of gradle -q consume

> gradle -q consume
Consuming message: null

The default order of the projects is alphanumeric (for the same nesting level). Therefore the evaluation consumer

project is evaluated before the project and the value of the is set it is read byproducer key producer after

Page 274 of 331

the project. Gradle offers a solution for this.consumer

Example 50.21. Configuration time dependencies - evaluationDependsOn

consumer/build.gradle

evaluationDependsOn()':producer'

message = rootProject.hasProperty() ? rootProject.producerMessage : 'producerMessage' 'null'

task consume << {
 println(+ message)"Consuming message: "
}

Output of gradle -q consume

> gradle -q consume
Consuming message: Watch the order of evaluation.

The command triggers the evaluation of isevaluationDependsOn producer before consumer

evaluated. The example is a bit contrived for the sake of showing the mechanism. In case there would be anthis

easier solution by reading the key property at execution time.

Example 50.22. Configuration time dependencies

consumer/build.gradle

task consume << {
 println(+"Consuming message: "
 (rootProject.hasProperty() ? rootProject.producerMessage :))'producerMessage' 'null'
}

Output of gradle -q consume

> gradle -q consume
Consuming message: Watch the order of evaluation.

Configuration dependencies are very different to execution dependencies. Configuration dependencies are

between projects whereas execution dependencies are always resolved to task dependencies. Another difference

is that always all projects are configured, even when you start the build from a subproject. The default

configuration order is top down, which is usually what is needed.

To change the the default configuration order to be bottom up, That means that a project configuration depends

on the configuration of its child projects, the method can be used.evaluationDependsOnChildren()

On the same nesting level the configuration order depends on the alphanumeric position. The most common use

case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin). If you

declare with a between different projects, the default behavior of thisdependsOn execution dependency

method is to create also a dependency between the two projects. Therefore it is likely that youconfiguration

don't have to define configuration dependencies explicitly.

Page 275 of 331

50.6.3. Real life examples

Gradle's multi-project features are driven by real life use cases. The first example for describing such a use case,

consists of two webapplication projects and a parent project that creates a distribution out of them. For the[]19

example we use only one build script and do .cross project configuration

Page 276 of 331

Example 50.23. Dependencies - real life example - crossproject configuration

Build layout

webDist/
 settings.gradle
 build.gradle
 date/
 src/main/java/
 org/gradle/sample/
 DateServlet.java
 hello/
 src/main/java/
 org/gradle/sample/
 HelloServlet.java

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/webDist

which is in both the binary and source distributions of Gradle.

settings.gradle

include , 'date' 'hello'

build.gradle

allprojects {
 apply plugin: 'java'
 group = 'org.gradle.sample'
 version = '1.0'
}

subprojects {
 apply plugin: 'war'
 repositories {
 mavenCentral()
 }
 dependencies {
 compile "javax.servlet:servlet-api:2.5"
 }
}

task explodedDist(dependsOn: assemble) << {
 File explodedDist = mkdir()"$buildDir/explodedDist"
 subprojects.each {project ->
 project.tasks.withType(Jar).each {archiveTask ->
 copy {
 from archiveTask.archivePath
 into explodedDist
 }
 }
 }
}

We have an interesting set of dependencies. Obviously the and projects have a date hello configuration

dependency on , as all the build logic for the webapp projects is injected by . The webDist webDist execution

dependency is in the other direction, as depends on the build artifacts of and . There iswebDist date hello

even a third dependency. has a dependency on and because it needs towebDist configuration date hello

Page 277 of 331

know the . But it asks for this information at . Therefore we have no circulararchivePath execution time

dependency.

Such and other dependency patterns are daily bread in the problem space of multi-project builds. If a build

system does not support such patterns, you either can't solve your problem or you need to do ugly hacks which

are hard to maintain and massively afflict your productivity as a build master.

50.7. Project lib dependencies
What if one projects needs the jar produced by another project in its compile path? And not just the jar but also

the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project builds.

As already mentioned in , Gradle offers project lib dependencies for this.Section 44.4.3, “Project dependencies”

Example 50.24. Project lib dependencies

Build layout

java/
 settings.gradle
 build.gradle
 api/
 src/main/java/
 org/gradle/sample/
 api/
 Person.java
 apiImpl/
 PersonImpl.java
 services/personService/
 src/
 main/java/
 org/gradle/sample/services/
 PersonService.java
 test/java/
 org/gradle/sample/services/
 PersonServiceTest.java
 shared/
 src/main/java/
 org/gradle/sample/shared/
 Helper.java

Note: The code for this example can be found at samples/userguide/multiproject/dependencies/java

which is in both the binary and source distributions of Gradle.

We have the projects , and . has a lib dependency on theshared api personService personService

other two projects. has a lib dependency on . api shared []20

Page 278 of 331

Example 50.25. Project lib dependencies

settings.gradle

include , , 'api' 'shared' 'services:personService'

build.gradle

subprojects {
 apply plugin: 'java'
 group = 'org.gradle.sample'
 version = '1.0'
 repositories {
 mavenCentral()
 }
 dependencies {
 testCompile "junit:junit:4.8.2"
 }
}

project() {':api'
 dependencies {
 compile project()':shared'
 }
}

project() {':services:personService'
 dependencies {
 compile project(), project()':shared' ':api'
 }
}

All the build logic is in the of the root project. A dependency is a special form of anbuild.gradle []21 lib

execution dependency. It causes the other project to be built first and adds the jar with the classes of the other

project to the classpath. It also adds the dependencies of the other project to the classpath. So you can enter the api

directory and trigger a . First is built and then is built. Project dependenciesgradle compile shared api

enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers this to you:

Page 279 of 331

Example 50.26. Fine grained control over dependencies

build.gradle

subprojects {
 apply plugin: 'java'
 group = 'org.gradle.sample'
 version = '1.0'
}

project() {':api'
 configurations {
 spi
 }
 dependencies {
 compile project()':shared'
 }
 task spiJar(type: Jar) {
 baseName = 'api-spi'
 dependsOn classes
 from sourceSets.main.output
 include()'org/gradle/sample/api/**'
 }
 artifacts {
 spi spiJar
 }
}

project() {':services:personService'
 dependencies {
 compile project()':shared'
 compile project(path: , configuration:)':api' 'spi'
 testCompile , project()"junit:junit:4.8.2" ':api'
 }
}

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example we

create an library containing only the interfaces of the project. We assign this library to a new additional api

. For the person service we declare that the project should be compiled only againstdependency configuration

the interfaces but tested with all classes from .api api

50.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partial build. To disable the build of

the depended on projects you can run Gradle with the option.-a

50.8. Decoupled Projects
Gradle allows any project to access any other project during both the configuration and execution phases. While

this provides a great deal of power and flexibility to the build author, it also limits the flexibility that Gradle has

when building those projects. For instance, this tight of projects effectively prevents Gradle fromcoupling

building multiple projects in parallel, or from substituting a pre-built artifact in place of a project dependency.

Two projects are said to be if they do not directly access each other's project model. Decoupleddecoupled

Page 280 of 331

projects may only interact in terms of declared dependencies: project dependencies (Section 44.4.3, “Project

) and/or task dependencies (). Any other form of projectdependencies” Section 6.5, “Task dependencies”

interaction (ie. by modifying another project object or by reading a value from another project object) causes the

projects to be coupled.

A very common way for projects to be coupled is by using configuration injection (Section 50.1, “Cross project

). It may not be immediately apparent, but using key Gradle features like the andconfiguration” allprojects

 keywords automatically cause your projects to be coupled. This is because these keywords aresubprojects

used in a file, which defines a project. Often this is a "root project" that does nothing morebuild.gradle

than define common configuration, but as far as Gradle is concerned this root project is still a fully-fledged

project, and by using that project is effectively coupled to all other projects.allprojects

This means that using any form of shared build script logic or configuration injection (, allprojects subprojects

, etc) will cause your projects to be coupled. As we extend the concept of project decoupling and provide

features that take advantage of decoupled projects, we will also introduce new features to help you to solve

common use cases (like configuration injection) without causing your projects to be coupled.

50.9. Multi-Project Building and Testing
The task of the Java plugin is typically used to compile, test, and perform code style checks (if thebuild

CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these

tasks across a range of projects. The and tasks can help with this.buildNeeded buildDependents

Let's use the project structure shown in . In this exampleExample 50.25, “Project lib dependencies”

:services:personservice depends on both :api and :shared. The :api project also depends on :shared.

Assume you are working on a single project, the :api project. You have been making changes, but have not built

the entire project since performing a clean. You want to build any necessary supporting jars, but only perform

code quality and unit tests on the project you have changed. The task does this.build

Page 281 of 331

Example 50.27. Build and Test Single Project

Output of gradle :api:build

> gradle :api:build
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build

BUILD SUCCESSFUL

Total time: 1 secs

While you are working in a typical development cycle repeatedly building and testing changes to the :api project

(knowing that you are only changing files in this one project), you may not want to even suffer the expense of

:shared:compile checking to see what has changed in the :shared project. Adding the option will cause-a

Gradle to use cached jars to resolve any project lib dependencies and not try to re-build the depended on

projects.

Example 50.28. Partial Build and Test Single Project

Output of gradle -a :api:build

> gradle -a :api:build
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build

BUILD SUCCESSFUL

Total time: 1 secs

If you have just gotten the latest version of source from your version control system which included changes in

other projects that :api depends on, you might want to not only build all the projects you depend on, but test

them as well. The task also tests all the projects from the project lib dependencies of thebuildNeeded

testRuntime configuration.

Page 282 of 331

Example 50.29. Build and Test Depended On Projects

Output of gradle :api:buildNeeded

> gradle :api:buildNeeded
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build
:shared:assemble
:shared:compileTestJava
:shared:processTestResources
:shared:testClasses
:shared:test
:shared:check
:shared:build
:shared:buildNeeded
:api:buildNeeded

BUILD SUCCESSFUL

Total time: 1 secs

You also might want to refactor some part of the :api project that is used in other projects. If you make these

types of changes, it is not sufficient to test just the :api project, you also need to test all projects that depend on

the :api project. The task also tests all the projects that have a project lib dependency (inbuildDependents

the testRuntime configuration) on the specified project.

Page 283 of 331

Example 50.30. Build and Test Dependent Projects

Output of gradle :api:buildDependents

> gradle :api:buildDependents
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build
:services:personService:compileJava
:services:personService:processResources
:services:personService:classes
:services:personService:jar
:services:personService:assemble
:services:personService:compileTestJava
:services:personService:processTestResources
:services:personService:testClasses
:services:personService:test
:services:personService:check
:services:personService:build
:services:personService:buildDependents
:api:buildDependents

BUILD SUCCESSFUL

Total time: 1 secs

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder

will cause that same named task to be run on all the children. So you can just run to build andgradle build

test all projects.

50.10. Property and method inheritance
Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to

configuration injection. But we think that the model of inheritance does not reflect the problem space of

multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle's does not support methodsConfiguration Injection

yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don't like that much. One reason is

that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like to

offer our users a choice.

Page 284 of 331

50.11. Summary
Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for this

chapter is that multi-project builds with Gradle are usually difficult. There are five elements you need tonot

remember: , , , allprojects subprojects evaluationDependsOn evaluationDependsOnChildren

and project lib dependencies. With those elements, and keeping in mind that Gradle has a distinct[]22

configuration and execution phase, you have already a lot of flexibility. But when you enter steep territory

Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[] 19 The real use case we had, was using , where you need a separate war for eachhttp://lucene.apache.org/solr

index your are accessing. That was one reason why we have created a distribution of webapps. The Resin

servlet container allows us, to let such a distribution point to a base installation of the servlet container.

[] 20 is also a project, but we use it just as a container. It has no build script and gets nothingservices

injected by another build script.

[] 21 We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the build

script of the respective projects.

[] 22 So we are well in the range of the :)7 plus 2 Rule

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Page 285 of 331

51
Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an action

closure. We have seen these in . For this type of task, the action closureChapter 6, Build Script Basics

determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build

script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides

some properties which you can use to configure the behaviour. We have seen these in Chapter 15, More about

. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don't need to implement the taskTasks

behaviour as you do with simple tasks. You simply declare the task and configure the task using its properties.

In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly across different

builds.

The behaviour and properties of an enhanced task is defined by the task's class. When you declare an enhanced

task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in pretty

much any language you like, provided it ends up compiled to bytecode. In our examples, we are going to use

Groovy as the implementation language, but you could use, for example, Java or Scala. In general, using

Groovy is the easiest option, because the Gradle API is designed to work well with Groovy.

51.1. Packaging a task class
There are several places where you can put the source for the task class.

Build script

You can include the task class directly in the build script. This has the benefit that the task class is

automatically compiled and included in the classpath of the build script without you having to do anything.

However, the task class is not visible outside the build script, and so you cannot reuse the task class outside

the build script it is defined in.

 projectbuildSrc

You can put the source for the task class in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the task class and making it available on the

classpath of the build script. The task class is visible to every build script used by the build. However, it is

not visible outside the build, and so you cannot reuse the task class outside the build it is defined in. Using

the project approach keeps separate the task declaration - that is, what the task should do - frombuildSrc

the task implementation - that is, how the task does it.

Page 286 of 331

See for more details about the project.Chapter 53, Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR which you

can then use in multiple builds and share with others. Generally, this JAR might include some custom

plugins, or bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look at

creating a standalone project.

51.2. Writing a simple task class
To implement a custom task class, you extend .DefaultTask

Example 51.1. Defining a custom task

build.gradle

class GreetingTask DefaultTask {extends
}

This task doesn't do anything useful, so let's add some behaviour. To do so, we add a method to the task and

mark it with the annotation. Gradle will call the method when the task executes. You don't haveTaskAction

to use a method to define the behaviour for the task. You could, for instance, call or doFirst() doLast()

with a closure in the task constructor to add behaviour.

Example 51.2. A hello world task

build.gradle

task hello(type: GreetingTask)

 GreetingTask DefaultTask {class extends
 @TaskAction
 def greet() {
 println 'hello from GreetingTask'
 }
}

Output of gradle -q hello

> gradle -q hello
hello from GreetingTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a task,

you can set the properties or call methods on the task object. Here we add a property, and set thegreeting

value when we declare the task.greeting

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/tasks/TaskAction.html

Page 287 of 331

Example 51.3. A customizable hello world task

build.gradle

// Use the default greeting
task hello(type: GreetingTask)

// Customize the greeting
task greeting(type: GreetingTask) {
 greeting = 'greetings from GreetingTask'
}

 GreetingTask DefaultTask {class extends
 def String greeting = 'hello from GreetingTask'

 @TaskAction
 def greet() {
 println greeting
 }
}

Output of gradle -q hello greeting

> gradle -q hello greeting
hello from GreetingTask
greetings from GreetingTask

51.3. A standalone project
Now we will move our task to a standalone project, so we can publish it and share it with others. This project is

simply a Groovy project that produces a JAR containing the task class. Here is a simple build script for the

project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 51.4. A build for a custom task

build.gradle

apply plugin: 'groovy'

dependencies {
 compile gradleApi()
 groovy localGroovy()
}

Note: The code for this example can be found at which is in bothsamples/customPlugin/plugin

the binary and source distributions of Gradle.

We just follow the convention for where the source for the task class should go.

Page 288 of 331

Example 51.5. A custom task

src/main/groovy/org/gradle/GreetingTask.groovy

package org.gradle

 org.gradle.api.DefaultTaskimport
 org.gradle.api.tasks.TaskActionimport

 GreetingTask DefaultTask {class extends
 String greeting = 'hello from GreetingTask'

 @TaskAction
 def greet() {
 println greeting
 }
}

51.3.1. Using your task class in another project

To use a task class in a build script, you need to add the class to the build script's classpath. To do this, you use a

 block, as described in . Thebuildscript { } Section 53.5, “External dependencies for the build script”

following example shows how you might do this when the JAR containing the task class has been published to a

local repository:

Example 51.6. Using a custom task in another project

build.gradle

buildscript {
 repositories {
 maven {
 url uri()'../repo'
 }
 }
 dependencies {
 classpath group: , name: , version: 'org.gradle' 'customPlugin' '1.0-SNAPSHOT'
 }
}

task greeting(type: org.gradle.GreetingTask) {
 greeting = 'howdy!'
}

51.3.2. Writing tests for your task class

You can use the class to create instances to use when you test your task class.ProjectBuilder Project

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html

Page 289 of 331

Example 51.7. Testing a custom task

src/test/groovy/org/gradle/GreetingTaskTest.groovy

class GreetingTaskTest {
 @Test
 canAddTaskToProject() {public void
 Project project = ProjectBuilder.builder().build()
 def task = project.task(, type: GreetingTask)'greeting'
 assertTrue(task GreetingTask)instanceof
 }
}

Page 290 of 331

52
Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different projects

and builds. Gradle allows you to implement your own custom plugins, so you can reuse your build logic, and

share it with others.

You can implement a custom plugin in any language you like, provided the implementation ends up compiled as

bytecode. For the examples here, we are going to use Groovy as the implementation language. You could use

Java or Scala instead, if you want.

52.1. Packaging a plugin
There are several places where you can put the source for the plugin.

Build script

You can include the source for the plugin directly in the build script. This has the benefit that the plugin is

automatically compiled and included in the classpath of the build script without you having to do anything.

However, the plugin is not visible outside the build script, and so you cannot reuse the plugin outside the

build script it is defined in.

 projectbuildSrc

You can put the source for the plugin in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the plugin and making it available on the classpath

of the build script. The plugin is visible to every build script used by the build. However, it is not visible

outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See for more details about the project.Chapter 53, Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your plugin. This project produces and publishes a JAR which you can

then use in multiple builds and share with others. Generally, this JAR might include some custom plugins,

or bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at

creating a standalone project.

Page 291 of 331

52.2. Writing a simple plugin
To create a custom plugin, you need to write an implementation of . Gradle instantiates the plugin andPlugin

calls the plugin instance's method when the plugin is used with a project. The projectPlugin.apply()

object is passed as a parameter, which the plugin can use to configure the project however it needs to. The

following sample contains a greeting plugin, which adds a task to the project.hello

Example 52.1. A custom plugin

build.gradle

apply plugin: GreetingPlugin

 GreetingPlugin Plugin<Project> {class implements
 apply(Project project) {void
 project.task() << {'hello'
 println "Hello from the GreetingPlugin"
 }
 }
}

Output of gradle -q hello

> gradle -q hello
Hello from the GreetingPlugin

One thing to note is that a new instance of a given plugin is created for each project it is applied to.

52.3. Getting input from the build
Most plugins need to obtain some configuration from the build script. One method for doing this is to use

. The Gradle has an associated object that helps keepextension objects Project ExtensionContainer

track of all the settings and properties being passed to plugins. You can capture user input by telling the

extension container about your plugin. To capture input, simply add a Java Bean compliant class into the

extension container's list of extensions. Groovy is a good language choice for a plugin because plain old Groovy

objects contain all the getter and setter methods that a Java Bean requires.

Let's add a simple extension object to the project. Here we add a extension object to the project,greeting

which allows you to configure the greeting.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Page 292 of 331

Example 52.2. A custom plugin extension

build.gradle

apply plugin: GreetingPlugin

greeting.message = 'Hi from Gradle'

 GreetingPlugin Plugin<Project> {class implements
 apply(Project project) {void
 // Add the 'greeting' extension object
 project.extensions.create(, GreetingPluginExtension)"greeting"
 // Add a task that uses the configuration
 project.task() << {'hello'
 println project.greeting.message
 }
 }
}

 GreetingPluginExtension {class
 def String message = 'Hello from GreetingPlugin'
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, is a plain old Groovy object with a field called .GreetingPluginExtension message

The extension object is added to the plugin list with the name . This object then becomes availablegreeting

as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a

configuration closure block for each extension object, so you can group settings together. The following

example shows you how this works.

Page 293 of 331

Example 52.3. A custom plugin with configuration closure

build.gradle

apply plugin: GreetingPlugin

greeting {
 message = 'Hi'
 greeter = 'Gradle'
}

 GreetingPlugin Plugin<Project> {class implements
 apply(Project project) {void
 project.extensions.create(, GreetingPluginExtension)"greeting"
 project.task() << {'hello'
 println "${project.greeting.message} from ${project.greeting.greeter}"
 }
 }
}

 GreetingPluginExtension {class
 String message
 String greeter
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, several settings can be grouped together within the closure. The name of thegreeting

closure block in the build script () needs to match the extension object name. Then, when thegreeting

closure is executed, the fields on the extension object will be mapped to the variables within the closure based

on the standard Groovy closure delegate feature.

52.4. Working with files in custom tasks and
plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input

configuration for file locations. To do this, you can leverage the method to resolve valuesProject.file()

to files as late as possible.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 294 of 331

Example 52.4. Evaluating file properties lazily

build.gradle

class GreetingToFileTask DefaultTask {extends

 def destination

 File getDestination() {
 project.file(destination)
 }

 @TaskAction
 def greet() {
 def file = getDestination()
 file.parentFile.mkdirs()
 file.write "Hello!"
 }
}

task greet(type: GreetingToFileTask) {
 destination = { project.greetingFile }
}

task sayGreeting(dependsOn: greet) << {
 println file(greetingFile).text
}

greetingFile = "$buildDir/hello.txt"

Output of gradle -q sayGreeting

> gradle -q sayGreeting
Hello!

In this example, we configure the task property as a closure, which is evaluated withgreet destination

the method to turn the return value of the closure into a file object at the last minute. YouProject.file()

will notice that in the above example we specify the property value after we have configuredgreetingFile

to use it for the task. This kind of lazy evaluation is a key benefit of accepting any value when setting a file

property, then resolving that value when reading the property.

52.5. A standalone project
Now we will move our plugin to a standalone project, so we can publish it and share it with others. This project

is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build script for

the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Page 295 of 331

Example 52.5. A build for a custom plugin

build.gradle

apply plugin: 'groovy'

dependencies {
 compile gradleApi()
 groovy localGroovy()
}

Note: The code for this example can be found at which is in bothsamples/customPlugin/plugin

the binary and source distributions of Gradle.

So how does Gradle find the implementation? The answer is you need to provide a properties file inPlugin

the jar's directory that matches the name of your plugin.META-INF/gradle-plugins

Example 52.6. Wiring for a custom plugin

src/main/resources/META-INF/gradle-plugins/greeting.properties

implementation-class=org.gradle.GreetingPlugin

Notice that the properties filename matches the plugin's name and is placed in the resources folder, and that the implementation-class

property identifies the implementation class.Plugin

52.5.1. Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script's classpath. To do this,

you use a block, as described in buildscript { } Section 53.5, “External dependencies for the build

. The following example shows how you might do this when the JAR containing the plugin has beenscript”

published to a local repository:

Example 52.7. Using a custom plugin in another project

build.gradle

buildscript {
 repositories {
 maven {
 url uri()'../repo'
 }
 }
 dependencies {
 classpath group: , name: , version: 'org.gradle' 'customPlugin' '1.0-SNAPSHOT'
 }
}
apply plugin: 'greeting'

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/Plugin.html

Page 296 of 331

52.5.2. Writing tests for your plugin

You can use the class to create instances to use when you test your pluginProjectBuilder Project

implementation.

Example 52.8. Testing a custom plugin

src/test/groovy/org/gradle/GreetingPluginTest.groovy

class GreetingPluginTest {
 @Test
 greeterPluginAddsGreetingTaskToProject() {public void
 Project project = ProjectBuilder.builder().build()
 project.apply plugin: 'greeting'

 assertTrue(project.tasks.hello GreetingTask)instanceof
 }
}

52.6. Maintaining multiple domain objects
Gradle provides some utility classes for maintaining collections of object, which work well with the Gradle

build language.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html

Page 297 of 331

Example 52.9. Managing domain objects

build.gradle

apply plugin: DocumentationPlugin

books {
 quickStart {
 sourceFile = file()'src/docs/quick-start'
 }
 userGuide {

 }
 developerGuide {

 }
}

task books << {
 books.each { book ->
 println "$book.name -> $book.sourceFile"
 }
}

 DocumentationPlugin Plugin<Project> {class implements
 apply(Project project) {void
 def books = project.container(Book)
 books.all {
 sourceFile = project.file()"src/docs/$name"
 }
 project.extensions.books = books
 }
}

 Book {class
 String namefinal
 File sourceFile

 Book(String name) {
 .name = namethis
 }
}

Output of gradle -q books

> gradle -q books
developerGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/developerGuide
quickStart -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/quick-start
userGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/userGuide

The methods create instances of , that haveProject.container() NamedDomainObjectContainer

many useful methods for managing and configuring the objects. In order to use a type with any of the project.container

methods, it MUST expose a property named “ ” as the unique, and constant, name for the object. The name project.container(Class)

variant of the container method creates new instances by attempting to invoke the constructor of the class that

takes a single string argument, which is the desired name of the object. See the above link for project.container

method variants that allow custom instantiation strategies.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/NamedDomainObjectContainer.html

Page 298 of 331

53
Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in

the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a method. If

multiple projects of a multi-project build share some logic you can define this method in the parent project. If

the build logic gets too complex for being properly modeled by methods you want have an OO Model. []23

Gradle makes this very easy. Just drop your classes in a certain directory and Gradle automatically compiles

them and puts them in the classpath of your build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build

script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of

their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and

methods into another project.

 projectbuildSrc . Drop the source for your build classes into a certain directory and Gradle automatically

compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,

possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The

plugin must be in the classpath of your build script. You can achieve this either by using build sources

or by adding an that contains the plugin.external library

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

53.1. Inherited properties and methods
Any method or property defined in a project build script is also visible to all the sub-projects. You can use this

to define common configurations, and to extract build logic into methods which can be reused by the

sub-projects.

Page 299 of 331

Example 53.1. Using inherited properties and methods

build.gradle

srcDirName = 'src/java'

def getSrcDir(project) {
 project.file(srcDirName)return
}

child/build.gradle

task show << {
 // Use inherited property
 println + srcDirName'srcDirName: '

 // Use inherited method
 File srcDir = getSrcDir(project)
 println + rootProject.relativePath(srcDir)'srcDir: '
}

Output of gradle -q show

> gradle -q show
srcDirName: src/java
srcDir: child/src/java

53.2. Injected configuration
You can use the configuration injection technique discussed in and Section 50.1, “Cross project configuration”

 to inject properties and methods into various projects. This is generallySection 50.2, “Subproject configuration”

a better option than inheritance, for a number of reasons: The injection is explicit in the build script, You can

inject different logic into different projects, And you can inject any kind of configuration such as repositories,

plug-ins, tasks, and so on. The following sample shows how this works.

Page 300 of 331

Example 53.2. Using injected properties and methods

build.gradle

subprojects {
 // Inject a property and method
 srcDirName = 'src/java'
 srcDir = { file(srcDirName) }

 // Inject a task
 task show << {
 println + project.path'project: '
 println + srcDirName'srcDirName: '
 File srcDir = srcDir()
 println + rootProject.relativePath(srcDir)'srcDir: '
 }
}

// Inject special case configuration into a particular project
project() {':child2'
 srcDirName = "$srcDirName/legacy"
}

child1/build.gradle

// Use injected property and method. Here, we override the injected value
srcDirName = 'java'
def dir = srcDir()

Output of gradle -q show

> gradle -q show
project: :child1
srcDirName: java
srcDir: child1/java
project: :child2
srcDirName: src/java/legacy
srcDir: child2/src/java/legacy

53.3. Build sources in the projectbuildSrc
When you run Gradle, it checks for the existence of a directory called . Gradle then automaticallybuildSrc

compiles and tests this code and puts it in the classpath of your build script. You don't need to provide any

further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one directory, which has to be in the root projectbuildSrc

directory.

Listed below is the default build script that Gradle applies to the project:buildSrc

Page 301 of 331

Figure 53.1. Default buildSrc build script

apply plugin: 'groovy'
dependencies {
 compile gradleApi()
 groovy localGroovy()
}

This means that you can just put you build source code in this directory and stick to the layout convention for a

Java/Groovy project (see).Table 23.4, “Java plugin - default project layout”

If you need more flexibility, you can provide your own . Gradle applies the default build scriptbuild.gradle

regardless of whether there is one specified. This means you only need to declare the extra things you need.

Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as this

is done by the default build script:

Example 53.3. Custom buildSrc build script

buildSrc/build.gradle

repositories {
 mavenCentral()
}

dependencies {
 testCompile group: , name: , version: 'junit' 'junit' '4.8.2'
}

The project can be a multi-project build. This works like any other regular Gradle multi-projectbuildSrc

build. However, you need to make all of the projects that you wish be on the classpath of the actual build runtime

dependencies of the root project in . You can do this by adding this to the configuration of eachbuildSrc

project you wish to export:

Example 53.4. Adding subprojects to the root buildSrc project

buildSrc/build.gradle

rootProject.dependencies {
 runtime project(path)
}

Note: The code for this example can be found at which is insamples/multiProjectBuildSrc

both the binary and source distributions of Gradle.

53.4. Running another Gradle build from a build
You can use the task. You can use either of the or properties to specifyGradleBuild dir buildFile

which build to execute, and the property to specify which tasks to execute.tasks

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.GradleBuild.html

Page 302 of 331

Example 53.5. Running another build from a build

build.gradle

task build(type: GradleBuild) {
 buildFile = 'other.gradle'
 tasks = []'hello'
}

other.gradle

task hello << {
 println "hello from the other build."
}

Output of gradle -q build

> gradle -q build
hello from the other build.

53.5. External dependencies for the build script
If your build script needs to use external libraries, you can add them to the script's classpath in the build script

itself. You do this using the method, passing in a closure which declares the build scriptbuildscript()

classpath.

Example 53.6. Declaring external dependencies for the build script

build.gradle

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'
 }
}

The closure passed to the method configures a instance. You declare thebuildscript() ScriptHandler

build script classpath by adding dependencies to the configuration. This is the same way youclasspath

declare, for example, the Java compilation classpath. You can use any of the dependency types described in

, except project dependencies.Section 44.4, “How to declare your dependencies”

Having declared the build script classpath, you can use the classes in your build script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the build

script classpath.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 303 of 331

Example 53.7. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'
 }
}

task encode << {
 def [] encodedString = Base6 ().encode(.getBytes())byte new 4 'hello world\n'
 println String(encodedString)new
}

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared in the a project's build script, are available to the build

scripts of all sub-projects.

53.6. Ant optional dependencies
For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks. But

you can easily do it in another way. []24

Page 304 of 331

Example 53.8. Ant optional dependencies

build.gradle

configurations {
 ftpAntTask
}

dependencies {
 ftpAntTask() {"org.apache.ant:ant-commons-net:1.8.4"
 module() {"commons-net:commons-net:1.4.1"
 dependencies "oro:oro:2.0.8:jar"
 }
 }
}

task ftp << {
 ant {
 taskdef(name: ,'ftp'
 classname: ,'org.apache.tools.ant.taskdefs.optional.net.FTP'
 classpath: configurations.ftpAntTask.asPath)
 ftp(server: , userid: , password:) {"ftp.apache.org" "anonymous" "me@myorg.com"
 fileset(dir:)"htdocs/manual"
 }
 }
}

This is also nice example for the usage of client modules. The pom.xml in maven central for the

ant-commons-net task does not provide the right information for this use case.

53.7. Summary
Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your

domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to

maintain code base. It is our experience that even very complex custom build logic is rarely shared between

different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle spares

you this unnecessary overhead and indirection.

[] 23 Which might range from a single class to something very complex.

[] 24 In fact, we think this is anyway the nicer solution. Only if your buildscript and Ant's optional task need the

 library you would have to define it two times. In such a case it would be nice, if Ant's optional task wouldsame

automatically pickup the classpath defined in the .gradesettings

Page 305 of 331

54
Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment. This

mechanism also supports tools that wish to integrate with Gradle.

54.1. Basic usage
Initialization scripts (a.k.a.) are similar to other scripts in Gradle. These scripts, however, are runinit scripts

before the build starts. Here are several possible uses:

Set up enterprise-wide configuration, such as where to find custom plugins.

Set up properties based on the current environment, such as a developer's machine vs. a continuous

integration server.

Supply personal information about the user that is required by the build, such as repository or database

authentication credentials.

Define machine specific details, such as where JDKs are installed.

Register build listeners. External tools that wish to listen to Gradle events might find this useful.

Register build loggers. You might wish to customise how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the buildSrc project (see Section 53.3,

 for details of this feature).“Build sources in the project”buildSrc

54.2. Using an init script
There are several ways to use an init script:

Specify a file on the command line. The command line option is or followed by the-I --init-script

path to the script. The command line option can appear more than once, each time adding another init script.

Put a file called in the directory.init.gradle /.gradle/USER_HOME

Put a file that ends with in the directory..gradle /.gradle/init.d/USER_HOME

Put a file that ends with in the directory, in the Gradle distribution..gradle /init.d/GRADLE_HOME

This allows you to package up a custom Gradle distribution containing some custom build logic and plugins.

You can combine this with the as a way to make custom logic available to all builds in yourGradle wrapper

enterprise.

If more than one init script is found they will all be executed, in the order specified above. Scripts in a given

directory are executed in alphabetical order. This allows, for example, a tool to specify an init script on the

command line and the user to put one in their home directory for defining the environment and both scripts will

Page 306 of 331

run when Gradle is executed.

54.3. Writing an init script
Similar to a Gradle build script, an init script is a groovy script. Each init script has a instanceGradle

associated with it. Any property reference and method call in the init script will delegate to this Gradle

instance.

Each init script also implements the interface.Script

54.3.1. Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring

projects in a multi-project build. The following sample shows how to perform extra configuration from an init

script the projects are evaluated. This sample uses this feature to configure an extra repository to be usedbefore

only for certain environments.

Example 54.1. Using init script to perform extra configuration before projects are evaluated

build.gradle

repositories {
 mavenCentral()
}

task showRepos << {
 println "All repos:"
 println repositories.collect { it.name }
}

init.gradle

allprojects {
 repositories {
 mavenLocal()
 }
}

Output of gradle --init-script init.gradle -q showRepos

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

54.4. External dependencies for the init script
In is was explained how to add external dependenciesSection 53.5, “External dependencies for the build script”

to a build script. Init scripts can similarly have external dependencies defined. You do this using the initscript()

method, passing in a closure which declares the init script classpath.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.Script.html

Page 307 of 331

Example 54.2. Declaring external dependencies for an init script

init.gradle

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'
 }
}

The closure passed to the method configures a instance. You declare theinitscript() ScriptHandler

init script classpath by adding dependencies to the configuration. This is the same way youclasspath

declare, for example, the Java compilation classpath. You can use any of the dependency types described in

, except project dependencies.Section 44.4, “How to declare your dependencies”

Having declared the init script classpath, you can use the classes in your init script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the init

script classpath.

Example 54.3. An init script with external dependencies

init.gradle

import org.apache.commons.math.fraction.Fraction

initscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'
 }
}

println Fraction.ONE_FIFTH.multiply()2

Output of gradle --init-script init.gradle -q doNothing

> gradle --init-script init.gradle -q doNothing
2 / 5

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 308 of 331

55
The Gradle Wrapper

The Gradle Wrapper (henceforth referred to as the “wrapper) is the preferred way of starting a Gradle build. The

wrapper is a batch script on Windows, and a shell script for other operating systems. When you start a Gradle

build via the wrapper, Gradle will be automatically downloaded and used to run the build.

The wrapper is something you check into version control. By distributing the wrapper with your project,should

anyone can work with it without needing to install Gradle beforehand. Even better, users of the build are

guaranteed to use the version of Gradle that the build was designed to work with. Of course, this is also great for

 servers (i.e. servers that regularly build your project) as it requires no configuration oncontinuous integration

the server.

You install the wrapper into your project by adding and configuring a task in your build script, andWrapper

then executing it.

Example 55.1. Wrapper task

build.gradle

task wrapper(type: Wrapper) {
 gradleVersion = '0.9'
}

After such an execution you find the following new or updated files in your project directory (in case the default

configuration of the wrapper task is used).

Example 55.2. Wrapper generated files

Build layout

simple/
 gradlew
 gradlew.bat
 gradle/wrapper/
 gradle-wrapper.jar
 gradle-wrapper.properties

All of these files be submitted to your version control system. This only needs to be done once. Aftershould

these files have been added to the project, the project should then be built with the added command.gradlew

The command can be used the same way as the command.gradlew exactly gradle

If you want to switch to a new version of Gradle you don't need to rerun the wrapper task. It is good enough to

change the respective entry in the file. But if there is for example angradle-wrapper.properties

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 309 of 331

improvement in the gradle-wrapper functionality you need to regenerate the wrapper files.

55.1. Configuration
If you run Gradle with , Gradle checks if a Gradle distribution for the wrapper is available. If not it triesgradlew

to download it, otherwise it delegates to the command of this distribution with all the arguments passedgradle

originally to the command.gradlew

You can specify where the wrapper files should be stored (within your project directory):

Example 55.3. Configuration of wrapper task

build.gradle

task wrapper(type: Wrapper) {
 gradleVersion = '0.9'
 jarFile = 'wrapper/wrapper.jar'
}

Build layout

customized/
 gradlew
 gradlew.bat
 wrapper/
 wrapper.jar
 wrapper.properties

You can specify the download URL of the wrapper distribution. You can also specify where the wrapper

distribution should be stored and unpacked (either within the project or within the Gradle user home dir). If the

wrapper is run and there is local archive of the wrapper distribution Gradle tries to download it and stores it at

the specified place. If there is no unpacked wrapper distribution Gradle unpacks the local archive of the wrapper

distribution at the specified place. All the configuration options have defaults except the version of the wrapper

distribution.

For the details on how to configure the wrapper, see Wrapper

If you don't want any download to happen when your project is build via , simply add the Gradlegradlew

distribution zip to your version control at the location specified by your wrapper configuration. Relative url is

supported - you can specify a distribution file relative to the location of gradle-wrapper.properties

file.

If you build via the wrapper, any existing Gradle distribution installed on the machine is ignored.

55.2. Unix file permissions
The Wrapper task adds appropriate file permissions to allow the execution for the gradlew *NIX command.

Subversion preserves this file permission. We are not sure how other version control systems deal with this.

What should always work is to execute .sh gradlew

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Page 310 of 331

55.3. Environment variable
Some rather exotic use cases might occur when working with the Gradle Wrapper. For example the continuous

integration server goes down during unzipping the Gradle distribution. As the distribution directory exists

 delegates to it but the distribution is corrupt. Or the zip-distribution was not properly downloaded.gradlew

When you have no admin right on the continuous integration server to remove the corrupt files, Gradle offers a

solution via environment variables.

Table 55.1. Gradle wrapper environment variables

Variable Name Meaning

GRADLE_WRAPPER_ALWAYS_UNPACK If set to , the distribution directory gets alwaystrue

deleted when is run and the distribution zipgradlew

is freshly unpacked. If the zip is not there, Gradle

tries to download it.

GRADLE_WRAPPER_ALWAYS_DOWNLOAD If set to , the distribution directory and thetrue

distribution zip gets always deleted when isgradlew

run and the distribution zip is freshly downloaded.

Page 311 of 331

56
Embedding Gradle

56.1. Introduction to the Tooling API
The 1.0 milestone 3 release brought a new API called the tooling API, which you can use for embedding

Gradle. This API allows you to execute and monitor builds, and to query Gradle about the details of a build. The

main audience for this API is IDE, CI server, other UI authors, or integration testing of your Gradle plugins.

However, it is open for anyone who needs to embed Gradle in their application.

A fundamental characteristic of the tooling API is that it operates in a version independent way. This means that

you can use the same API to work with different target versions of Gradle. The tooling API is Gradle wrapper

aware and, by default, uses the same target Gradle version as that used by the wrapper-powered project.

Some features that the tooling API provides today:

You can query Gradle for the details of a build, including the project hierarchy and the project dependencies,

external dependencies (including source and javadoc jars), source directories and tasks of each project.

You can execute a build, and listen to stdout and stderr logging and progress (e.g. the stuff shown in the

'status bar' when you run on the command line).

Tooling API can download and install the appropriate Gradle version, similar to the wrapper. Bear in mind

that the tooling API is wrapper aware so you should not need to configure a Gradle distribution directly.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved

library, and makes no assumptions about your class loader structure or logging configuration. This makes

the API easy to bundle in your application.

In future we may support other interesting features:

Performance. The API gives us the opportunity to do lots of caching, static analysis and preemptive work, to

make things faster for the user.

Better progress monitoring and build cancellation. For example, allowing test execution to be monitored.

Notifications when things in the build change, so that UIs and models can be updated. For example, your

Eclipse or IDEA project will update immediately, in the background.

Validating and prompting for user supplied configuration.

Prompting for and managing user credentials.

The Tooling API is the official and recommended way to embed Gradle. This means that the existing APIs,

namely and the open API (the UIFactory and friends), are deprecated and will be removedGradleLauncher

in some future version of Gradle. If you happen to use one of the above APIs, please consider changing your

application to use the tooling API instead.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/GradleLauncher.html

Page 312 of 331

56.2. Tooling API and the Gradle Build Daemon
Please take a look at . The Tooling API uses the daemon all the time, e.g. youChapter 19, The Gradle Daemon

cannot officially use the Tooling API without the daemon. This means that subsequent calls to the Tooling API,

be it model building requests or task executing requests can be executed in the same long-living process.

 contains more details about the daemon, specifically information on situationsChapter 19, The Gradle Daemon

when new daemons are forked.

56.3. Quickstart
Since the tooling API is an interface for a programmer most of the documentation lives in the Javadoc. This is

exactly our intention - we don't expect this chapter to grow very much. Instead we will add more code samples

and improve the Javadoc documentation. The main entry point to the tooling API is the .GradleConnector

You can navigate from there and find code samples and other instructions. Pretty effective way of learning how

to use the tooling API is checking out and running the that live in samples $gradleHome/samples/toolingApi

.

If you're embedding Gradle and you're looking for exact set of dependencies the tooling API Jar requires please

look at one of the samples in . The dependencies are declared in the$gradleHome/samples/toolingApi

Gradle build scripts. You can also find the repository declarations where the Jars are obtained from.

http://www.gradle.org/doc/1.2-rc-1/javadoc/org/gradle/tooling/GradleConnector.html

Page 313 of 331

57
Comparing Builds

Build comparison support is an feature. This means that it is incomplete and not yet at regularincubating

Gradle production quality. This also means that this Gradle User Guide chapter is a work in progress.

Gradle provides support for comparing the (e.g. the produced binary archives) of two builds. Thereoutcomes

are several reasons why you may want to compare the outcomes of two builds. You may want to compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else

(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build

changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade, migration

to Gradle or build change by understanding the differences in the outcomes. The comparison process produces a

HTML report outlining which outcomes were found to be identical and identifying the differences between

non-identical outcomes.

57.1. Definition of terms
The following are the terms used for build comparison and their definitions.

“Build”

In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable

“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a Gradle

build.

“Build Outcome”

Something that happens in an observable manner during a build, such as the creation of a zip file or test

execution. These are the things that are compared.

“Source Build”

The build that comparisons are being made against, typically the build in its “current” state. In other words,

the left hand side of the comparison.

“Target Build”

The build that is being compared to the source build, typically the “proposed” build. In other words, the

Page 314 of 331

right hand side of the comparison.

“Host Build”

The Gradle build that executes the comparison process. It may be the same project as either the “target” or

“source” build or may be a completely separate project. It does not need to be the same Gradle version as the

“source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”

Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are

therefore meaningfully comparable.

“Uncompared Build Outcome”

A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build

produces a zip file that the other build does not).

“Unknown Build Outcome”

A build outcome that cannot be understood by the host build. This can occur when the source or target build

is a newer Gradle version than the host build and that Gradle version exposes new outcome types. Unknown

build outcomes can be compared in so far as they can be identified to be logically equivalent to an unknown

build outcome in the other build, but no meaningful comparison of what the build outcome actually is can be

performed. Using the latest Gradle version for the host build will avoid encountering unknown build

outcomes.

57.2. Current Capabilities
As this is an feature, a limited set of the eventual functionality has been implemented at this time.incubating

57.2.1. Supported builds

Only support for executing Gradle builds is available at this time. Source and target build must execute with

Gradle newer or equal to . Host build must be at least .1.0 1.2

Future versions will provide support for executing builds from other build systems such as Apache Ant or

Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

57.2.2. Supported build outcomes

Only support for comparing build outcomes that are archives is supported at this time. This includes , zip jar war

and archives.ear

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were

executed, which tests failed etc.)

Page 315 of 331

57.3. Comparing Gradle Builds
The plugin can be used to facilitate a comparison between two Gradle builds.compare-gradle-builds

The plugin adds a task named “ ” to the project. TheCompareGradleBuilds compareGradleBuilds

configuration of this task specifies what is to be compared. By default, it is configured to compare the current

build with itself using the current Gradle version by executing the tasks: “ ”.clean assemble

apply plugin: 'compare-gradle-builds'

This task can be configured to change what is compared.

compareGradleBuilds {
 sourceBuild {
 projectDir "/projects/project-a"
 gradleVersion "1.1"
 }
 targetBuild {
 projectDir "/projects/project-b"
 gradleVersion "1.2"
 }
}

The above example configures a comparison between two different projects using two different Gradle versions.

57.3.1. Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the ofbuild.gradle

the .root project

apply plugin: 'compare-gradle-builds'

compareGradleBuilds {
 targetBuild.gradleVersion = "«gradle version»"
}

Then simply execute the task. You will see the console output of the “source” andcompareGradleBuilds

“target” builds as they are executing.

57.3.2. The comparison “result”

If there are any differences between the , the task will fail. The location of the HTML reportcompared outcomes

providing insight into the comparison will be given. If all compared outcomes are found to be identical, and

there are no uncompared outcomes, and there are no unknown build outcomes the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the ignoreFailures

property to true.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

Page 316 of 331

compareGradleBuilds {
 ignoreFailures = true
}

57.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.

Take a look at for more information on how to configure and add artifacts.Chapter 45, Publishing artifacts

The archive must also have been produced by a , , , task. Future versions of Gradle willZip Jar War Ear

support increased flexibility in this area.

http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/doc/1.2-rc-1/dsl/org.gradle.plugins.ear.Ear.html

Page 317 of 331

A
Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can find these

samples in the directory of the distribution./samplesGRADLE_HOME

Table A.1. Samples included in the distribution

Sample Description

announce A project which uses the announce plugin

application A project which uses the application plugin

codeQuality A project which uses the various code quality plugins.

customBuildLanguage This sample demonstrates how to add some custom elements to the

build DSL. It also demonstrates the use of custom plug-ins to organize

build logic.

customDistribution This sample demonstrates how to create a custom Gradle distribution

and use it with the Gradle wrapper.

customPlugin A set of projects that show how to implement, test, publish and use a

custom plugin and task.

ear/earCustomized/ear Web application ear project with customized contents

ear/earWithWar Web application ear project

groovy/customizedLayout Groovy project with a custom source layout

groovy/mixedJavaAndGroovy Project containing a mix of Java and Groovy source

groovy/multiproject Build made up of multiple Groovy projects. Also demonstrates how to

exclude certain source files, and the use of a custom Groovy AST

transformation.

groovy/quickstart Groovy quickstart sample

Page 318 of 331

java/base Java base project

java/customizedLayout Java project with a custom source layout

java/multiproject This sample demonstrates how an application can be composed using

multiple Java projects.

java/quickstart Java quickstart project

java/withIntegrationTests This sample demonstrates how to use a source set to add an

integration test suite to a Java project.

maven/pomGeneration Demonstrates how to deploy and install to a Maven repository. Also

demonstrates how to deploy a javadoc JAR along with the main JAR,

how to customize the contents of the generated POM, and how to

deploy snapshots and releases to different repositories.

maven/quickstart Demonstrates how to deploy and install artifacts to a Maven

repository.

osgi A project which builds an OSGi bundle

scala/customizedLayout Scala project with a custom source layout

scala/fsc Scala project using the Fast Scala Compiler (fsc).

scala/mixedJavaAndScala A project containing a mix of Java and Scala source.

scala/quickstart Scala quickstart project

toolingApi/eclipse An application that uses the tooling API to build the Eclipse model for

a project.

toolingApi/idea An application that uses the tooling API to extract information needed

by IntelliJ IDEA.

toolingApi/model An application that uses the tooling API to build the model for a

Gradle build.

toolingApi/runBuild An application that uses the tooling API to run a Gradle task.

webApplication/customised Web application with customized WAR contents.

Page 319 of 331

webApplication/quickstart Web application quickstart project

A.1. Sample customBuildLanguage
This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use of

custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second

represents a product module. Each product includes one or more product modules, and each product module may be

included in multiple products. That is, there is a many-to-many relationship between these products and product

modules. For each product, the build produces a ZIP containing the runtime classpath for each product module

included in the product. The ZIP also contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basicEdition/build.gradle

). Notice that the build script uses the element. This is a custom element.product { }

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2 custom

plug-ins found in .buildSrc/src/main/groovy

A.2. Sample customDistribution
This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.

This sample contains the following projects:

The directory contains the project that implements a custom plugin, and bundles the plugin into aplugin

custom Gradle distribution.

The directory contains the project that uses the custom distribution.consumer

A.3. Sample customPlugin
A set of projects that show how to implement, test, publish and use a custom plugin and task.

This sample contains the following projects:

The directory contains the project that implements and publishes the plugin.plugin

The directory contains the project that uses the plugin.consumer

A.4. Sample java/multiproject
This sample demonstrates how an application can be composed using multiple Java projects.

Page 320 of 331

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP which

includes an API JAR, which a 3rd party application would compile against, and a client runtime. Then, there is a

server WAR which provides a web service.

Page 321 of 331

B
Potential Traps

B.1. Groovy script variables
For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types of

script variables. One with a local scope and one with a script wide scope.

Example B.1. Variables scope: local and script wide

scope.groovy

String localScope1 = 'localScope1'
def localScope2 = 'localScope2'
scriptScope = 'scriptScope'

println localScope1
println localScope2
println scriptScope

closure = {
 println localScope1
 println localScope2
 println scriptScope
}

def method() {
 {localScope1} (MissingPropertyException e) {println }try catch 'localScope1NotAvailable'
 {localScope2} (MissingPropertyException e) {println }try catch 'localScope2NotAvailable'
 println scriptScope
}

closure.call()
method()

Output of gradle

> gradle
localScope1
localScope2
scriptScope
localScope1
localScope2
scriptScope
localScope1NotAvailable
localScope2NotAvailable
scriptScope

Variables which are declared with a type modifier are visible within closures but not visible within methods. This is

a heavily discussed behavior in the Groovy community. []25

Page 322 of 331

a heavily discussed behavior in the Groovy community. []25

B.2. Configuration and execution phase
It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 49, The

).Build Lifecycle

Example B.2. Distinct configuration and execution phase

build.gradle

classesDir = file()'build/classes'
classesDir.mkdirs()
task clean(type: Delete) {
 delete 'build'
}
task compile(dependsOn:) << {'clean'
 (!classesDir.isDirectory()) {if
 println 'The class directory does not exist. I can not operate'
 // do something
 }
 // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory does not exist. I can not operate

As the creation of the directory happens during the configuration phase, the task removes the directoryclean

during the execution phase.

[] 2 5 O n e o f t h o s e d i s c u s s i o n s c a n b e f o u n d h e r e :

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

Page 323 of 331

C
Gradle Command Line

The command has the following usage:gradle

gradle [option...] [task...]

The command-line options available for the command are listed below:gradle

, , -? -h --help

Shows a help message.

, -a --no-rebuild

Do not rebuild project dependencies.

--all

Shows additional detail in the task listing. See .Section 11.6.2, “Listing tasks”

, -b --build-file

Specifies the build file. See .Section 11.5, “Selecting which build to execute”

, -c --settings-file

Specifies the settings file.

--continue

Continues task execution after a task failure.

, -D --system-prop

Sets a system property of the JVM, for example . See -Dmyprop=myvalue Section 14.2, “Gradle properties

.and system properties”

, -d --debug

Log in debug mode (includes normal stacktrace). See .Chapter 18, Logging

, -g --gradle-user-home

Specifies the Gradle user home directory. The default is the directory in the user's home directory..gradle

--gui

Launches the Gradle GUI. See .Chapter 12, Using the Gradle Graphical User Interface

, -I --init-script

Specifies an initialization script. See .Chapter 54, Initialization Scripts

Page 324 of 331

, -i --info

Set log level to info. See .Chapter 18, Logging

, -m --dry-run

Runs the build with all task actions disabled. See .Section 11.7, “Dry Run”

--no-color

Do not use color in the console output.

--offline

Specifies that the build should operate without accessing network resources. See Section 44.8.2, “Command line

.options to override caching”

, -P --project-prop

Sets a project property of the root project, for example . See -Pmyprop=myvalue Section 14.2, “Gradle

.properties and system properties”

, -p --project-dir

Specifies the start directory for Gradle. Defaults to current directory. See Section 11.5, “Selecting which build

.to execute”

--parallel

Build projects in parallel. Gradle will attempt to determine the optimal number of executor threads to use. This

option should only be used with decoupled projects (see).Section 50.8, “Decoupled Projects”

--parallel-threads

Build projects in parallel, using the specified number of executor threads. For example--parallel-threads=3

. This option should only be used with decoupled projects (see).Section 50.8, “Decoupled Projects”

--profile

Profiles build execution time and generates a report in the directory. See /reports/profilebuildDir

.Section 11.6.5, “Profiling a build”

--project-cache-dir

Specifies the project-specific cache directory. Default value is in the root project directory. See .gradle

.Section 14.6, “Caching”

, -q --quiet

Log errors only. See .Chapter 18, Logging

--recompile-scripts

Specifies that cached build scripts are skipped and forced to be recompiled. See .Section 14.6, “Caching”

--refresh-dependencies

Refresh the state of dependencies. See .Section 44.8.2, “Command line options to override caching”

--rerun-tasks

Specifies that any task optimization is ignored.

Page 325 of 331

, -S --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See .Chapter 18, Logging

, -s --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See .Chapter 18, Logging

, -u --no-search-upwards

Don't search in parent directories for a file.settings.gradle

, -v --version

Prints version info.

, -x --exclude-task

Specifies a task to be excluded from execution. See .Section 11.2, “Excluding tasks”

The above information is printed to the console when you execute .gradle -h

C.1. Deprecated command-line options
The following options are deprecated and will be removed in a future version of Gradle:

, -C --cache

(deprecated) Specifies how compiled build scripts should be cached. Possible values are: or .rebuild on

Default value is . You should use instead.on --recompile-scripts

--no-opt

(deprecated) Specifies to ignore all task optimization. You should use instead.--rerun-tasks

--refresh

(deprecated) Refresh the state of resources of the type(s) specified. Currently only isdependencies

supported. You should use instead.--refresh-dependencies

C.2. Daemon command-line options:
The contains more information about the daemon. For example it includesChapter 19, The Gradle Daemon

information how to turn on the daemon by default so that you can avoid using all the time.--daemon

--daemon

Uses the Gradle daemon to run the build. Starts the daemon if not running or existing daemon busy. Chapter 19,

 contains more detailed information when new daemon processes are started.The Gradle Daemon

--foreground

Starts the Gradle daemon in the foreground. Useful for debugging or troubleshooting because you can easily

monitor the build execution.

--no-daemon

Do not use the Gradle daemon to run the build. Useful occasionally if you have configured Gradle to always run

Page 326 of 331

with the daemon by default.

--stop

Stops the Gradle daemon if it is running. You can only stop daemons that were started with the Gradle version

you use when running .--stop

C.3. System properties
The following system properties are available for the command. Note that command-line options takegradle

precedence over system properties.

gradle.user.home

Specifies the Gradle user home directory.

The contains specific information aboutSection 20.1, “Configuring the build environment via gradle.properties”

Gradle configuration available via system properties.

C.4. Environment variables
The following environment variables are available for the command. Note that command-line options andgradle

system properties take precedence over environment variables.

GRADLE_OPTS

Specifies command-line arguments to use to start the JVM. This can be useful for setting the system properties

to use for running Gradle. For example you could set GRADLE_OPTS="-Dorg.gradle.daemon=true"

to use the Gradle daemon without needing to use the option every time you run Gradle. --daemon

 contains more information about waysSection 20.1, “Configuring the build environment via gradle.properties”

of configuring the daemon without using environmental variables, e.g. in more maintainable and explicit way.

GRADLE_USER_HOME

Specifies the Gradle user home directory.

Page 327 of 331

D
Existing IDE Support and how to cope

without it

D.1. IntelliJ
Gradle has been mainly developed with Idea IntelliJ and its very good Groovy plugin. Gradle's build script has[]26

also been developed with the support of this IDE. IntelliJ allows you to define any filepattern to be interpreted as a

Groovy script. In the case of Gradle you can define such a pattern for and .build.gradle settings.gradle

This will already help very much. What is missing is the classpath to the Gradle binaries to offer content assistance

for the Gradle classes. You might add the Gradle jar (which you can find in your distribution) to your project's

classpath. It does not really belong there, but if you do this you have a fantastic IDE support for developing Gradle

scripts. Of course if you use additional libraries for your build scripts they would further pollute your project

classpath.

We hope that in the future files get special treatment by IntelliJ and you will be able to define a specific*.gradle

classpath for them.

D.2. Eclipse
There is a Groovy plugin for eclipse. We don't know in what state it is and how it would support Gradle. In the next

edition of this user guide we can hopefully write more about this.

D.3. Using Gradle without IDE support
What we can do for you is to spare you typing things like throw new org.gradle.api.tasks.StopExecutionException()

and just type instead. We do this by automatically adding a setthrow new StopExecutionException()

of import statements to the Gradle scripts before Gradle executes them. Listed below are the imports added to each

script.

Page 328 of 331

Figure D.1. gradle-imports

import org.gradle.*
import org.gradle.util.*
import org.gradle.api.*
import org.gradle.api.artifacts.*
import org.gradle.api.artifacts.result.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.specs.*
import org.gradle.api.execution.*
import org.gradle.api.file.*
import org.gradle.api.resources.*
import org.gradle.api.initialization.*
import org.gradle.api.invocation.*
import org.gradle.api.java.archives.*
import org.gradle.api.logging.*
import org.gradle.api.plugins.*
import org.gradle.plugins.ide.eclipse.*
import org.gradle.plugins.ide.idea.*
import org.gradle.plugins.jetty.*
import org.gradle.api.plugins.quality.*
import org.gradle.api.plugins.announce.*
import org.gradle.api.plugins.buildcomparison.gradle.*
import org.gradle.api.specs.*
import org.gradle.api.tasks.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.diagnostics.*
import org.gradle.api.tasks.compile.*
import org.gradle.api.tasks.javadoc.*
import org.gradle.api.tasks.testing.*
import org.gradle.api.tasks.util.*
import org.gradle.api.tasks.wrapper.*
import org.gradle.process.*

[] 26 Gradle is built with Gradle

Gradle User Guide
A

Artifact

??

B

Build Script

??

C

Configuration

See .Dependency Configuration

Configuration Injection

??

D

DAG

See .Directed Acyclic Graph

Dependency

See .External Dependency

See .Project Dependency

??

Dependency Configuration

??

Dependency Resolution

??

Directed Acyclic Graph

A directed acyclic graph is a directed graph that contains no cycles. In Gradle each task to execute represents a

node in the graph. A dependsOn relation to another task will add this other task as a node (if it is not in the

graph already) and create a directed edge between those two nodes. Any dependsOn relation will be validated

for cycles. There must be no way to start at certain node, follow a sequence of edges and end up at the original

node.

Domain Specific Language

A domain-specific language is a programming language or specification language dedicated to a particular

problem domain, a particular problem representation technique, and/or a particular solution technique. The

concept isn't new—special-purpose programming languages and all kinds of modeling/specification languages

have always existed, but the term has become more popular due to the rise of domain-specific modeling.

DSL

See .Domain Specific Language

E

External Dependency

??

Extension Object

??

I

Init Script

A script that is run before the build itself starts, to allow customization of Gradle and the build.

Initialization Script

See .Init Script

P

Plugin

??

Project

??

Project Dependency

??

Publication

??

R

Repository

??

S

Source Set

??

T

Task

??

Transitive Dependency

??

	Chapter 1. Introduction
	1.1. About this user guide

	Chapter 2. Overview
	2.1. Features
	2.2. Why Groovy?

	Chapter 3. Tutorials
	3.1. Getting Started

	Chapter 4. Installing Gradle
	4.1. Prerequisites
	4.2. Download
	4.3. Unpacking
	4.4. Environment variables
	4.5. Running and testing your installation
	4.6. JVM options

	Chapter 5. Troubleshooting
	5.1. Working through problems
	5.2. Getting help

	Chapter 6. Build Script Basics
	6.1. Projects and tasks
	6.2. Hello world
	6.3. A shortcut task definition
	6.4. Build scripts are code
	6.5. Task dependencies
	6.6. Dynamic tasks
	6.7. Manipulating existing tasks
	6.8. Shortcut notations
	6.9. Extra task properties
	6.10. Using Ant Tasks
	6.11. Using methods
	6.12. Default tasks
	6.13. Configure by DAG
	6.14. Where to next?

	Chapter 7. Java Quickstart
	7.1. The Java plugin
	7.2. A basic Java project
	7.3. Multi-project Java build
	7.4. Where to next?

	Chapter 8. Dependency Management Basics
	8.1. What is dependency management?
	8.2. Declaring your dependencies
	8.3. Dependency configurations
	8.4. External dependencies
	8.5. Repositories
	8.6. Publishing artifacts
	8.7. Where to next?

	Chapter 9. Groovy Quickstart
	9.1. A basic Groovy project
	9.2. Summary

	Chapter 10. Web Application Quickstart
	10.1. Building a WAR file
	10.2. Running your web application
	10.3. Summary

	Chapter 11. Using the Gradle Command-Line
	11.1. Executing multiple tasks
	11.2. Excluding tasks
	11.3. Continuing the build when a failure occurs
	11.4. Task name abbreviation
	11.5. Selecting which build to execute
	11.6. Obtaining information about your build
	11.7. Dry Run
	11.8. Summary

	Chapter 12. Using the Gradle Graphical User Interface
	12.1. Task Tree
	12.2. Favorites
	12.3. Command Line
	12.4. Setup

	Chapter 13. Writing Build Scripts
	13.1. The Gradle build language
	13.2. The Project API
	13.3. The Script API
	13.4. Declaring variables
	13.5. Some Groovy basics

	Chapter 14. Tutorial - 'This and That'
	14.1. Directory creation
	14.2. Gradle properties and system properties
	14.3. Configuring the project using an external build script
	14.4. Configuring arbitrary objects
	14.5. Configuring arbitrary objects using an external script
	14.6. Caching

	Chapter 15. More about Tasks
	15.1. Defining tasks
	15.2. Locating tasks
	15.3. Configuring tasks
	15.4. Adding dependencies to a task
	15.5. Adding a description to a task
	15.6. Replacing tasks
	15.7. Skipping tasks
	15.8. Skipping tasks that are up-to-date
	15.9. Task rules
	15.10. Summary

	Chapter 16. Working With Files
	16.1. Locating files
	16.2. File collections
	16.3. File trees
	16.4. Using the contents of an archive as a file tree
	16.5. Specifying a set of input files
	16.6. Copying files
	16.7. Using the Sync task
	16.8. Creating archives

	Chapter 17. Using Ant from Gradle
	17.1. Using Ant tasks and types in your build
	17.2. Importing an Ant build
	17.3. Ant properties and references
	17.4. API

	Chapter 18. Logging
	18.1. Choosing a log level
	18.2. Writing your own log messages
	18.3. Logging from external tools and libraries
	18.4. Changing what Gradle logs

	Chapter 19. The Gradle Daemon
	19.1. Enter the daemon
	19.2. Reusing and expiration of daemons
	19.3. Usage and troubleshooting
	19.4. Configuring the daemon

	Chapter 20. The Build Environment
	20.1. Configuring the build environment via gradle.properties
	20.2. Accessing the web via a proxy

	Chapter 21. Gradle Plugins
	21.1. Applying plugins
	21.2. What plugins do
	21.3. Conventions
	21.4. More on plugins

	Chapter 22. Standard Gradle plugins
	22.1. Language plugins
	22.2. Incubating language plugins
	22.3. Integration plugins
	22.4. Software development plugins
	22.5. Base plugins
	22.6. Third party plugins

	Chapter 23. The Java Plugin
	23.1. Usage
	23.2. Source sets
	23.3. Tasks
	23.4. Project layout
	23.5. Dependency management
	23.6. Convention properties
	23.7. Working with source sets
	23.8. Javadoc
	23.9. Clean
	23.10. Resources
	23.11. CompileJava
	23.12. Test
	23.13. Jar
	23.14. Uploading

	Chapter 24. The Groovy Plugin
	24.1. Usage
	24.2. Tasks
	24.3. Project layout
	24.4. Dependency management
	24.5. Convention properties
	24.6. Source set properties
	24.7. CompileGroovy

	Chapter 25. The Scala Plugin
	25.1. Usage
	25.2. Tasks
	25.3. Project layout
	25.4. Dependency Management
	25.5. Convention Properties
	25.6. Source set properties
	25.7. Fast Scala Compiler

	Chapter 26. The War Plugin
	26.1. Usage
	26.2. Tasks
	26.3. Project layout
	26.4. Dependency management
	26.5. Convention properties
	26.6. War
	26.7. Customizing

	Chapter 27. The Ear Plugin
	27.1. Usage
	27.2. Tasks
	27.3. Project layout
	27.4. Dependency management
	27.5. Convention properties
	27.6. Ear
	27.7. Customizing
	27.8. Using custom descriptor file

	Chapter 28. The Jetty Plugin
	28.1. Usage
	28.2. Tasks
	28.3. Project layout
	28.4. Dependency management
	28.5. Convention properties

	Chapter 29. The Checkstyle Plugin
	29.1. Usage
	29.2. Tasks
	29.3. Project layout
	29.4. Dependency management
	29.5. Configuration

	Chapter 30. The CodeNarc Plugin
	30.1. Usage
	30.2. Tasks
	30.3. Project layout
	30.4. Dependency management
	30.5. Configuration

	Chapter 31. The FindBugs Plugin
	31.1. Usage
	31.2. Tasks
	31.3. Dependency management
	31.4. Configuration

	Chapter 32. The JDepend Plugin
	32.1. Usage
	32.2. Tasks
	32.3. Dependency management
	32.4. Configuration

	Chapter 33. The PMD Plugin
	33.1. Usage
	33.2. Tasks
	33.3. Dependency management
	33.4. Configuration

	Chapter 34. The Sonar Plugin
	34.1. Usage
	34.2. Analyzing Multi-Project Builds
	34.3. Analyzing Custom Source Sets
	34.4. Setting Custom Sonar Properties
	34.5. Tasks

	Chapter 35. The OSGi Plugin
	35.1. Usage
	35.2. Implicitly applied plugins
	35.3. Tasks
	35.4. Dependency management
	35.5. Convention object
	35.6.

	Chapter 36. The Eclipse Plugin
	36.1. Usage
	36.2. Tasks
	36.3. Configuration
	36.4. Customizing the generated files

	Chapter 37. The IDEA Plugin
	37.1. Usage
	37.2. Tasks
	37.3. Configuration
	37.4. Customizing the generated files
	37.5. Further things to consider

	Chapter 38. The Antlr Plugin
	38.1. Usage
	38.2. Tasks
	38.3. Project layout
	38.4. Dependency management
	38.5. Convention properties
	38.6. Source set properties

	Chapter 39. The Project Report Plugin
	39.1. Usage
	39.2. Tasks
	39.3. Project layout
	39.4. Dependency management
	39.5. Convention properties

	Chapter 40. The Announce Plugin
	40.1. Usage
	40.2. Configuration

	Chapter 41. The Build Announcements Plugin
	41.1. Usage

	Chapter 42. The Application Plugin
	42.1. Usage
	42.2. Tasks
	42.3. Convention properties
	42.4. Including other resources in the distribution

	Chapter 43. Bootstrap Plugin
	43.1. Maven conversion - features
	43.2. Usage

	Chapter 44. Dependency Management
	44.1. Introduction
	44.2. Dependency Management Best Practices.
	44.3. Dependency configurations
	44.4. How to declare your dependencies
	44.5. Working with dependencies
	44.6. Repositories
	44.7. How dependency resolution works
	44.8. The dependency cache
	44.9. Strategies for transitive dependency management

	Chapter 45. Publishing artifacts
	45.1. Introduction
	45.2. Artifacts and configurations
	45.3. Declaring artifacts
	45.4. Publishing artifacts
	45.5. More about project libraries

	Chapter 46. The Maven Plugin
	46.1. Usage
	46.2. Tasks
	46.3. Dependency management
	46.4. Convention properties
	46.5. Convention methods
	46.6. Interacting with Maven repositories

	Chapter 47. The Signing Plugin
	47.1. Usage
	47.2. Signatory credentials
	47.3. Specifying what to sign
	47.4. Publishing the signatures
	47.5. Signing POM files

	Chapter 48. C++ Support
	48.1. Usage
	48.2. Source code locations
	48.3. Compiling
	48.4. Configuring the compiler
	48.5. Working with shared libraries
	48.6. Dependencies
	48.7. Publishing

	Chapter 49. The Build Lifecycle
	49.1. Build phases
	49.2. Settings file
	49.3. Multi-project builds
	49.4. Initialization
	49.5. Configuration and execution of a single project build
	49.6. Responding to the lifecycle in the build script

	Chapter 50. Multi-project Builds
	50.1. Cross project configuration
	50.2. Subproject configuration
	50.3. Execution rules for multi-project builds
	50.4. Running tasks by their absolute path
	50.5. Project and task paths
	50.6. Dependencies - Which dependencies?
	50.7. Project lib dependencies
	50.8. Decoupled Projects
	50.9. Multi-Project Building and Testing
	50.10. Property and method inheritance
	50.11. Summary

	Chapter 51. Writing Custom Task Classes
	51.1. Packaging a task class
	51.2. Writing a simple task class
	51.3. A standalone project

	Chapter 52. Writing Custom Plugins
	52.1. Packaging a plugin
	52.2. Writing a simple plugin
	52.3. Getting input from the build
	52.4. Working with files in custom tasks and plugins
	52.5. A standalone project
	52.6. Maintaining multiple domain objects

	Chapter 53. Organizing Build Logic
	53.1. Inherited properties and methods
	53.2. Injected configuration
	53.3. Build sources in the buildSrc project
	53.4. Running another Gradle build from a build
	53.5. External dependencies for the build script
	53.6. Ant optional dependencies
	53.7. Summary

	Chapter 54. Initialization Scripts
	54.1. Basic usage
	54.2. Using an init script
	54.3. Writing an init script
	54.4. External dependencies for the init script

	Chapter 55. The Gradle Wrapper
	55.1. Configuration
	55.2. Unix file permissions
	55.3. Environment variable

	Chapter 56. Embedding Gradle
	56.1. Introduction to the Tooling API
	56.2. Tooling API and the Gradle Build Daemon
	56.3. Quickstart

	Chapter 57. Comparing Builds
	57.1. Definition of terms
	57.2. Current Capabilities
	57.3. Comparing Gradle Builds

	Appendix A. Gradle Samples
	A.1. Sample customBuildLanguage

	A.2. Sample customDistribution

	A.3. Sample customPlugin

	A.4. Sample java/multiproject

	Appendix B. Potential Traps
	B.1. Groovy script variables
	B.2. Configuration and execution phase

	Appendix C. Gradle Command Line
	C.1. Deprecated command-line options
	C.2. Daemon command-line options:
	C.3. System properties
	C.4. Environment variables

	Appendix D. Existing IDE Support and how to cope without it
	D.1. IntelliJ
	D.2. Eclipse
	D.3. Using Gradle without IDE support

