Gradle

A better way to build

Version 1.0-milestone-4

Hans Dockter

Adam Murdoch
Copyright © 2007-2010 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do
not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

Table of Contents

1. Introduction

1.1. About this user guide

2. Overview

2.2. Why Groovy?

3. Tutorials

3.1. Getting Started

4, Installing Gradle
4.1. Prerequisites
4.2. Download
4.3. Unpacking
4.4. Environment variables
4.5. Running and testing your installation

4.6. JVM options

5. Build Script Basics
5.1. Projects and tasks
5.2. Hello world
5.3. A shortcut task definition
5.4. Build scripts are code
5.5. Task dependencies
5.6. Dynamic tasks
5.7. Manipulating existing tasks
5.8. Shortcut notations
5.9. Dynamic task properties
5.10. Using Ant Tasks
5.11. Using methods
5.12. Default tasks
5.13. Configure by DAG
5.14. Summary

6. Java Quickstart
6.1. The Java plugin
6.2. A basic Java project
6.3. Multi-project Java build
6.4. Summary

7. Groovy Quickstart
7.1. A basic Groovy project
7.2. Summary

8. Web Application Quickstart
8.1. Building a WAR file
8.2. Running your web application
8.3. Summary

9. Artifact Basics
9.1. Artifact configurations
9.2. Repositories
9.3. External dependencies
9.4. Artifact publishing

10. Using the Gradle Command-Line

10.1.

Executing multiple tasks

10.2.

Excluding tasks

10.3.

Task name abbreviation

10.4.

Selecting which build to execute

10.5.

Obtaining information about your build

. Summary

11. Using the Gradle Graphical User Interface

11.1.

Task Tree

11.2.

Favorites

11.3.

Command Line

11.4.

12. Tutorial

Setup

- 'This and That'

12.1.

Directory creation

12.2.

Gradle properties and system properties

12.3.

Accessing the web via a proxy

12.4.

Configuring the project using an external build script

12.5.

Configuring arbitrary objects

12.6.

Configuring arbitrary objects using an external script

13. Writing Build Scripts

13.1.

The Gradle build language

13.2.

The Project API

13.3.

The Script API

13.4.

Some Groovy basics

14. More about Tasks

14.1.

Defining tasks

14.2.

Locating tasks

14.3.

Configuring tasks

14.4,

Adding dependencies to a task

14.5.

Adding a description to a task

14.6.

Replacing tasks

14.7.

Skipping tasks

14.8.

Skipping tasks that are up-to-date

14.9.

Task rules

14.10. Summary

15. Working With Files

15.1.

Locating files

15.2.

File collections

15.3.

File trees

15.4.

Using the contents of an archive as a file tree

15.5.

Specifying a set of input files

15.6.

Copying files

15.7.

Using the Sync task

15.8.

Creating archives

16. Logging

16.1.

Choosing a log level

16.2.

Writing your own log messages

16.3.

Logging from external tools and libraries

16.4.

Changing what Gradle logs

17. Using Ant from Gradle
17.1. Using Ant tasks and types in your build
17.2. Importing an Ant build
17.3. Ant properties and references
17.4. API

18. Using Plugins
18.1. Declaring plugins
18.2. Using the convention object

19. Standard Gradle plugins
19.1. Language plugins
19.2. Integration plugins
19.3. Software development plugins
19.4. Base plugins
19.5. Third party plugins

20. The Java Plugin

20.4. Project layout

20.5. Dependency management
20.6. Convention properties
20.7. Working with source sets
20.8. Javadoc

20.10. Resources
20.11. CompileJava
20.12. Test

20.14. Uploading
21. The Groovy Plugin

21.3. Project layout

21.4. Dependency management
21.5. Convention properties
21.6. Source set properties
21.7. CompileGroovy

22. The Scala Plugin

22.3. Project layout

22.4. Dependency Management
22.5. Convention Properties
22.6. Source set properties
22.7. Fast Scala Compiler

23. The War Plugin

23.3. Project layout

23.4. Dependency management
23.5. Convention properties
23.6. War

24,

23.7. Customizing

The Ear Plugin

25.

24.3. Project layout
24.4. Dependency management
24.5. Convention properties

24.7. Customizing
24.8. Using custom descriptor file

The Jetty Plugin

26.

25.3. Project layout
25.4. Dependency management
25.5. Convention properties

The Code Quality Plugin

27,

26.1. Usage

26.3. Project layout
26.4. Dependency management
26.5. Convention properties

The Sonar Plugin

28.

27.3. Limitations

The OSGi Plugin

29.

28.1. Usage

28.2. Implicitly applied plugins
28.3. Tasks

28.4. Dependency management
28.5. Convention object

30.

29.3. Configuration

29.4. Customizing the generated files

The IDEA Plugin

31.

30.1. Usage

30.3. Configuration

30.4. Customizing the generated files

30.5. Further things to consider
The Antlr Plugin

31.3. Project layout

31.4. Dependency management
31.5. Convention properties
31.6. Source set properties

32.

The Project Report Plugin

33.

32.1. Usage

32.3. Project layout
32.4. Dependency management
32.5. Convention properties

The Announce Plugin

34.

33.1. Usage

33.3. Project layout
33.4. Dependency management
33.5. Convention properties

The Application Plugin

35.

34.1. Usage

34.3. Convention properties
34.4. Including other resources in the distribution

Dependency Management

36.

35.1. Introduction

35.2. Dependency management overview

35.3. How to declare your dependencies

35.4. Working with dependencies

35.5. Repositories

35.6. Strategies for transitive dependency management

Artifact Management

37.

36.1. Introduction

36.2. Artifacts and configurations
36.3. Uploading artifacts

36.4. More about project libraries

The Maven Plugin

38.

37.1. Usage

37.3. Dependency management

37.4. Convention properties

37.5. Convention methods

37.6. Interacting with Maven repositories

The Signing Plugin

39.

38.1. Usage

38.2. Signatory credentials
38.3. Specifying what to sign
38.4. Publishing the signatures

38.5. Signing POM files
The Build Lifecycle

40.

39.1. Build phases

39.2. Settings file

39.3. Multi-project builds

39.4. Initialization

39.5. Configuration and execution of a single project build
39.6. Responding to the lifecycle in the build script

Multi-project Builds

40.1. Cross project configuration

40.2. Subproject configuration

40.3. Execution rules for multi-project builds
40.4. Running tasks by their absolute path
40.5. Project and task paths

40.6. Dependencies - Which dependencies?
40.7. Project lib dependencies

40.8. Multi-Project Building and Testing
40.9. Property and method inheritance
40.10. Summary

41. Writing Custom Task Classes
41.1. Packaging a task class
41.2. Writing a simple task class
41.3. A standalone project

42. Writing Custom Plugins
42.1. Packaging a plugin
42.2. Writing a simple plugin
42.3. Getting input from the build

42.4. Working with files in custom tasks and plugins

42.5. A standalone project
42.6. Maintaining multiple domain objects

43. Organizing Build Logic
43.1. Inherited properties and methods
43.2. Injected configuration
43.3. Build sources in the bui | dSr ¢ project
43.4. Running another Gradle build from a build
43.5. External dependencies for the build script
43.6. Ant optional dependencies
43.7. Summary

44, |nitialization Scripts
44.1. Basic usage
44.2. Writing an init script
44.3. External dependencies for the init script

45. The Gradle Wrapper
45.1. Configuration
45.2. Unix file permissions
45.3. Environment variable

46. Embedding Gradle

A. Gradle Samples
A.1l. Sample cust onBui | dLanguage
A.2. Sample j ava/ mul t i proj ect

B. Potential Traps
B.1. Groovy script variables
B.2. Configuration and execution phase

C. Gradle Command Line
C.1. Deprecated command-line options
C.2. Experimental command-line options
C.3. System properties
C.4. Environment variables

D. E

xisting IDE Support and how to cope without it

D.1. Intellid

D.3. Using Gradle without IDE support

Glossary

List

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
. Using the Java plugin

. Building a Java project

. Adding Maven repository

. Adding dependencies

. Customization of MANIFEST.MF
. Adding a test system property

. Publishing the JAR file

. Eclipse plugin

6.9.
6.10
6.11
6.12
6.13
6.14
7.1.
7.2.
7.3.
8.1.
8.2.
9.1.
9.2.
9.3.
9.4.
9.5.

of Examples

The first build script

Execution of a build script

A task definition shortcut

Using Groovy in Gradle's tasks

Using Groovy in Gradle's tasks

Declaration of dependencies between tasks

Lazy dependsOn - the other task does not exist (yet)
Dynamic creation of a task

Accessing a task via API - adding a dependency
Accessing a task via API - adding behaviour
Accessing task as a property of the build script
Assigning properties to a task

Using AntBuilder to execute ant.loadfile target
Using methods to organize your build logic
Defining a default tasks

Different outcomes of build depending on chosen tasks

Java example - complete build file

. Multi-project build - hierarchical layout

. Multi-project build - settings.gradle file

. Multi-project build - common configuration

. Multi-project build - dependencies between projects
. Multi-project build - distribution file

Dependency on Groovy 1.6.0

Groovy example - complete build file

War plugin

Running web application with Jetty plugin
Definition of a configuration

Accessing a configuration

Configuration of a configuration

Usage of Maven central repository

Usage of a local directory

9.6. Accessing a repository

9.7. Configuration of a repository

9.8. Definition of an external dependency

9.9. Usage of external dependency of a configuration
10.1. Executing multiple tasks

10.2. Excluding tasks

10.3. Abbreviated task name

10.4. Abbreviated camel case task name

10.5. Selecting the project using a build file

10.6. Selecting the project using project directory
10.7. Obtaining information about projects

10.8. Providing a description for a project

10.9. Obtaining information about tasks

10.10. Changing the content of the task report
10.11. Obtaining more information about tasks
10.12. Obtaining information about dependencies
10.13. Information about properties

11.1. Launching the GUI

12.1. Directory creation with mkdir

12.2. Directory creation with Directory tasks

12.3. Setting properties with a gradle.properties file
12.4. Accessing the web via a proxy

12.5. Configuring the project using an external build script
12.6. Configuring arbitrary objects

12.7. Configuring arbitrary objects using a script
13.1. Accessing property of the Project object
13.2. Groovy JDK methods

13.3. Property accessors

13.4. Method call without parentheses

13.5. List and map literals

13.6. Closure as method parameter

13.7. Closure delegates

14.1. Defining tasks

14.2. Defining tasks - using strings

14.3. Defining tasks with alternative syntax

14.4. Accessing tasks as properties

14.5. Accessing tasks via tasks collection

14.6. Accessing tasks by path

14.7. Creating a copy task

14.8. Configuring a task - various ways

14.9. Configuring a task - fluent interface

14.10. Configuring a task - with closure

14.11. Configuring a task - with configure() method
14.12. Defining a task with closure

14.13. Adding dependency on task from another project
14.14. Adding dependency using task object
14.15. Adding dependency using closure

14.16. Adding a description to a task

17.9.

17.10
17.11
17.12
17.13

. Overwriting a task

. Skipping a task using a predicate

. Skipping tasks with StopExecutionException
. Enabling and disabling tasks

. A generator task

. Declaring the inputs and outputs of a task

. Task rule

. Creating a file collection

. Using a file collection

. Implementing a file collection
. Creating a file tree

. Using a file tree

. Using an archive as a file tree
. Specifying a set of files

. Specifying a set of files

. Copying files using the copy task

. Specifying copy task source files and destination directory
. Selecting the files to copy

. Copying files using the copy() method

. Renaming files as they are copied

. Filtering files as they are copied

. Nested copy specs

. Using the Sync task to copy dependencies

. Creating a ZIP archive

. Creation of ZIP archive

. Configuration of archive task - custom archive name
. Configuration of archive task - appendix & classifier

. Using stdout to write log messages

. Writing your own log messages

. Using SLF4J to write log messages

. Configuring standard output capture

. Configuring standard output capture for a task
. Customizing what Gradle logs

. Using an Ant task

. Passing nested text to an Ant task

. Passing nested elements to an Ant task

. Using an Ant type

. Using a custom Ant task

. Declaring the classpath for a custom Ant task
. Using a custom Ant task and dependency management together
. Importing an Ant build

Task that depends on Ant target

. Adding behaviour to an Ant target

. Ant target that depends on Gradle task
. Setting an Ant property

. Getting an Ant property

17.14. Setting an Ant reference

17.15. Getting an Ant reference

18.1. Using a plugin

18.2. Applying a plugin by id

18.3. Applying a plugin by type

18.4. Applying a plugin by type

18.5. Configuring a plugin task

18.6. Plugin convention object

18.7. Using the plugin convention object

18.8. Explicit application of an implied plugin

20.1. Using the Java plugin

20.2. Custom Java source layout

20.3. Accessing a source set

20.4. Configuring the source directories of a source set
20.5. Defining a source set

20.6. Defining the classpath of a source set

20.7. Assembling a JAR for a source set

20.8. Generating the Javadoc for a source set

20.9. Running tests in a source set

20.10. Customization of MANIFEST.MF

20.11. Creating a manifest object.

20.12. Separate MANIFEST.MF for a particular archive
20.13. Separate MANIFEST.MF for a particular archive
21.1. Using the Groovy plugin

21.2. Custom Groovy source layout

21.3. Configuration of Groovy plugin

21.4. Configuration of Groovy plugin

22.1. Using the Scala plugin

22.2. Custom Scala source layout

22.3. Declaring the Scala version to use

22.4. Enabling the Fast Scala Compiler

23.1. Using the War plugin

23.2. Customization of war plugin

23.3. Generation of JAR archive in addition to WAR archive
24.1. Using the Ear plugin

24.2. Customization of ear plugin

24.3. Generation of JAR archive in addition to EAR archive
25.1. Using the Jetty plugin

26.1. Using the code quality plugin

27.1. Using the Sonar plugin

27.2. Configuring connection settings

28.1. Using the OSGi plugin

28.2. Configuration of OSGi MANIFEST.MF file

29.1. Using the Eclipse plugin

29.2. Partial Overwrite for Classpath

29.3. Partial Overwrite for Project

29.4. Export Dependencies

29.5. Customizing the XML

30.1. Using the IDEA plugin

30.2. Partial Overwrite for Module

30.3. Partial Overwrite for Project

30.4. Export Dependencies

30.5. Customizing the XML

31.1. Using the Antlr plugin

31.2. Declare Antlr version

33.1. Using the announce plugin

33.2. Configure the announce plugin

33.3. Using the announce plugin

34.1. Using the application plugin

34.2. Configure the application main class

34.3. Include output from other tasks in the application distribution
34.4. Automatically creating files for distribution
35.1. Module dependencies

35.2. Artifact only notation

35.3. Dependency with classifier

35.4. Client module dependencies - transitive dependencies
35.5. Project dependencies

35.6. File dependencies

35.7. Generated file dependencies

35.8. Gradle API dependencies

35.9. Gradle's Groovy dependencies

35.10. Excluding transitive dependencies

35.11. Optional attributes of dependencies

35.12. Collections and arrays of dependencies
35.13. Dependency configurations

35.14. Dependency configurations for project

35.15. Configuration.copy

35.16. Accessing declared dependencies

35.17. Configuration.files

35.18. Configuration.files with spec

35.19. Configuration.copy

35.20. Configuration.copy vs. Configuration.files
35.21. Adding central Maven repository

35.22. Adding several Maven repositories

35.23. Adding custom Maven repository

35.24. Adding additional Maven repositories for JAR files
35.25. Adding the local Maven cache as a repository
35.26. Accessing password protected Maven repository
35.27. Flat repository resolver

35.28. lvy repository

35.29. lvy repository

35.30. Definition of a custom repository

36.1. Assignment of an artifact to a configuration
36.2. Configuration of the upload task

37.1. Using the Maven plugin

37.2. Creating a stand alone pom.

37.3. Upload of file to remote Maven repository

37.4. Upload of file via SSH

37.5. Customization of pom

37.6. Builder style customization of pom

37.7. Modifying auto-generated content

37.8. Customization of Maven installer

37.9. Generation of multiple poms

37.10. Accessing a mapping configuration

38.1. Using the Signing plugin

38.2. Signing a configuration

38.3. Signing a configuration output

38.4. Signing a task

38.5. Signing a task output

38.6. Conditional signing

38.7. Adding the published configuration

38.8. Signing a POM for deployment

39.1. Single project build

39.2. Hierarchical layout

39.3. Flat layout

39.4. Modification of elements of the project tree

39.5. Madification of elements of the project tree

39.6. Adding of test task to each project which has certain property set
39.7. Notifications

39.8. Setting of certain property to all tasks

39.9. Logging of start and end of each task execution

40.1. Multi-project tree - water & bluewhale projects

40.2. Build script of water (parent) project

40.3. Multi-project tree - water, bluewhale & krill projects

40.4. Water project build script

40.5. Defining common behaviour of all projects and subprojects
40.6. Defining specific behaviour for particular project

40.7. Defining specific behaviour for project krill

40.8. Adding custom behaviour to some projects (filtered by project name)
40.9. Adding custom behaviour to some projects (filtered by project properties)
40.10. Running build from subproject

40.11. Evaluation and execution of projects

40.12. Evaluation and execution of projects

40.13. Running tasks by their absolute path

40.14. Dependencies and execution order

40.15. Dependencies and execution order

40.16. Dependencies and execution order

40.17. Declaring dependencies

40.18. Declaring dependencies

40.19. Project execution dependencies

40.20. Cross project task dependencies

40.21. Configuration time dependencies

40.22. Configuration time dependencies - evaluationDependsOn
40.23. Configuration time dependencies

40.24. Dependencies - real life example - crossproject configuration

42.9.

. Project lib dependencies

. Project lib dependencies

. Fine grained control over dependencies
. Build and Test Single Project

. Partial Build and Test Single Project

. Build and Test Depended On Projects

. Build and Test Dependent Projects

. Defining a custom task

. A hello world task

. A customizable hello world task
. A build for a custom task

. A custom task

. Using a custom task in another project

. Testing a custom task

. A custom plugin

. A custom plugin convention

. A custom plugin with closure convention

. A task with a configuration property

. Wiring in the task property default value with conventions
. Overriding conventional defaults

. Conventional defaults in action

. Evaluating file properties lazily

A build for a custom plugin

42.10. Wiring for a custom plugin

42.11. Using a custom plugin in another project
42.12. Testing a custom plugin

42.13. Managing domain objects

43.1.
43.2.
43.3.
43.4.
43.5.
43.6.
43.7.
44.1.
44.2.
45.1.
45.2.
45.3.

Using inherited properties and methods

Using injected properties and methods

Custom buildSrc build script

Running another build from a build

Declaring external dependencies for the build script
A build script with external dependencies

Ant optional dependencies

Declaring external dependencies for an init script
An init script with external dependencies

Wrapper generated files
Configuration of wrapper task

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build
technology in the Java (JVM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks a la Maven. But we never lock you in!
* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache Ivy).

® Full support for your existing Maven or Ivy repository infrastructure.

® Support for transitive dependency management without the need for remote repositories or pr
andivy.xm files.

® Ant tasks and builds as first class citizens.
® Groovy build scripts.
® A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are
waiting, have fun :)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't
documented as completely as they need to be. Some of the content presented won't be entirely
clear or will assume that you know more about Gradle than you do. We need your help to improve
this user guide. You can find out more about contributing to the documentation at the Gradle web

contribute your own examples and extra content there.

Page 16 of 301

http://www.gradle.org/contributing.html
http://www.gradle.org/contributing.html
http://docs.codehaus.org/display/GRADLE/User+guide

2

Overview

2.1. Features

Here is a list of some of Gradle's features.

Declarative builds and build-by-convention
At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on
Groovy. Gradle pushes declarative builds to the next level by providing declarative language
elements that you can assemble as you like. Those elements also provide
build-by-convention support for Java, Groovy, OSGi, Web and Scala projects. Even more,
this declarative language is extensible. Add your own new language elements or enhance
the existing ones. Thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully
leverage in your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build
The suppleness and richness of Gradle finally allows you to apply common design principles
to your build. For example, it is very easy to compose your build from reusable pieces of
build logic. Inline stuff where unnecessary indirections would be inappropriate. Don't be
forced to tear apart what belongs together (e.g. in your project hierarchy). Thus avoiding
smells like shotgun changes or divergent change that turn your build into a maintenance
nightmare. At last you can create a well structured, easily maintained, comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of
build execution, Gradle allows you to monitor and customize its configuration and execution
behavior to its very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project
builds up to huge enterprise multi-project builds. This is true for structuring the build. With the
state-of-art incremental build function, this is also true for tackling the performance pain
many large enterprise builds suffer from.

Page 17 of 301

Multi-project builds
Gradle's support for multi-project build is outstanding. Project dependencies are first class
citizens. We allow you to model the project relationships in a multi-project build as they really
are for your problem domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building
all the subprojects that subproject depends on. You can also choose to rebuild the
subprojects that depend on a particular subproject. Together with incremental builds this is a
big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle
provides convenient support for any strategy. From transitive dependency management with
remote maven and ivy repositories to jars or dirs on the local file system.

Gradle is the first build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens
as well. Gradle provides a deep import for any Ant project, turning Ant targets into native
Gradle tasks at runtime. You can depend on them from Gradle, you can enhance them from
Gradle, you can even declare dependencies on Gradle tasks in your build.xml. The same
integration is provided for properties, paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and
retrieving dependencies. Gradle also provides a converter for turning a Maven pom.xml into
a Gradle script. Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle
build in the same branch where your production build lives and both can evolve in parallel.
We usually recommend to write tests that make sure that the produced artifacts are similar.
That way migration is as less disruptive and as reliable as possible. This is following the
best-practices for refactoring by applying baby steps.

Groovy

Gradle's build scripts are written in Groovy, not XML. But unlike other approaches this is not
for simply exposing the raw scripting power of a dynamic language. That would just lead to a
very difficult to maintain build. The whole design of Gradle is oriented towards being used as
a language, not as a rigid framework. And Groovy is our glue that allows you to tell your
individual story with the abstractions Gradle (or you) provide. Gradle provides some standard
stories but they are not privileged in any form. This is for us a major distinguishing features
compared to other declarative build systems. Our Groovy support is also not just some
simple coating sugar layer. The whole Gradle API is fully groovynized. Only by that using
Groovy is the fun and productivity gain it can be.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not
installed. This is useful for example for some continuous integration servers. It is also useful

Page 18 of 301

for an open source project to keep the barrier low for building it. The wrapper is also very
interesting for the enterprise. It is a zero administration approach for the client machines. It
also enforces the usage of a particular Gradle version thus minimizing support issues.

Free and open source
Gradle is an open source project, and is licensed under the ASL.

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are
tremendous in case of build scripts. There are a couple of dynamic languages out there. Why
Groovy? The answer lies in the context Gradle is operating in. Although Gradle is a general
purpose build tool at its core, its main focus are Java projects. In such projects obviously the team
members know Java. We think a build should be as transparent as possible to all team members.

You might argue why not using Java then as the language for build scripts. We think this is a valid
question. It would have the highest transparency for your team and the lowest learning curve. But
due to limitations of Java such a build language would not be as nice, expressive and powerful as
it could be. (] Languages like Python, Groovy or Ruby do a much better job here. We have chosen
Groovy as it offers by far the greatest transparency for Java people. Its base syntax is the same as
Java's as well as its type system, its package structure and other things. Groovy builds a lot on top
of that. But on a common ground with Java.

For Java teams which share also Python or Ruby knowledge or are happy to learn it, the above
arguments don't apply. The Gradle design is well-suited for creating another build script engine in
JRuby or Jython. It just doesn't have the highest priority for us at the moment. We happily support
any community effort to create additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant,
XML, Java and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the
Groovy syntax.

Page 19 of 301

http://www.gradle.org/license.html
http://www.defmacro.org/ramblings/lisp.html

3

Tutorials

3.1. Getting Started

The following tutorials introduce some of the basics of Gradle, to help you get started.

Chapter 4, Installing Gradle
Describes how to install Gradle.

Chapter 5, Build Script Basics
Introduces the basic build script elements: projects and tasks.

Chapter 6, Java Quickstart
Shows how to start using Gradle's build-by-convention support for Java projects.

Chapter 7, Groovy Quickstart
Using Gradle's build-by-convention support for Groovy projects.

Chapter 8, Web Application Quickstart
Using Gradle's build-by-convention support for Web applications.

Page 20 of 301

A

Installing Gradle

4.1. Prerequisites

Gradle requires a Java JDK to be installed. Gradle requires a JDK 1.5 or higher. Gradle ships with
its own Groovy library, therefore no Groovy needs to be installed. Any existing Groovy installation
is ignored by Gradle.

Gradle uses whichever JDK it finds in your path (to check, use j ava -ver si on). Alternatively,
you can set the JAVA HOVE environment variable to point to the install directory of the desired
JDK.

4.2. Download

You can download one of the Gradle distributions from the Gradle web site.

4.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:
®* The Gradle binaries.
® The user guide (HTML and PDF).
® The DSL reference guide.
® The API documentation (Javadoc and Groovydoc).

® Extensive samples, including the examples referenced in the user guide, along with some
complete and more complex builds you can use the starting point for your own build.

®* The binary sources. This is for reference only. If you want to build Gradle you need to
download the source distribution or checkout the sources from the source repository. See
the Gradle web site for details.

For Un*x users

You need a GNU compatible tool to unzip Gradle, if you want the file permissions to be

Page 21 of 301

http://www.gradle.org/downloads.html
http://www.gradle.org/build.html

properly set. We mention this as some zip front ends for Mac OS X don't restore the file
permissions properly.

4.4. Environment variables

For running Gradle, add GRADLE_HOWVE/ bi n to your PATH environment variable. Usually, this is
sufficient to run Gradle.

4.5. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle
-v. The output shows gradle version and also local environment configuration (groovy and jvm
version, etc.). The displayed gradle version should match the distribution you have downloaded.

4.6. JVM options

JVM options for running Gradle can be set via environment variables. You can use GRADLE _OPTS
or JAVA OPTS. Those variables can be used together. JAVA OPTS is by convention an
environment variable shared by many Java applications. A typical use case would be to set the
HTTP proxy in JAVA_OPTS and the memory options in GRADLE_OPTS. Those variables can also
be set at the beginning of the gradle or gradlew script.

Page 22 of 301

5

Build Script Basics

5.1. Projects and tasks

Everything in Gradle sits on top of two basic concepts: projects and tasks.

Every Gradle build is made up of one or more projects. A project represents some component of
your software which can be built. What this means exactly depends on what it is that you are
building. For example, a project might represent a library JAR or a web application. It might
represent a distribution ZIP assembled from the JARs produced by other projects. A project does
not necessarily represent a thing to be built. It might represent a thing to be done, such as
deploying your application to staging or production environments. Don't worry if this seems a little
vague for now. Gradle's build-by-convention support adds a more concrete definition for what a
project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which
a build performs. This might be compiling some classes, creating a JAR, generating javadoc, or
publishing some archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will
look at working with multiple projects and more about working with projects and tasks.

5.2. Hello world

You run a Gradle build using the gradle command. The gradle command looks for a file called bui
in the current directory. 2 we call this bui | d. gr adl e file a build script, although strictly speaking
it is a build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Page 23 of 301

Example 5.1. The first build script
bui | d. gradl e

task hello {
doLast {
println 'Hello world!"
}

In a command-line shell, enter into the containing directory and execute the build script by running ¢

Example 5.2. Execution of a build script

Outputof gradle -q hello

> gradle -q hello
Hel | o worl d!

What's going on here? This build script defines a single
task, called hel | o, and adds an action to it. When you run
gradl e hell o, Gradle executes the hel | o task, which
in turn executes the action you've provided. The action is
simply a closure containing some Groovy code to execute.

If you think this looks similar to Ant's targets, well, you are
right. Gradle tasks are the equivalent to Ant targets. But as
you will see, they are much more powerful. We have used
a different terminology than Ant as we think the word task
is more expressive than the word target. Unfortunately this
introduces a terminology clash with Ant, as Ant calls its
commands, such as j avac or copy, tasks. So when we

talk about tasks, we always mean Gradle tasks, which are the equivalent to Ant's targets. If we talk
about Ant tasks (Ant commands), we explicitly say ant task.

5.3. A shortcut task definition

What does - g do?

Most of the examples in this
user guide are run with the
-g command-line option.
This suppresses Gradle's log
messages, so that only the
output of the tasks is shown.
This keeps the example
output in this user guide a
little clearer. You don't need
to use this option if you don't
want. See Chapter 16,

about the command-line
options which affect Gradle's
output.

There is a shorthand way to define a task like our hel | o task above, which is more concise.

Example 5.3. A task definition shortcut

bui | d. gradl e

task hello << {
println 'Hello world!

}

Again, this defines a task called hel | o with a single closure to execute. We will use this task

Page 24 of 301

definition style throughout the user guide.

5.4. Build scripts are code

Gradle's build scripts expose to you the full power of Groovy. As an appetizer, have a look at this:

Example 5.4. Using Groovy in Gradle's tasks

buil d. gradl e
task upper << {
String someString = 'nY_nAnk

println "Original: " + someString
println "Upper case: " + soneString.toUpperCase()

Output of gradl e -q upper
> gradle -q upper

Original: nY_nAnE
Upper case: MY_NAME

or

Example 5.5. Using Groovy in Gradle's tasks

bui I d. gradl e
task count << {
4.tinmes { print "$it " }
}
Output of gradl e -g count

> gradle -q count
0123

5.5. Task dependencies

As you probably have guessed, you can declare dependencies between your tasks.

Page 25 of 301

Example 5.6. Declaration of dependencies between tasks

bui | d. gradl e

task hello << {
println 'Hello world!

}

task intro(dependsOn: hello) << {
println "I'm G adl e"

}

Outputofgradle -q intro

> gradle -qg intro
Hel |l o worl d!
I'm Gadle

To add a dependency, the corresponding task does not need to exist.

Example 5.7. Lazy dependsOn - the other task does not exist (yet)

buil d. gradl e

task taskX(dependsOn: 'taskY') << {
println '"taskX
}

task taskY << {
println 'taskY

}

Output of gradl e -qg taskX

> gradle -q taskX
taskyY
t askX

The dependency of t askXto t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 14.4, “Adding

dependencies to a task”.

Please notice, that you can't use a shortcut notation (see Section 5.8, “Shortcut notations”) when

referring to task, which is not defined yet.

5.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can

also use it to dynamically create tasks.

Page 26 of 301

Example 5.8. Dynamic creation of a task

bui | d. gradl e

4.tinmes { counter ->
task "task$counter" << {
println "I'mtask nunber $counter"
}

Output of gradl e -qgq taskl

> gradle -q taskl
I'"'mtask nunber 1

5.7. Manipulating existing tasks

Once tasks are created they can be accessed via an API. This is different to Ant. For example you
can create additional dependencies.

Example 5.9. Accessing a task via API - adding a dependency

bui I d. gradl e
4.tinmes { counter ->

task "task$counter" << {
println "I'mtask nunber $counter"

}
}
t ask0. dependsOn task2, task3

Output of gradl e -q taskO

> gradle -q taskO
I'mtask nunber 2
I'mtask nunber 3
I''mtask nunber O

Or you can add behavior to an existing task.

Page 27 of 301

Example 5.10. Accessing a task via API - adding behaviour

bui | d. gradl e

task hello << {

println 'Hello Earth'
}
hel | 0. doFi rst {

println 'Hello Venus

}
hel | 0. doLast {

println "Hello Mars

}
hello << {

println 'Hello Jupiter
}

Outputof gradl e -qg hello

> gradle -q hello
Hel | o Venus

Hell o Earth

Hell o Mars

Hel 1 o Jupiter

The calls doFi rst and doLast can be executed multiple times. They add an action to the
beginning or the end of the task's actions list. When the task executes, the actions in the action list
are executed in order. The << operator is simply an alias for doLast .

5.8. Shortcut notations

As you might have noticed in the previous examples, there is a convenient notation for accessing
an existing task. Each task is available as a property of the build script:

Example 5.11. Accessing task as a property of the build script
bui I d. gradl e

task hello << {
println 'Hello world!'
}

hel | 0. doLast {
println "Geetings fromthe $hello. nane task."
}

Outputofgradle -q hello

> gradle -q hello
Hel | o worl d!
Geetings fromthe hello task

This enables very readable code, especially when using the out of the box tasks provided by the
plugins (e.g. conpi | e).

Page 28 of 301

5.9. Dynamic task properties

You can assign arbitrary new properties to any task.
Example 5.12. Assigning properties to a task
bui I d. gradl e

task myTask
myTask. myProperty = ' nyCust onPropVal ue’

task showProps << {

println nyTask.nyProperty
}

Output of gradl e -g showPr ops

> gradl e -q showProps
my Cust onPr opVal ue

5.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks
simply by relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks
from Gradle is as convenient and more powerful than using Ant tasks from a bui | d. xm file. From
below example you can learn how to execute ant tasks and how to access ant properties:

Example 5.13. Using AntBuilder to execute ant.loadfile target

bui | d. gradl e

task loadfile << {

def files = file('../antlLoadfileResources').listFiles().sort()

files.each { File file ->
if (file.isFile()) {

ant.loadfile(srcFile: file, property:

println " *** $file. name ***"

println "${ant.properties[file.nane]}"

Outputofgradl e -q | oadfile

> gradle -q loadfile
*** agile.mani festo.txt ***

file.nane)

I ndi vidual s and i nteractions over processes and tools

Wor ki ng software over conprehensi ve docunentati on
Custoner col | aborati on over contract negotiation
Respondi ng to change over followi ng a plan

*** gradl e. mani festo.txt ***

Make the inpossible possible, nmake the possible easy and nake the easy el egant.

(inspired by Moshe Fel denkr ai s)

Page 29 of 301

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 17,
Using Ant from Gradle.

5.11. Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic
for the example above, is extracting a method.

Example 5.14. Using methods to organize your build logic

bui I d. gradl e

task checksum << {
fileList('../antLoadfil eResources').each {File file ->
ant.checksum(file: file, property: "cs_$file.nane")
println "$file.name Checksum ${ant.properties["cs_$file.name"]}"

}

task loadfile << {
fileList('../antLoadfil| eResources').each {File file ->
ant.loadfile(srcFile: file, property: file.nane)
println "I'"'mfond of $file.nane"

}

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

Outputofgradl e -q | oadfile

> gradle -q loadfile
I'mfond of agile.mnifesto.txt
I'"'mfond of gradle. manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If
your build logic becomes more complex, Gradle offers you other very convenient ways to organize
it. We have devoted a whole chapter to this. See Chapter 43, Organizing Build Logic.

5.12. Default tasks

Gradle allows you to define one or more default tasks for your build.

Page 30 of 301

Example 5.15. Defining a default tasks

bui | d. gradl e
def aul t Tasks 'clean', 'run'

task clean << {
println 'Default C eaning!'

}

task run << {
println 'Default Running!’

}
task other << {

println "I"mnot a default task!"
}

Output of gradl e -q

> gradle -q
Default C eani ng!
Def aul t Runni ng!

This is equivalent to running gr adl e cl ean run. In a multi-project build every subproject can
have its own specific default tasks. If a subproject does not specify default tasks, the default tasks
of the parent project are used (if defined).

5.13. Configure by DAG

As we describe in full detail later (See Chapter 39, The Build Lifecycle) Gradle has a configuration
phase and an execution phase. After the configuration phase Gradle knows all tasks that should be
executed. Gradle offers you a hook to make use of this information. A use-case for this would be to
check if the release task is part of the tasks to be executed. Depending on this you can assign
different values to some variables.

In the following example, execution of di stri buti on and rel ease tasks results in different
value of ver si on variable.

Page 31 of 301

Example 5.16. Different outcomes of build depending on chosen tasks

bui | d. gradl e

task distribution << {
println "We build the zip with versi on=$versi on"

}

task rel ease(dependsOn: 'distribution') << {
println 'We rel ease now
}

gradl e. t askG aph. whenReady {taskG aph ->
if (taskG aph. hasTask(rel ease)) {
version = '1.0'
} else {
version = ' 1. 0- SNAPSHOT'
}

Outputofgradl e -q distribution

> gradle -q distribution
We build the zip with versi on=1. 0- SNAPSHOT

Output of gradl e -q rel ease

> gradle -q rel ease
We build the zip with version=1.0
W rel ease now

The important thing is, that the fact that the release task has been chosen, has an effect before the
release task gets executed. Nor has the release task to be the primary task (i.e. the task passed to
the gradle command).

5.14. Summary

This is not the end of the story for tasks. So far we have worked with simple tasks. Tasks will be
revisited in Chapter 14, More about Tasks and when we look at the Java plugin in Chapter 20, The
Java Plugin.

Page 32 of 301

6

Java Quickstart

6.1. The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you
care to implement in your build script. Out-of-the-box, however, it doesn't build anything unless you
add code to your build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source
files, run some unit tests, and create a JAR file containing your classes. It would be nice if you
didn't have to code all this up for every project. Luckily, you don't have to. Gradle solves this
problem through the use of plugins. A plugin is an extension to Gradle which configures your
project in some way, typically by adding some pre-configured tasks which together do something
useful. Gradle ships with a number of plugins, and you can easily write your own and share them
with others. One such plugin is the Java plugin. This plugin adds some tasks to your project which
will compile and unit test your Java source code, and bundle it into a JAR file.

The Java plugin is convention based. This means that the plugin defines default values for many
aspects of the project, such as where the Java source files are located. If you follow the convention
in your project, you generally don't need to do much in your build script to get a useful build. Gradle
allows you to customize your project if you don't want to or cannot follow the convention in some
way. In fact, because support for Java projects is implemented as a plugin, you don't have to use
the plugin at all to build a Java project, if you don't want to.

We have in-depth coverage with many examples about the Java plugin, dependency management
and multi-project builds in later chapters. In this chapter we want to give you an initial idea of how
to use the Java plugin to build a Java project.

6.2. A basic Java project

Let's look at a simple example. To use the Java plugin, add the following to your build file:

Page 33 of 301

Example 6.1. Using the Java plugin
bui | d. gradl e

apply plugin: 'java

Note: The code for this example can be found at sanpl es/j ava/ qui ckstart which is in
both the binary and source distributions of Gradle.

This is all you need to define a Java project. This will apply the Java plugin to your project, which
adds a number of tasks to your project.

Gradle expects to find your production source code under sr ¢/ mai n/ j ava
and your test source code under src/test/java. In
addition, any files under src/ mai n/ resour ces will be
. : , , ié%%'@r?

included in the JAR file as resources, and any files under src/ t estfd ces

What tasks are

will be included in the classpath used to run the tests. All You can use gradl e tasks
output files are created under the bui | d directory, with the to list the tasks of a project.
JAR file ending up in the bui | d/ | i bs directory. This will let you see the tasks

that the Java plugin has
6.2.1. Building the project added to your project.

The Java plugin adds quite a few tasks to your project.

However, there are only a handful of tasks that you will

need to use to build the project. The most commonly used task is the bui | d task, which does a full
build of the project. When you run gr adl e bui | d, Gradle will compile and test your code, and
create a JAR file containing your main classes and resources:

Example 6.2. Building a Java project

Output of gradl e build

> gradle build
:conpi | eJava

. processResour ces
:cl asses

Djar

:assenbl e
:conpi | eTest Java
. processTest Resour ces
:testd asses
(test

: check

cbuild

BU LD SUCCESSFUL

Total tine: 1 secs

Some other useful tasks are:

clean

Page 34 of 301

Deletes the bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more
artifacts to this task. For example, if you use the War plugin, this task will also build the WAR
file for your project.

check
Compiles and tests your code. Other plugins add more checks to this task. For example, if
you use the Code-quality plugin, this task will also run Checkstyle against your source code.

6.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these
JAR files in the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR
files, are located in a repository. A repository can be used for fetching the dependencies of a
project, or for publishing the artifacts of a project, or both. For this example, we will use the public
Maven repository:

Example 6.3. Adding Maven repository
bui | d. gradl e

repositories {
mavenCentral ()
}

Let's add some dependencies. Here, we will declare that our production classes have a
compile-time dependency on commons collections, and that our test classes have a compile-time
dependency on junit;

Example 6.4. Adding dependencies
buil d. gradl e

dependenci es {

conpi |l e group: 'commons-col |l ections', nane: 'conmons-coll ections', version:
testConpile group: 'junit', name: 'junit', version: '4.+

You can find out more in Chapter 35, Dependency Management.

6.2.3. Customising the project

The Java plugin adds a number of properties to your project. These properties have default values
which are usually sufficient to get started. It's easy to change these values if they don't suit. Let's
look at this for our sample. Here we will specify the version number for our Java project, along with
the Java version our source is written in. We also add some attributes to the JAR manifest.

Page 35 of 301

Example 6.5. Customization of MANIFEST.MF

bui | d. gradl e
sourceConpatibility = 1.5
version = '1.0
jar {
mani f est {
attributes 'Inplenentation-Title': 'Gadle Quickstart', 'Inplenentatiol
}
}

The tasks which the Java plugin adds are regular tasks,
exactly the same as if they were declared in the build file.

This means you can use any of the mechanisms shown in What properties are

earlier chapters to customise these tasks. For example, available?

you can set the properties of a task, add behaviour to a You can use gr adl e properti
task, change the dependencies of a task, or replace a task to list the properties of a
entirely. In our sample, we will configure the t est task, project. This will allow you to
which is of type Test , to add a system property when the see the properties added by
tests are executed: the Java plugin, and their

default values.
Example 6.6. Adding a test system property

bui | d. gradl e

test {
systenProperties 'property': 'value
}

6.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where
to publish the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our
sample, we will publish to a local directory. You can also publish to a remote location, or multiple
locations.

Example 6.7. Publishing the JAR file

bui I d. gradl e

upl oadAr chi ves {
repositories {
flatDir(dirs: file('repos'))
}

To publish the JAR file, run gr adl e upl oadAr chi ves.

6.2.5. Creating an Eclipse project
To import your project into Eclipse, you need to add another plugin to your build file:

Page 36 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.testing.Test.html

Example 6.8. Eclipse plugin
bui | d. gradl e

apply plugin: 'eclipse

Now execute gr adl e ecl i pse command to generate Eclipse project files. More on Eclipse task

can be found in Chapter 29, The Eclipse Plugin.

6.2.6. Summary
Here's the complete build file for our sample:

Example 6.9. Java example - complete build file

bui I d. gradl e

apply plugin: 'java
apply plugin: 'eclipse

sourceConpatibility = 1.5
version = '1.0
jar {

mani f est {

attributes 'Inplenentation-Title': 'Gadle Quickstart',

}
}

repositories {
mavenCent ral ()
}

dependenci es {

"I mpl enent ati ol

conpi l e group: 'commons-col |l ections', nanme: 'conmons-collections', version

testConpile group: 'junit', name: 'junit', version: '4.+
}
test {

systenProperties 'property': 'val ue
}

upl oadAr chi ves {
repositories {
flatDir(dirs: file('repos'))
}

6.3. Multi-project Java build

Now let's look at a typical multi-project build. Below is the layout for the project:

Page 37 of 301

Example 6.10. Multi-project build - hierarchical layout

Build layout

mul ti project/
api /
servi ces/ webservi ce/
shar ed/

Note: The code for this example can be found at sanpl es/j ava/ nul ti proj ect whichis in
both the binary and source distributions of Gradle.

Here we have three projects. Project api produces a JAR file which is shipped to the client to
provide them a Java client for your XML webservice. Project webser vi ce is a webapp which
returns XML. Project shar ed contains code used both by api and webser vi ce.

6.3.1. Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root
directory of the source tree, and specifies which projects to include in the build. It must be called se
. For this example, we are using a simple hierarchical layout. Here is the corresponding settings
file:

Example 6.11. Multi-project build - settings.gradle file

settings.gradle

i ncl ude "shared", "api", "services:webservice", "services:shared"

You can find out more about the settings file in Chapter 40, Multi-project Builds.

6.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our
sample, we will define this common configuration in the root project, using a technique called

configuration injection. Here, the root project is like a container and the subpr oj ect s method
iterates over the elements of this container - the projects in this instance - and injects the specified
configuration. This way we can easily define the manifest content for all archives, and some
common dependencies:

Page 38 of 301

Example 6.12. Multi-project build - common configuration

bui | d. gradl e

subproj ects {
apply plugin: 'java
apply plugin: 'eclipse-wp

repositories {

mavenCentral ()
}

dependenci es {
testConpile "junit:junit:4.8. 2

}
version = '1.0
jar {
mani fest.attri butes provider: 'gradle'
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and
configuration properties we have seen in the previous section are available in each subproject. So,
you can compile, test, and JAR all the projects by running gr adl e bui | d from the root project

directory.

6.3.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file
of one project is used to compile another project. In the api build file we will add a dependency on
the JAR produced by the shar ed project. Due to this dependency, Gradle will ensure that project s
always gets built before project api .

Example 6.13. Multi-project build - dependencies between projects

api / buil d. gradl e

dependenci es {
conpil e project(':shared")

}

See Section 40.7.1, “Disabling the build of dependency projects” for how to disable this
functionality.

6.3.4. Creating a distribution
We also add a distribution, that gets shipped to the client:

Page 39 of 301

Example 6.14. Multi-project build - distribution file

api / buil d. gradl e

task dist(type: Zip) {
dependsOn spi Jar
from'src/dist'
into('libs") {
from spi Jar. archi vePat h
fromconfigurations.runtime

6.4. Summary

In this chapter, you have seen how to do some of the things you commonly need to build a Java
based project. This chapter is not exhaustive, and there are many other things you can do with
Java projects in Gradle. These are dealt with in later chapters. Also, a lot of the behaviour you
have seen in this chapter is configurable. For example, you can change where Gradle looks Java
source files, or add extra tasks, or you can change what any task actually does. Again, you will see
how this works in later chapters.

You can find out more about the Java plugin in Chapter 20, The Java Plugin, and you can find
more sample Java projects in the sanpl es/ j ava directory in the Gradle distribution.

Page 40 of 301

7
Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add
Groovy compilation capabilties to your project. Your project can contain Groovy source code, Java
source code, or a mix of the two. In every other respect, a Groovy project is identical to a Java
project, which we have already seen in Chapter 6, Java Quickstart.

7.1. A basic Groovy project

Let's look at an example. To use the Groovy plugin, add the following to your build file:

Example 7.1. Groovy plugin
bui | d. gradl e

apply plugin: 'groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckst art which is in
both the binary and source distributions of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy
plugin extends the conpi | e task to look for source files in directory sr ¢/ mai n/ gr oovy, and the c
task to look for test source files in directorysrc/test/ groovy. The compile tasks use joint
compilation for these directories, which means they can contain a mixture of java and groovy
source files.

To use the groovy compilation tasks, you must also declare the Groovy version to use and where
to find the Groovy libraries. You do this by adding a dependency to the gr oovy configuration. The ¢
configuration inherits this dependency, so the groovy libraries will be included in classpath when
compiling Groovy and Java source. For our sample, we will use Groovy 1.6.0 from the public
Maven repository:

Page 41 of 301

Example 7.2. Dependency on Groovy 1.6.0
bui | d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
groovy group: 'org.codehaus.groovy', narme:

}

Here is our complete build file:

Example 7.3. Groovy example - complete build file

bui | d. gradl e

apply plugin: 'eclipse
apply plugin: '"groovy

repositories {
mavenCentral ()

}

dependenci es {
groovy group: 'org.codehaus.groovy', nane:
test Conpile group: 'junit', name: 'junit’

‘groovy', version:

'groovy', version:

version: '4.8.2'

Running gr adl e bui | d will compile, test and JAR your project.

7.2. Summary

"1.7.10

"1.7.10

This chapter describes a very simple Groovy project. Usually, a real project will require more than
this. Because a Groovy project is a Java project, whatever you can do with a Java project, you can

also do with a Groovy project.

You can find out more about the Groovy plugin in Chapter 21, The Groovy Plugin, and you can find

more sample Groovy projects in the sanpl es/ gr oovy directory in the Gradle distribution.

Page 42 of 301

8

Web Application Quickstart

This chapter is a work in progress.

This chapter introduces some of the Gradle's support for web applications. Gradle provides two
plugins for web application developement: the War plugin and the Jetty plugin. The War plugin
extends the Java plugin to build a WAR file for your project. The Jetty plugin extends the War
plugin to allow you to deploy your web application to an embedded Jetty web container.

8.1. Building a WAR file
To build a WAR file, you apply the War plugin to your project:

Example 8.1. War plugin
buil d. gradl e

apply plugin: 'war'

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckst art
which is in both the binary and source distributions of Gradle.

This also applies the Java plugin to your project. Running gr adl e bui | d will compile, test and
WAR vyour project. Gradle will look for the source files to include in the WAR file in sr ¢/ mai n/ webz
. Your compiled classes, and their runtime dependencies are also included in the WAR file.

8.2. Running your web application Groovy web applications
To run your web application, you apply the Jetty plugin to You can combine multiple
your project: plugins in a single project, so

you can use the War and
Groovy plugins together to
build a Groovy based web

Page 43 of 301

Example 8.2. Running web application with Jetty plugin application. The appropriate
groovy libraries will be added

bui | d. gradl e)
to the WAR file for you.

apply plugin: '"jetty’

This also applies the War plugin to your project. Running gr adl e j ettyRun will run your web
application in an embedded Jetty web container. Running gr adl e j ettyRunWar will build the
WAR file, and then run it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and reload.

8.3. Summary

You can find out more about the War plugin in Chapter 23, The War Plugin and the Jetty plugin in
Chapter 25, The Jetty Plugin. You can find more sample Java projects in the sanpl es/ webAppl i ¢
directory in the Gradle distribution.

Page 44 of 301

This chapter is currently under construction.

9

Artifact Basics

For all the details of artifact handling see Chapter 36, Artifact Management.

This chapter introduces some of the basics of artifact handling in Gradle.

9.1. Artifact configurations

Artifacts are grouped into configurations. A configuration is simply a set of files with a name. You
can use them to declare the external dependencies your project has, or to declare the artifacts

which your project publishes.
To define a configuration:

Example 9.1. Definition of a configuration

bui I d. gradl e

configurations {
compi l e
}

To access a configuration:

Example 9.2. Accessing a configuration

bui I d. gradl e

println configurations.conpile.name
println configurations[' conpile'].nane

To configure a configuration:

Page 45 of 301

Example 9.3. Configuration of a configuration

bui | d. gradl e
configurations {
conpile {
description = 'conpile classpath
transitive = true
}
runtinme {
ext endsFrom conpi | e
}
}
configurations.conpile {
description = 'conpile classpath
}

9.2. Repositories

Artifacts are stored in repositories.
To use maven central repository:

Example 9.4. Usage of Maven central repository

buil d. gradl e
repositories {

mavenCentral ()

}

To use a local directory:

Example 9.5. Usage of a local directory

buil d. gradl e

repositories {
flatDir name: '|ocal Repository', dirs: '"lib'
}

You can also use any lvy resolver. You can have multiple repositories.
To access a repository:

Example 9.6. Accessing a repository

bui l d. gradl e

println repositories.|ocal Repository. nane
println repositories['|ocal Repository'].nane

Page 46 of 301

To configure a repository:

Example 9.7. Configuration of a repository

buil d. gradl e
repositories {

| ocal Repository {
addArtifactPattern(file('lib").absolutePath + '/[nane]/[revision]/[nam
}
}

repositories.local Repository {
addArtifactPattern(file('|ib").absolutePath + '/[nane]/[revision]/[nanme]-][I
}

9.3. External dependencies

To define an external dependency, you add a dependency to a configuration:

Example 9.8. Definition of an external dependency

bui I d. gradl e

configurations {
compi |l e
}

dependenci es {
conpi |l e group: 'commons-col |l ections', nanme: 'conmnons-collections', version

gr oup and ver si on are optional
TBD - configuring an external dependency
To use the external dependencies of a configuration:

Example 9.9. Usage of external dependency of a configuration

buil d. gradl e

task listJdars << {
configurations.conpile.each { File file -> println file.name }

}

Outputofgradle -q listJdars

> gradle -q listJars
comons-col | ections-3. 2.jar

9.4. Artifact publishing
TBD

Page 47 of 301

9.5. API

Configurations are contained in a Confi gur ati onCont ai ner . Each configuration implements
the Conf i gurati on.

Page 48 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.artifacts.Configuration.html

10

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the gradle
command, which you have already seen in action in previous chapters.

10.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line.
For example, the command gr adl e conpi |l e test will execute the conpi | e and t est tasks.
Gradle will execute the tasks in the order that they are listed on the command-line, and will also
execute the dependencies for each task. Each task is executed once only, regardless of how it
came to be included in the build: whether it was specified on the command-line, or it a dependency
of another task, or both. Let's look at an example.

Below four tasks are defined. Both di st and t est depend on the conpi | e task. Running gr adl e
for this build script results in the conpi | e task being executed only once.

Figure 10.1. Task dependencies

complle é{ compileTest]j;l e ;l dist

Page 49 of 301

Example 10.1. Executing multiple tasks

bui | d. gradl e
task conpile << {

println 'conpiling source

}

task conpil eTest (dependsOn: conpile) << {
println '*compiling unit tests
}

task test(dependsOn: [conpile, conpileTest]) << {
println 'running unit tests
}

task di st (dependsOn: [conpile, test]) << {
println "building the distribution
}

Output of gradl e di st test

> gradl e dist test

.conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
itest

running unit tests

- di st

bui l ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Because each task is executed once only, executing gr adl e test test is exactly the same as
executing gradl e test.

10.2. Excluding tasks

You can exclude a task from being executed using the - x command-line option and providing the
name of the task to exclude. Let's try this with the sample build file above.

Page 50 of 301

Example 10.2. Excluding tasks

Output of gradl e di st -x test

> gradle dist -x test

.conpile
conpi I i ng source
- di st

bui l ding the distribution
BUI LD SUCCESSFUL

Total tine: 1 secs

You can see from the output of this example, that the t est task is not executed, even though it is
a dependency of the di st task. You will also notice that the t est task's dependencies, such as cc
are not executed either. Those dependencies of t est that are required by another task, such as cc
, are still executed.

10.3. Task name abbreviation

When you specify tasks on the command-line, you don't have to provide the full name of the task.
You only need to provide enough of the task name to uniquely identify the task. For example, in the
sample build above, you can execute task di st by running gr adl e d:

Example 10.3. Abbreviated task name

Output of gr adl e di

> gradle d

.conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
itest

running unit tests

- di st

bui l ding the distribution
BU LD SUCCESSFUL

Total tinme: 1 secs

You can also abbreviate each word in a camel case task name. For example, you can execute task
conpi | eTest by running gradl e conpTest orevengradle cT

Page 51 of 301

Example 10.4. Abbreviated camel case task name

Outputof gradl e cT

> gradle cT

.conpile
conpi I i ng source
:conpi | eTest

conpiling unit tests
BU LD SUCCESSFUL

Total tine: 1 secs

You can also use these abbreviations with the - x command-line option.

10.4. Selecting which build to execute

When you run the gradle command, it looks for a build file in the current directory. You can use the
- b option to select another build file. For example:

Example 10.5. Selecting the project using a build file
subdi r/ nyproj ect. gradl e

task hello << {
println "using build file '$buildFile.nane' in '$buil dFile.parentFile.nanme
}

Outputofgradl e -q -b subdir/nmyproject.gradle hello

> gradle -q -b subdir/nyproject.gradle hello
using build file "nmyproject.gradle' in 'subdir".

Alternatively, you can use the - p option to specify the project directory to use:

Example 10.6. Selecting the project using project directory

Outputofgradle -gq -p subdir hello

> gradle -q -p subdir hello
using build file "build.gradle' in '"subdir'.

10.5. Obtaining information about your build
Gradle provides several built-in tasks which show particular details of your build. This can be useful
for understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks
to your project which will generate these reports.

Page 52 of 301

10.5.1. Listing projects

Running gr adl e proj ect s gives you a list of the sub-projects of the selected project, displayed
in a hierarchy. Here is an example:

Example 10.7. Obtaining information about projects

Outputofgradl e -q projects

> gradle -q projects

Root project 'projectReports
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Wb application inplenentation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a
project by setting the descri pti on property:

Example 10.8. Providing a description for a project
bui l d. gradl e

description = 'The shared APl for the application'

10.5.2. Listing tasks

Running gradl e t asks gives you a list of the main tasks of the selected project. This report
shows the default tasks for the project, if any, and a description for each task. Below is an example
of this report:

Page 53 of 301

Example 10.9. Obtaining information about tasks

Output of gradl e -q tasks

> gradle -q tasks

Default tasks: dists

Buil d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution
libs - Builds the JAR

Hel p tasks

dependenci es - Displays the dependenci es of root project 'projectReports'.
help - D splays a hel p nessage

projects - Displays the sub-projects of root project 'projectReports'.
properties - Displays the properties of root project 'projectReports'.
tasks - Displays the tasks in root project 'projectReports'.

To see all tasks and nore detail, run with --all.

By default, this report shows only those tasks which have been assigned to a task group. You can
do this by setting the gr oup property for the task. You can also set the descri pti on property, to
provide a description to be included in the report.

Example 10.10. Changing the content of the task report

bui l d. gradl e
dists {
description = 'Builds the distribution'

group = "build

You can obtain more information in the task listing using the - - al | option. With this option, the
task report lists all tasks in the project, grouped by main task, and the dependencies for each task.
Here is an example:

Page 54 of 301

Example 10.11. Obtaining more information about tasks

Output of gradl e -qgq tasks --all

> gradle -q tasks --al

Default tasks: dists

Bui |l d tasks
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: cl ean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:!libs]
docs - Builds the docunentation
api:libs - Builds the JAR
api :conmpile - Conpiles the source files
webapp: libs - Builds the JAR [api:libs]
webapp: conpile - Conpiles the source files

Hel p tasks

dependenci es - Displays the dependenci es of root project
hel p - Displays a hel p nessage

' proj ect Reports'.

projects - Displays the sub-projects of root project 'projectReports'
properties - Displays the properties of root project 'projectReports’

tasks - Displays the tasks in root project 'projectReports'

10.5.3. Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project,
broken down by configuration. For each configuration, the direct and transitive dependencies of

that configuration are shown in a tree. Below is an example of this report:

Page 55 of 301

Example 10.12. Obtaining information about dependencies

Output of gradl e -gq dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

compi |l e
\--- org. codehaus. groovy: groovy-all:1.7.10 [defaul t]

Proj ect :webapp - The Web application inplenmentation

conpi l e

+--- projectReports:api:1l. 0- SNAPSHOT [conpil €]

| \--- org.codehaus. groovy: groovy-all:1.7.10 [default]
\--- conmmons-io: conmons-io: 1.2 [defaul t]

10.5.4. Listing project properties

Running gr adl e properti es gives you a list of the properties of the selected project. This is a
snippet from the output:

Example 10.13. Information about properties

Output of gradl e -q api: properties

> gradle -q api:properties

addi tional Properties: {}

all: [task ':api:clean', task ':api:conpile', task ':api:libs']

all projects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der@2345

ant Bui | der Factory: org.gradle.api.internal.project.DefaultAntBuilderFactory@?2:
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er @2345
asDynami cQbj ect: org. gradl e. api.internal.Dynani cObj ect Hel per @ 2345

asMap: {clean=task ':api:clean', conpile=task ':api:conmpile', libs=task ':api:l
bui I dDi r: /hone/ user/ gradl e/ sanpl es/ usergui de/tutorial /projectReports/api/buil:«
bui | dDi r Nanme: build

bui | dFi |l e: [/ hore/ user/ gradl e/ sanpl es/ user gui de/t utori al / proj ect Reports/api/buil

Page 56 of 301

10.5.5. Profiling a build

The - - prof i | e command line option will record some useful timing information while your build is
running and write a report to the bui | d/ report s/ profil e directory. The report will be named
using the time when the build was run.

This report lists summary times and details for both the configuration phase and task execution.
The times for configuration and task execution are sorted with the most expensive operations first.
The task execution results also indicate if any tasks were skipped (and the reason) or if tasks that
were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui |
directory.

Profiled with tasks: -xtest build

Summary Configuration Task Exec
Total Build Time 2:01.164 | |: 2.804 | |:docs
Startup 0.313| |:docs 0.576 :docs:userguideSingleHtml
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyleApi
Configuring Projects 3208 | [mi 0.036 :docs:userguideStyleSheets
Total Task Execution 1:52.671 | |:openApi 0.035 :docs:groovydoc
‘maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
wrapper 0.022 :docs:userguideFragmentSrc
eclipse 0.021 :docs:distDocs
lidea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguide X html
launcher 0.020 :docs:userguideHtml
:antlr 0.017 :docs:userguideDocbook
0sgi 0.014 :docs:remoteUserguideDochool
jetty 0.014 :docs:samplesDocbhook
:scala 0.012 :docs:docs
:docs:userguide
‘core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain
R i T WU VIR G ST
10.6. Dry Run

Sometimes you are interested in which tasks are executed in which order for a given set of tasks
specified on the command line, but you don't want the tasks to be executed. You can use the - ir
option for this. For example gradl e -m cl ean conpi | e shows you all tasks to be executed as
part of the cl ean and conpi | e tasks. This is complementary to the t asks task, which shows you
the tasks which are available for execution.

Page 57 of 301

10.7. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line.
You can find out more about the gradle command in Appendix C, Gradle Command Line.

Page 58 of 301

11

Using the Gradle Graphical User
Interface

In addition to supporting a traditional command line interface, gradle offers a graphical user
interface. This is a stand alone user interface that can be launched with the --gui option.

Example 11.1. Launching the GUI

gradl e --gui

Note that this command blocks until the gradle GUI is closed. Under *nix it is probably preferable to
run this as a background task (gradle --gui&)

If you run this from your gradle project working directory, you should see a tree of tasks.

Page 59 of 301

Figure 11.1. GUI Task Tree

Gradle : E|E|

Task Tree |Fa'u'nrites Command Line || Setup

[Refresh] [Executz | [Filter] [+] Show Description

E-multiproject ”
EPEW 1
--ser'-.-'iu:es

[-shared

~build Builds and tests this project

----- uilds and tests this project and all projects that depend on i

~buildMeeded Builds and tests this project and all projects it depends on

~gean Deletes the build directory.

~compile Compiles the main Java source,

-~ compileTest Compiles the test Java source. [%

~dists Builds all Jar, War, Zip, and Tar archives

—gclipse Generates an Edlipse .project and . casspath file.

—gclipseClean Deletes the Edlipse .project and .classpath files.

—eclipseCp Generates an Edipse .dasspath file.

—eclipseProject Generates an Edipse .project file.

—gclipseWitpModule Generates the Edlipse Wip files.

=

Execute 'shared:buildDependents’ ¥

Completed successfully at 3:17:05 PM

[

:services:webservice:processBesources
:gervices:webservice:jar SEIEBEED
api-uploadbDefaultInternal
:gervices:webservice :war
:services:webservice:liks
:Zervices:webservice:dists
:gervices:webservice::compileTest -
:Zervices:webservice:processTestRBesources

:Zervices:webservice:test

< | b

54

It is preferable to run this command from your gradle project directory so that the settings of the Ul
will be stored in your project directory. However, you can run it then change the working directory
via the Setup tab in the UI.

The Ul displays 4 tabs along the top and an output window along the bottom.

11.1. Task Tree

The Task Tree shows a hierarchical display of all projects and their tasks. Double clicking a task
executes it.

There is also a filter so that uncommon tasks can be hidden. You can toggle the filter via the Filter
button. Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks
show up in red. Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 60 of 301

® Execute ignoring dependencies. This does not require dependent projects to be rebuilt
(same as the -a option).

Add tasks to the favorites (see Favorites tab)

Hide the selected tasks. This adds them to the filter.

Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have
.gradle files associated in your OS.

11.2. Favorites

The Favorites tab is place to store commonly-executed commands. These can be complex
commands (anything that's legal to gradle) and you can provide them with a display name. This is
useful for creating, say, a custom build command that explicitly skips tests, documentation, and
samples that you could call "fast build".

You can reorder favorites to your liking and even export them to disk so they can imported by
others. If you edit them, you are given options to "Always Show Live Output.” This only applies if
you have 'Only Show Output When Errors Occur'. This override always forces the output to be
shown.

11.3. Command Line

The Command Line tab is place to execute a single gradle command directly. Just enter whatever
you would normally enter after 'gradle’ on the command line. This also provides a place to try out
commands before adding them to favorites.

11.4. Setup

The Setup tab allows configuration of some general settings.

Page 61 of 301

Figure 11.2. GUI Setup

Gradle

B=1e3

Task Tree | Favorites | Command Linel Setup |

Current Directory
|C:\development‘l,samples‘l,jaua‘lmulﬁpmject | [Browse...

Log Level
| Debug w

Stack Trace Output
{¥) Exceptions Only
() Standard Stack Trace
(" Full Stack Trace

[] ©nly Show Output When Errors Occur

[] Use Custom Gradle Executor

Execute 'shared:buildDependents’ ¥

Completed successfully at 3:23:25 PM

zervices:webservice:test

[

gervices:webservice:build
:shared:buildDependents

BUILD SUCCESSFUL
Totel time: ©.453 secs

Completed Successafully

£ >

=]

® Current Directory

Defines the root directory of your gradle project (typically where build.gradle is located).

® Stack Trace Output

This determines how much information to write out stack traces when errors occur. Note: if

you specify a stack trace level on either the Command Line or Favorites tab, it will override
this stack trace level.

¢ Only Show Output When Errors Occur

Enabling this option hides any output when a task is executed unless the build fails.

® Use Custom Gradle Executor - Advanced feature

This provides you with an alternate way to launch gradle commands. This is useful if your

Page 62 of 301

project requires some extra setup that is done inside another batch file or shell script (such
as specifying an init script).

Page 63 of 301

12

Tutorial - 'This and That'

12.1. Directory creation

There is a common situation, that multiple tasks depend on the existence of a directory. Of course
you can deal with this by adding a nkdi r to the beginning of those tasks. But this is kind of
bloated. There is a better solution (works only if the tasks that need the directory have a

dependsOn relationship):

Example 12.1. Directory creation with mkdir
bui I d. gradl e

classesDir = new File(' build/classes")
task resources << {
classesDir. nkdirs()

}

task conpil e(dependsOn: 'resources') << {
if (classesDir.isDirectory()) {
println 'The class directory exists. | can operate

}

Output of gradl e -q conpil e

> gradle -q conpile
The class directory exists. | can operate

But Gradle offers you also Directory Tasks to deal with this.

Page 64 of 301

Example 12.2. Directory creation with Directory tasks

bui | d. gradl e

classes = dir (' build/classes")
task resources(dependsOn: classes) << {

}

t ask ot her Resour ces(dependsOn: cl asses) << {
if (classes.dir.isDirectory()) {
println 'The class directory exists. | can operate'

}

Output of gr adl e -gq ot her Resour ces

> gradl e -q ot herResources
The class directory exists. | can operate

A Directory Task is a simple task whose name is a relative path to the project dir 31 During the
execution phase the directory corresponding to this path gets created if it does not exist yet.
Another interesting thing to note in this example, is that you can also pass tasks objects to the
dependsOn declaration of a task.

12.2. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option
you can pass a system property to the JVM which runs Gradle. The - D option of the gradle
command has the same effect as the - D option of the java command.

You can also directly add properties to your project objects using properties files. You can place a ¢
file in the Gradle user home directory (defaults to USER_HOVE/ . gr adl e) or in your project
directory. For multi-project builds you can place gr adl e. properties files in any subproject
directory. The properties of the gr adl e. properti es can be accessed via the project object. The
properties file in the user's home directory has precedence over property files in the project
directories.

You can also add properties directly to your project object via the - P command line option. For
more exotic use cases you can even pass properties directly to the project object via system and
environment properties. For example if you run a build on a continuous integration server where
you have no admin rights for the machine. Your build script needs properties which values should
not be seen by others. Therefore you can't use the - P option. In this case you can add an
environment property in the project administration section (invisible to normal users). (41 1f the
environment property follows the pattern ORG_GRADLE_PROJECT_pr opert yNane=soneval ue, p
is added to your project object. If in the future CI servers support Gradle directly, they might start
Gradle via its main method. Therefore we already support the same mechanism for system
properties. The only difference is the pattern, which is or g. gr adl e. pr oj ect. propert yNane.

With the gr adl e. properti es files you can also set system properties. If a property in such a file

Page 65 of 301

has the prefix syst enPr op. the property and its value are added to the system properties,
without the prefix.

Example 12.3. Setting properties with a gradle.properties file

gradl e. properties

gradl eProperti esProp=gradl ePropertiesVal ue

syst enProperti esProp=shoul dBeOver Wi ttenBySyst enProp
envProperti esProp=shoul dBeOver Wi ttenByEnvProp

syst enPr op. syst emesyst enval ue

bui l d. gradl e

task printProps << {
println commandLi neProj ect Prop
println gradl ePropertiesProp
println systenProjectProp
println envProjectProp
println System properties['systeni]

Output of gr adl e -q - PcommandLi nePr oj ect Pr op=conmandLi nePr oj ect PropVal ue - Da

> gradl e -qg - PcommandLi nePr oj ect Pr op=commandLi nePr oj ect PropVal ue - Dorg. gradl e. |
conmandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPropertyVal ue

envPropertyVal ue

syst enVal ue

12.2.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a
variable. In case this property does not exists, an exception is thrown and the build fails. If your
build script relies on optional properties the user might set for example in a gradle.properties file,
you need to check for existence before you can access them. You can do this by using the method
hasProperty(' propertyNane') whichreturnstrue orfal se.

12.3. Accessing the web via a proxy

Setting a proxy for web access (for example for downloading dependencies) is easy. Gradle does
not need to provide special functionality for this. The JVM can be instructed to go via proxy by
setting certain system properties. You could set these system properties directly in your build script
with Syst em properties[' proxy.proxyUser'] = 'userid'. An arguably nicer way is
shown in Section 12.2, “Gradle properties and system properties”. Your gradle.properties file could
look like this:

Page 66 of 301

Example 12.4. Accessing the web via a proxy

gradl e. properties

syst enProp. http. proxyHost =www. sonehost . org

syst enProp. http. proxyPort =8080

systenProp. http. proxyUser =useri d

syst enProp. http. proxyPasswor d=passwor d

syst enProp. http. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for all possible proxy settings. One place to look are the

Properties page from the JDK docs. If anyone knows a better overview please let us know via the
mailing list.

12.4. Configuring the project using an external build script

You can configure the current project using an external build script. All of the Gradle build
language is available in the external script. You can even apply other scripts from the external
script.

Example 12.5. Configuring the project using an external build script

bui I d. gradl e

apply from 'other.gradle'

ot her.gradl e
println "configuring $project"

task hello << {
println "hello fromother script'
}

Outputofgradle -q hello
> gradle -q hello

configuring root project 'configureProjectUsingScript’
hello from other script

12.5. Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Page 67 of 301

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

Example 12.6. Configuring arbitrary objects
bui | d. gradl e

task configure << {
pos = configure(new java.text.FieldPosition(10)) {
begi nlndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos.endl ndex

Output of gradl e -q configure

> gradle -q configure
1
5

12.6. Configuring arbitrary objects using an external script

You can also configure arbitrary objects using an external script.

Example 12.7. Configuring arbitrary objects using a script

bui | d. gradl e

task configure << {
pos = new java.text. Fiel dPosition(10)

apply from 'other.gradle', to: pos
println pos. beginl ndex
println pos.endl ndex

ot her.gradl e

begi nl ndex

= 1;
endl ndex = 5;

Output of gradl e -qg configure

> gradle -q configure
1
5

Page 68 of 301

12.7. Caching

To improve responsiveness Gradle caches all compiled scripts by default. This includes all build
scripts, initialization scripts, and other scripts. The first time you run a build for a project, Gradle
creates a . gr adl e directory in which it puts the compiled script. The next time you run this build,
Gradle uses the compiled script, if the script has not changed since it was compiled. Otherwise the
script gets compiled and the new version is stored in the cache. If you run Gradle with the - C
r ebui | d option, the cached script is discarded and the script is compiled and stored in the cache.
This way you can force Gradle to rebuild the cache.

[3] The notation di r (" / sonepat h') is a convenience method for t asks. add(' somepat h', t°

[4] Teamcity or Bamboo are for example ClI servers which offer this functionality.

Page 69 of 301

13
Writing Build Scripts

This chapter looks at some of the details of writing a build script.

13.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is
based on Groovy, with some additions to make it easier to describe a build.

13.2. The Project API

In the tutorial in Chapter 6, Java Quickstart we used, for example, the appl y() method. Where
does this method come from? We said earlier that the build script defines a project in Gradle. For
each project in the build creates an instance of type Pr oj ect and associates this Pr oj ect object

with the build script. As the build script executes, it configures this Pr oj ect object:

* Any method you call in your build script, which is not
defined in the build script, is delegated to the

Pr o] ect object. Getting help writing

build scripts
® Any property you access in your build script, which is Don't forget that your build
not defined in the build script, is delegated to the script is simply Groovy code
Proj ect object. that drives the Gradle API.

And the Pr oj ect interface is
your starting point for
accessing everything in the
Gradle API. So, if you're
wondering what 'tags' are
available in your build script,
you can start with the
documentation for the

Pr oj ect interface.

Let's try this out and try to access the namne property of the
Pr oj ect object.

Page 70 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html

Example 13.1. Accessing property of the Project object

bui | d. gradl e

println nanme
println project.nane

Output of gradl e -gq check

> gradle -q check
proj ect Api
pr oj ect Api

Both printl n statements print out the same property. The first uses auto-delegation to the
Pr oj ect object, for properties not defined in the build script. The other statement uses the pr oj ec
property available to any build script, which returns the associated Pr oj ect object. Only if you
define a property or a method which has the same name as a member of the Pr oj ect object, you
need to use the pr oj ect property.

13.2.1. Standard project properties

The Proj ect object provides some standard properties, which are available in your build script.
The following table lists a few of the commonly used ones.

Table 13.1. Project Properties

Name Type Default Value

proj ect Proj ect The Pr oj ect instance

nane String The name of the project directory.

pat h String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui I dDi r File projectDir/build

group oj ect unspeci fied

ver si on oj ect unspeci fied

ant Ant Bui | der An Ant Bui | der instance

13.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scri pt . This

means that all of the properties and methods declared by the Scri pt interface are available in
your script.

Page 71 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Script.html

13.4. Some Groovy basics

Groovy provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write
your build script, and in particular, when you start to write customs plugins and tasks.

13.4.1. Groovy JDK

Groovy adds lots of useful methods to JVM classes. For example, |t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 13.2. Groovy JDK methods
bui l d. gradl e

configurations.runtine.each { File f -> println f }

Have a look at http://groovy.codehaus.org/groovy-jdk/ for more details.

13.4.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter
method.

Example 13.3. Property accessors

buil d. gradl e

println project.buildDir
println getProject().getBuildDir()

project.buildDir = '"target'
getProject().setBuildDir('target")

13.4.3. Optional parentheses on method calls
Parentheses are optional for method calls.

Example 13.4. Method call without parentheses

bui | d. gradl e
test.systenProperty 'sone.prop', 'val ue'
test.systenProperty(' sone.prop', 'value')

13.4.4. List and map literals
Groovy provides some shortcuts for defining Li st and Map instances.

Page 72 of 301

http://groovy.codehaus.org/groovy-jdk/

Example 13.5. List and map literals

bui | d. gradl e

/1 List litera
test.includes = ['org/gradle/api/**", '"org/gradle/internal/**"]

List<String> list = new ArrayList<String>()
list.add(' org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

/1 Map litera
apply plugin: 'java

Map<String, String> map = new HashMap<String, String>()
map. put (" plugin', "java')
appl y(map)

13.4.5. Closures as the last parameter in a method
The Gradle DSL uses closures in many places. You can find out more about closures here. When

the last parameter of a method is a closure, you can place the closure after the method call:

Example 13.6. Closure as method parameter

bui I d. gradl e

repositories {
println "in a closure”

repositories() { println "in a closure" }
repositories({ println "in a closure” })

13.4.6. Closure delegate

Each closure has a del egat e object, which Groovy uses to look up variable and method
references which are not local variables or parameters of the closure. Gradle uses this for
configuration closures, where the del egat e object is set to the object to be configured.

Example 13.7. Closure delegates

bui | d. gradl e

dependenci es {
assert del egate == project. dependenci es
conpile('junit:junit:4.8.2")
del egate.conpile('junit:junit:4.8.2")

Page 73 of 301

http://groovy.codehaus.org/Closures

14

More about Tasks

In the introductory tutorial (Chapter 5, Build Script Basics) you have learned how to create simple
tasks. You have also learned how to add additional behavior to these tasks later on. And you have
learned how to create dependencies between tasks. This was all about simple tasks. But Gradle
takes the concept of tasks further. Gradle supports enhanced tasks, that is, tasks which have their
own properties and methods. This is really different to what you are used to with Ant targets. Such
enhanced tasks are either provided by you or are provided by Gradle.

14.1. Defining tasks

We have already seen how to define tasks using a keyword style in Chapter 5, Build Script Basics.
There are a few variations on this style, which you may need to use in certain situations. For
example, the keyword style does not work in expressions.

Example 14.1. Defining tasks
buil d. gradl e

task(hello) << {
println "hello"

}
task(copy, type: Copy) {

from(file(srcDir"))
into(buildDr)

You can also use strings for the task names:

Page 74 of 301

Example 14.2. Defining tasks - using strings

bui | d. gradl e
task('hello') <<
{
println "hello"
}

task(' copy', type: Copy) {
from(file(' srcDir'))
i nto(buildDir)

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 14.3. Defining tasks with alternative syntax

bui | d. gradl e

tasks. add(name: 'hello") << {
println "hello"

}

t asks. add(nanme: 'copy', type: Copy) {
fromfile('srcDir'))
i nto(buildDir)

Here we add tasks to the t asks collection. Have a look at TaskCont ai ner for more variations of
the add() method.

14.2. Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure
them or use them for dependencies. There are a number of ways you can do this. Firstly, each
task is available as a property of the project, using the task name as the property name:

Example 14.4. Accessing tasks as properties
bui l d. gradl e
task hello

println hello.nanme
println project.hello.name

Tasks are also available through the t asks collection.

Page 75 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 14.5. Accessing tasks via tasks collection

bui | d. gradl e
task hello

println tasks. hello.nanme
println tasks[' hello'].nane

You can access tasks from any project using the task's path using the t asks. get ByPat h()
method. You can call the get ByPat h() method with a task name, or a relative path, or an
absolute path.

Example 14.6. Accessing tasks by path
bui l d. gradl e

project(':projectA) {
task hello

}

task hello

println tasks.getByPath('hello").path
println tasks.getByPath(':hello').path
println tasks.getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Outputofgradle -q hello

> gradle -q hello
chello

‘hello

:projectA hello
:projectA hello

Have a look at TaskCont ai ner for more options for locating tasks.

14.3. Configuring tasks

As an example, let's look at the Copy task provided by Gradle. To create a Copy task for your
build, you can declare in your build script:

Example 14.7. Creating a copy task
bui | d. gradl e

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see
Copy). The following examples show several different ways to achieve the same configuration.

Page 76 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html

Example 14.8. Configuring a task - various ways

bui | d. gradl e

Copy nyCopy = task(myCopy, type: Copy)

nmyCopy. from ' resources'

myCopy.into 'target’

nyCopy.include(' **/*. txt', "**/* xm"', "**/* properties")

This is similar to the way we would normally configure objects in Java. You have to repeat the
context (my Copy) in the configuration statement every time. This is a redundancy and not very nice
to read.

There is a more convenient way of doing this.

Example 14.9. Configuring a task - fluent interface

bui l d. gradl e

task(nyCopy, type: Copy)
.from(' resources')
.into('target’)
.include(" **/*. txt"', "**/*.xm', "**/* properties')

You might know this approach from the Hibernates Criteria Query API or JMock. Of course the API
of a task has to support this. The f rom t o and i ncl ude methods all return an object that may be
used to chain to additional configuration methods. Gradle's build-in tasks usually support this
configuration style.

But there is yet another way of configuring a task. It also preserves the context and it is arguably
the most readable. It is usually our favorite.

Example 14.10. Configuring a task - with closure

buil d. gradl e
task myCopy(type: Copy)
myCopy {
from'resources'

into 'target’
include(' **/*. txt', "**/*.xm', "**/* properties')

This works for any task. Line 3 of the example is just a shortcut for the t asks. get ByNane()
method. It is important to note that if you pass a closure to the get ByNanme() method, this closure
is applied to configure the task.

There is a slightly different ways of doing this.

Page 77 of 301

Example 14.11. Configuring a task - with configure() method

bui | d. gradl e

task myCopy(type: Copy)

my Copy. confi gure {
from(' source")
into('target")
include(" **/*. txt"', "**/*. xm', "**/* properties')

Every task has a confi gur e() method, which you can pass a closure for configuring the task.
Gradle uses this style for configuring objects in many places, not just for tasks.

You can also use a configuration closure when you define a task.

Example 14.12. Defining a task with closure

bui I d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’
include(' **/*.txt', "**/*.xm', '"**/* properties')

14.4. Adding dependencies to a task

There are several ways you can define the dependencies of a task. In Section 5.5, “Task
dependencies” you were introduced to defining dependencies using task names. Task names can
refer to tasks in the same project as the task, or to tasks in other projects. To refer to a task in
another project, you prefix the name of the task with the path of the project it belongs to. Below is

an example which adds a dependency from pr oj ect A: t askXto pr oj ect B: t askY:

Page 78 of 301

Example 14.13. Adding dependency on task from another project

bui | d. gradl e

project (' projectA) {
task taskX(dependsOn: ':projectB:taskY') << {
println '"taskX

}
}

project (' projectB) {
task taskY << {
println 'taskY

}

Output of gradl e -g taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this
example:

Example 14.14. Adding dependency using task object
bui | d. gradl e

task taskX << {
println 'taskX

}

task taskY << {
println 'taskY

}

t askX. dependsOn t askY

Output of gradl e -qg taskX

> gradle -q taskX
t askY
t askX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the
closure is passed the task whose dependencies are being calculated. The closure should return a
single Task or collection of Task objects, which are then treated as dependencies of the task. The
following example adds a dependency from t askX to all the tasks in the project whose name
starts with | i b:

Page 79 of 301

Example 14.15. Adding dependency using closure
bui | d. gradl e

task taskX << {
println 'taskX
}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }
}

task libl << {
println "1ibl
}

task lib2 << {
println "Iib2
}

task notALib << {
println "'notALi b
}

Output of gradl e -g taskX

> gradle -q taskX
libl

lib2

taskX

14.5. Adding a description to a task

You can add a description to your task. This description is for example displayed when executing g!

Example 14.16. Adding a description to a task
bui | d. gradl e

task copy(type: Copy) {
description = 'Copies the resource directory to the target directory.
from'resources'
into 'target
include(' **/*.txt', "**/*.xm"', '"**/* properties')

14.6. Replacing tasks

Sometimes you want to replace a task. For example if you want to exchange a task added by the
Java plugin with a custom task of a different type. You can achieve this with:

Page 80 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html

Example 14.17. Overwriting a task
bui | d. gradl e
task copy(type: Copy)

task copy(overwite: true) << {
printIn('l amthe new one.")

}

Output of gradl e -qg copy

> gradle -q copy
| amthe new one.

Here we replace a task of type Copy with a simple task. When creating the simple task, you have
to set the over wri t e property to true. Otherwise Gradle throws an exception, saying that a task
with such a name already exists.

14.7. Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

14.7.1. Using a predicate

You can use the onl yI f () method to attach a predicate to a task. The task's actions are only
executed if the predicate evaluates to true. You implement the predicate as a closure. The closure
is passed the task as a parameter, and should return true if the task should execute and false if the
task should be skipped. The predicate is evaluated just before the task is due to be executed.

Example 14.18. Skipping a task using a predicate
bui l d. gradl e

task hello << {
println "hello world

}

hello.onlylf { !project.hasProperty(' skipHello") }

Output of gradl e hell o - Pski pHel | o

> gradl e hello -PskipHello
:hell o SKI PPED

BU LD SUCCESSFUL

Total tine: 1 secs

Page 81 of 301

14.7.2. Using StopExecutionException

If the rules for skipping a task can't be expressed with predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues
with executing the next task.

Example 14.19. Skipping tasks with StopExecutionException
bui | d. gradl e

task conpile << {
println 'W are doing the conpile.’
}

conpi | e. doFi rst {

if (true) { throw new StopExecuti onException() }

}

task myTask(dependsOn: 'conpile') << {
println 'l am not affected'

}

Output of gradl e -gq nmyTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional
execution of the built-in actions of such a task. (2!

14.7.3. Enabling and disabling tasks

Every task has also an enabl ed flag which defaults to t r ue. Setting it to f al se prevents the
execution of any of the task’s actions.

Example 14.20. Enabling and disabling tasks
bui l d. gradl e

task di sabl eMe << {
println 'This should not be printed if the task is disabled."'

}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e disabl eMe
: di sabl eMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 82 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/StopExecutionException.html

14.8. Skipping tasks that are up-to-date

If you are using one of the tasks that come with Gradle, such as a task added by the Java plugin,
you might have noticed that Gradle will skip tasks that are up-to-date. This behaviour is also
available for your tasks, not just for built-in tasks.

14.8.1. Declaring a task's inputs and outputs

Let's have a look at an example. Here our task generates several output files from a source XML
file. Let's run it a couple of times.

Example 14.21. A generator task

bui l d. gradl e

task transform{
srcFile = file(' nountains.xm")
destDir = new File(buildDir, 'generated')
doLast {
println "Transforn ng source file."
dest Di r. nkdirs()
def mountains = new Xml Parser (). parse(srcFile)
nmount ai ns. nount ai n. each { nountain ->
def name = nountain. name[0] . text ()
def hei ght = nmountain. height[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${hei ght}\n"

Output of gradl e transform

> gradle transform
:transform
Transform ng source file.

Output of gradl e transform

> gradl e transform
:transform
Transform ng source file.

Notice that Gradle executes this task a second time, and does not skip the task even though
nothing has changed. Our example task was defined using an action closure. Gradle has no idea
what the closure does and cannot automatically figure out whether the task is up-to-date or not. To
use Gradle's up-to-date checking, you need to declare the inputs and outputs of the task.

Each task has an i nput s and out put s property, which you use to declare the inputs and outputs
of the task. Below, we have changed our example to declare that it takes the source XML file as an
input and produces output to a destination directory. Let's run it a couple of times.

Page 83 of 301

Example 14.22. Declaring the inputs and outputs of a task

bui | d. gradl e

task transform/{
srcFile = file(' nmountains.xm")
destDir = new File(buildDir, 'generated')
inputs.file srcFile
outputs.dir destDir
doLast {
println "Transformng source file."
destDir. nkdirs()
def mountains = new Xml Parser (). parse(srcFile)
nmount ai ns. nount ai n. each { nountain ->
def nanme = nountain. nane[0] . text ()
def hei ght = nountain. height[0].text()
def destFile = new File(destDir, "${nane}.txt")
destFile.text = "$nane -> ${hei ght}\n"

Output of gradl e transform

> gradle transform
:transform
Transform ng source file.

Output of gradl e transform

> gradl e transform
:transform UP- TO- DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

The task's i nput s property is of type Taskl nput s. The task's out put's property is of type
TaskQut put s.

14.8.2. How does it work?

Before a task is executed for the first time, Gradle takes a shapshot of the inputs. This snapshot
contains the set of input files and a hash of the contents of each file. Gradle then executes the
task. If the task completes successfully, Gradle takes a snapshot of the outputs. This snapshot
contains the set of output files and a hash of the contents of each file. Gradle takes note of any
files created, changed or deleted in the output directories of the task. Gradle persists both
snapshots for next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and
outputs. If the new snapshots are the same as the previous snapshots, Gradle assumes that the
outputs are up to date and skips the task. If they are not the same, Gradle executes the task.
Gradle persists both snapshots for next time the task is executed.

Page 84 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskOutputs.html

14.9. Task rules

Sometimes you want to have a task which behavior depends on a large or infinite number value
range of parameters. A very nice and expressive way to provide such tasks are task rules:

Example 14.23. Task rule
buil d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskName ->
if (taskName.startsWth("ping")) {
task(taskNane) << {
println "Pinging: " + (taskNane - 'ping')
}

Output of gradl e -q pi ngServerl

> gradl e -q pingServer1
Pi ngi ng: Serverl

The String parameter is used as a description for the rule. This description is shown when running
for example gr adl e t asks.

Rules not just work for calling tasks from the command line. You can also create dependsOn
relations on rule based tasks:

Example 14.24. Dependency on rule based tasks
bui l d. gradl e
tasks. addRul e("Pattern: ping<lD>") { String taskNanme ->
if (taskNanme.startsWth("ping")) {

task(taskNane) << {
println "Pinging: " + (taskNane - 'ping')
}

}

task groupPing {
dependsOn pi ngServerl, pingServer?2
}

Output of gradl e -qg groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl
Pi ngi ng: Server?2

Page 85 of 301

14.10. Summary

If you are coming from Ant, such an enhanced Gradle task as Copy looks like a mixture between
an Ant target and an Ant task. And this is actually the case. The separation that Ant does between
tasks and targets is not done by Gradle. The simple Gradle tasks are like Ant's targets and the
enhanced Gradle tasks also include the Ant task aspects. All of Gradle's tasks share a common
API and you can create dependencies between them. Such a task might be nicer to configure than
an Ant task. It makes full use of the type system, is more expressive and easier to maintain.

[5] You might be wondering why there is neither an import for the St opExecut i onExcepti on
nor do we access it via its fully qualified name. The reason is, that Gradle adds a set of default
imports to your script. These imports are customizable (see Appendix D, Existing IDE Support and
how to cope without it).

Page 86 of 301

15

Working With Files

Most builds work with files. Gradle adds some concepts and APIs to help you achieve this.

15.1. Locating files

You can locate a file relative to the project directory using the Proj ect . fi |l e() method.

Example 15.1. Locating files

bui I d. gradl e

File configFile = file(' src/config.xm")

configFile = file(configFile.absol ut ePat h)

configFile = file(new File('src/config.xm"))

You can pass any object to the fil e() method, and it will attempt to convert the value to an
absolute Fi | e object. Usually, you would pass it a String or Fi |l e instance. The supplied
object's t oSt ri ng() value is used as the file path. If this path is an absolute path, it is used to
construct a Fi | e instance. Otherwise, a Fi | e instance is constructed by prepending the project
directory path to the supplied path. The fi | e() method also understands URLs, suchasfile:/s

Using this method is a useful way to convert some user provided value into an absolute Fi | e. Itis
preferable to using new Fil e(sonmePath), as fil e() always evaluates the supplied path
relative to the project directory, which is fixed, rather than the current working directory, which can
change depending on how the user runs Gradle.

Page 87 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

15.2. File collections

A file collection is simply a set of files. It is represented by the Fi | eCol | ect i on interface. Many
objects in the Gradle API implement this interface. For example, dependency configurations
implement Fi | eCol | ecti on.

One way to obtain a Fi | eCol | ecti on instance is to use the Proj ect.fil es() method. You
can pass this method any number of objects, which are then converted into a set of Fi | e objects.
The fil es() method accepts any type of object as its parameters. These are evaluated relative
to the project directory, as for the fi | e() method, described in Section 15.1, “Locating files”. You
can also pass collections, iterables, maps and arrays to the fi | es() method. These are flattened
and the contents converted to Fi | e instances.

Example 15.2. Creating a file collection

bui I d. gradl e

Fil eColl ection collection = files('src/filel.txt', new File('src/file2.txt"), |

A file collection is iterable, and can be converted to a number of other types using the as operator.
You can also add 2 file collections together using the + operator, or subtract one file collection from
another using the - operator. Here are some examples of what you can do with a file collection.

Example 15.3. Using a file collection

bui | d. gradl e

coll ection.each {File file ->
println file.nane

}

Set set = collection.files

Set set2 = collection as Set

List list = collection as List
String path = coll ection. asPath
File file = collection.singleFile
File file2 = collection as File

def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can also pass the fil es() method a closure or a Cal | abl e instance. This is called when
the contents of the collection are queried, and its return value is converted to a set of Fil e
instances. The return value can be an object of any of the types supported by the fil es()
method. This is a simple way to 'implement’ the Fi | eCol | ect i on interface.

Page 88 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object...)

Example 15.4. Implementing a file collection

bui | d. gradl e

task list << {
File srcDir

collection = files { srcDir.listFiles() }

srchDir = file('src")
println "Contents of $srcDir.nanme"
collection.collect { relativePath(it) }.sort().each { println it }

srchir = file('src2")
println "Contents of $srcDir.nanme"
collection.collect { relativePath(it) }.sort().each { println it }

Outputofgradle -q i st

> gradle -q |ist
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl
src2/dir2

It is important to note that the content of a file collection is evaluated lazily, when it is needed. This
means you can, for example, create a Fi |l eCol | ecti on that represents files which will be
created in the future by, say, some task.

The fil es() method also accepts Fi | eCol | ecti on instances. These are flattened and the
contents included in the file collection.

15.3. File trees

A file tree is a collection of files arranged in a hierarchy. For example, a file tree might represent a
interface extends Fi | eCol | ecti on, so you can treat a file tree exactly the same way as you
would a file collection. Several objects in Gradle implement the Fi | eTr ee interface, such as
source sets.

One way to obtain a Fi | eTr ee instance is to use the Project.fil eTree() method. This
creates a Fi | eTr ee defined with a base directory, and optionally some Ant-style include and
exclude patterns.

Page 89 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Example 15.5. Creating a file tree

bui l d. gradl e

/] Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/main")

/1 Add include and exclude patterns to the tree

tree
tree

.include '**/* java
.exclude ' **/ Abstract*'

/]l Create a tree using path

tree

= fileTree('src').include('**/*.java")

/[l Create a tree using closure

tree

}

= fileTree {

from'src'

include '**/* java'

/]l Create a tree using a map

tree
tree
tree

= fileTree(dir: '"src', include: '**/* java')
= fileTree(dir: "src', includes: ['**/*.]ava'
= fileTree(dir: '"src', include: '**/* java', exclude:

xx)k xm '])
'xE[*testr]*r")

You use a file tree in the same way you use a file collection. You can also visit the contents of the
tree, and select a sub-tree using Ant-style patterns:

Example 15.6. Using a file tree

buil d. gradl e

/] lterate over the contents of a tree

tree

}

.each {File file ->
println file

/[l Filter a tree
FileTree filtered = tree. matching {

}

i ncl ude 'org/gradle/api/**'

/1 Add trees together
FileTree sum= tree + fileTree(dir: 'src/test')

[l Visit the elenents of the tree

tree

}

.visit {element ->
println "$elenent.rel ativePath => $el enent.file"

Page 90 of 301

15.4. Using the contents of an archive as afile tree

You can use the contents of an archive, such as a ZIP or TAR file, as a file tree. You do this using
the Proj ect. zi pTree() and Proj ect .t ar Tr ee() methods. These methods returna Fi | eTr e
instance which you can use like any other file tree or file collection. For example, you can use it to
expand the archive by copying the contents, or to merge some archives into another.

Example 15.7. Using an archive as afile tree

bui I d. gradl e

FileTree zip = zipTree(' soneFile.zip")

FileTree tar tarTree(' soneFile.tar')

15.5. Specifying a set of input files

Many objects in Gradle have properties which accept a set of input files. For example, the
Conpi | e task has a sour ce property, which defines the source files to compile. You can set the

in above. This means you can set the property using, for example, a Fi | e, St ri ng, collection,
Fi | eCol | ecti on or even a closure. Here are some examples:

Page 91 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.Compile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.Compile.html

Example 15.8. Specifying a set of files
bui | d. gradl e

/1l Use a File object to specify the source directory

conpile {
source = file('src/main/java')

}
/1l Use a String path to specify the source directory
conpil e {
source = 'src/main/java
}
/'l Use a collection to specify nultiple source directories
compil e {
source = ['src/main/java', '../shared/java']
}
/1l Use a FileCollection (or FileTree in this case) to specify the source files
conpile {
source = fileTree(dir: 'src/nmain/java').mtching { include 'org/gradle/api/
}
/1 Using a closure to specify the source files
conpil e {
source = {
/'l Use the contents of each zip file in the src dir
file("src').listFiles().findAl'l {it.nane.endsWth('.zip')}.collect { z
}
}

Usually, there is a method with the same name as the property, which appends to the set of files.
Again, this method accepts any of the types supported by the files() method.

Example 15.9. Specifying a set of files

buil d. gradl e
conpile {
/1 Add sone source directories use String paths
source 'src/main/java', 'src/nain/groovy

/1l Add a source directory using a File object
source file('../shared/java')

/1 Add sone source directories using a closure
source { file('src/test/").listFiles() }

15.6. Copying files

You can use the Copy task to copy files. The copy task is very flexible, and allows you to, for

example, filter the contents of the files as they are copied, and to map the files names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to

Page 92 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html

copy the files to. You may also specify how to transform the files as they are copied. You do all this
using a copy spec. A copy spec is represented by the CopySpec interface. The Copy task

implements this interface. You specify the source files using the CopySpec. fron{) method. To
specify the destination directory, you use the CopySpec. i nt o() method.

Example 15.10. Copying files using the copy task
bui l d. gradl e

task copyTask(type: Copy) {
from' src/ mai n/ webapp'
into 'build/ expl odedWar'

The from() method accepts any of the arguments that the files() method does. When an

argument resolves to a directory, everything under that directory (but not the directory itself) is
recursively copied into the destination directory. When an argument resolves to a file, that file is
copied into the destination directory. When an argument resolves to a non-existing file, that
argument is ignored. The i nt o() accepts any of the arguments that the file() method does. Here
is another example:

Example 15.11. Specifying copy task source files and destination directory
bui I d. gradl e
t ask anot her CopyTask(type: Copy) {
from' src/ mai n/ webapp'
from'src/staging/index. htm'
from zi pTree(' src/ mai n/ assets. zip')

into { getDestDir() }

You can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 15.12. Selecting the files to copy
bui l d. gradl e

task copyTaskWthPatterns(type: Copy) {
from ' src/ mai n/ webapp'
into 'build/ expl odedWar'
include " **/* htm"
include "**/* jsp'
exclude { details -> details.file.name.endsWth('.htnl') &% details.file.t¢

You can also use the Pr oj ect . copy() method to copy files. It works the same way as the task.

Page 93 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object...)
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(groovy.lang.Closure)

Example 15.13. Copying files using the copy() method
bui l d. gradl e

task copyMet hod << {
copy {
from' src/ mai n/ webapp
into 'buil d/ expl odedWar'
include "**/*. htm"'
include '**/*.]sp

15.6.1. Renaming files
Example 15.14. Renaming files as they are copied

buil d. gradl e

task rename(type: Copy) {
from' src/ mai n/ webapp
into 'buil d/ expl odedWar'
/1l Use a closure to map the file nane
renane { String fileName ->

fileName.replace('-staging-', "")
}
/'l Use a regular expression to map the file nane
rename '(.+)-staging-(.+)', '$1$2'

rename(/(.+)-staging-(.+)/, '$1$2")

15.6.2. Filtering files
Example 15.15. Filtering files as they are copied

bui l d. gradl e

i nport org.apache.tools.ant.filters. FixCrLfFilter
i mport org.apache.tools.ant.filters.Repl aceTokens

task filter(type: Copy) {
from' src/ mai n/ webapp'
into 'buil d/ expl odedWar'
/] Substitute property references in files
expand(copyright: '2009", version: '2.3.1")
expand(proj ect. properties)
/1l Use sonme of the filters provided by Ant
filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009", version: '2.3.1'])
/1l Use a closure to filter each line
filter { String line ->

"[$line]"

}

Page 94 of 301

15.6.3. Using the CopySpec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude
patterns, copy actions, name mappings, filters.

Example 15.16. Nested copy specs
bui | d. gradl e

task nestedSpecs(type: Copy) {
into 'build/ expl odedWar'
excl ude ' **/*stagi ng*
from('src/dist") {
include '"**/* htm"

}

into('libs") {
fromconfigurations.runtime

}

15.7. Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the
destination directory, and then removes any files from the destination directory which it did not
copy. This can be useful for doing things such as installing your application, creating an exploded

copy of your archives, or maintaining a copy of the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the bui | d/ | i
directory.

Example 15.17. Using the Sync task to copy dependencies

bui I d. gradl e

task libs(type: Sync) {
fromconfigurations.runtine
into "$buildbDir/libs"

15.8. Creating archives

A project can have as many as JAR archives as you want. You can also add WAR, ZIP and TAR
archives to your project. Archives are created using the various archive tasks: Zi p, Tar, Jar , and
War . They all work the same way, so let's look at how you create a ZIP file.

Page 95 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.War.html

Example 15.18. Creating a ZIP archive
bui | d. gradl e

apply plugin: 'java

task zip(type: Zip) {
from'src/dist
into('libs") {
fromconfigurations.runtime
}

The archive tasks all work exactly the same way as the Copy
task, and implement the same CopySpec interface. As

with the Copy task, you specify the input files using the f r om() Why are you using the

method, and can optionally specify where they end up in Java plugin?
the archive using the i nt o() method. You can filter the The Java plugin adds a
contents of file, rename files, and all the other things you number of default values for
can do with a copy spec. the archive tasks. You can
use the archive tasks without
15.8.1. Archive naming using the Java plugin, if you
The default name for a generated archive is pr oj ect Name- ver sillk@. ¥9gevill need to provide
For example: values for some additional
properties.

Example 15.19. Creation of ZIP archive
buil d. gradl e

apply plugin: 'java

version = 1.0

task nmyZi p(type: Zip) {
from' sonedir’
}

println myZi p.archi veNane
println relativePath(nyZi p.destinationbDir)
println relativePath(nyZ p. archi vePat h)

Outputofgradl e -q nyZip

> gradle -q myZip

zi pProject-1.0.zip

bui I d/ di stributions

bui | d/ di stri butions/zipProject-1.0.zip

This adds a Zi p archive task with the name myZi p which produces ZIP filezi pProj ect-1. 0. zi g
. It is important to distinguish between the name of the archive task and the name of the archive
generated by the archive task. The default name for archives can be changed with the ar chi vesB:
project property. The name of the archive can also be changed at any time later on.

Page 96 of 301

There are a number of properties which you can set on an archive task. These are listed below in
Table 15.1, “Archive tasks - naming properties”. You can, for example, change the name of the
archive:

Example 15.20. Configuration of archive task - custom archive name

bui I d. gradl e

apply plugin: 'java
version = 1.0

task nyZip(type: Zip) {
from' sonedir’
baseNane = ' cust omNanme

}

println nyZ p.archi veNane

Outputofgradl e -q nyZip

> gradle -q nyZip
cust omNane- 1. 0. zi p

You can further customize the archive names:

Example 15.21. Configuration of archive task - appendix & classifier

bui l d. gradl e

apply plugin: 'java
archi vesBaseNane = 'gradle
version = 1.0

task nyZip(type: Zip) {
appendi x = 'w apper'
classifier = "src
from'sonedir’

}

println nyZ p. archi veName

Output of gradl e -qg nyZip

> gradle -q nyZip
gradl e-w apper-1.0-src. zip

Page 97 of 301

Table 15.1. Archive tasks - naming properties

Property name Type Default value Description
ar chi veName String baseNane-appendi x-version-cl assi fi erTeabassi on
If any of these properties is empty the file name of
trailing - is not added to the name. the
generated
archive
archi vePat h File desti nati onDi r/ ar chi veNane The
absolute
path of the
generated
archive.
destinati onbDir File Depends on the archive type. JARs and The

WARSs are generated into pr oj ect . bui | dDi r /dirdmt@nyites

. ZIPs and TARs are generated into pr oj ect . bgehdite / di s
the archive
into

baseNane String project.nane The base
name
portion of
the archive
file name.

appendi x String null The
appendix
portion of
the archive
file name.

ver si on String project.version The version
portion of
the archive
file name.

classifier String null The
classifier
portion of
the archive
file name,

ext ensi on String Depends on the archive type, and for TAR The
files, the compression type as well: zi p, j ar extension of
,war ,tar,tgz ortbz2. the archive
file name.

Page 98 of 301

15.8.2. Sharing content between multiple archives
Using the Pr oj ect . copySpec() method to share content between archives.

Often you will want to publish an archive, so that it is usable from another project. This process is
described in Chapter 36, Artifact Management

Page 99 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(groovy.lang.Closure)

16

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily
hidden by this. On the other hand you need the relevant information for figuring out if things have
gone wrong. Gradle defines 6 log levels, as shown in Table 16.1, “Log levels”. There are two
Gradle-specific log levels, in addition to the ones you might normally see. Those levels are QUIET
and LIFECYCLE. The latter is the default, and is used to report build progress.

Table 16.1. Log levels

Level Used for
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progress information messages
INFO Information messages

DEBUG Debug messages

16.1. Choosing a log level

You can use the command line switches shown in Table 16.2, “Log level command-line options” to
choose different log levels. In Table 16.3, “Stacktrace command-line options” you find the
command line switches which affect stacktrace logging.

Table 16.2. Log level command-line options

Option Outputs Log Levels
no logging options LIFECYCLE and higher
-q QUIET and higher

-1 INFO and higher

-d DEBUG and higher (that is, all log messages)

Page 100 of 301

Table 16.3. Stacktrace command-line options

Option Meaning

No No stacktraces are printed to the console in case of a build error (e.g. a compile
stacktrace error). Only in case of internal exceptions will stacktraces be printed. If the
options loglevel option - d is chosen, truncated stacktraces are always printed.

-s Truncated stacktraces are printed. We recommend this over full stacktraces.

Groovy full stacktraces are extremely verbose (Due to the underlying dynamic
invocation mechanisms. Yet they usually do not contain relevant information for
what has gone wrong in your code.)

-S The full stacktraces are printed out.

16.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle
redirects anything written to standard output to it's logging system at the QUI ET log level.

Example 16.1. Using stdout to write log messages

buil d. gradl e

println 'A message which is |ogged at QU ET | evel

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This

interface extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below
is an example of how this is used in the build script:

Example 16.2. Writing your own log messages

buil d. gradl e

| ogger.quiet(' An info | og nessage which is always | ogged."')
| ogger.error(' An error | og nessage.')

| ogger.warn(' A warni ng | og nessage."')

| ogger.lifecycle(' Alifecycle info | og nessage.")

| ogger.info(' An info | og nessage. ")

| ogger . debug(' A debug | og nessage. ')

| ogger.trace(' A trace | og nessage.')

You can also hook into Gradle's logging system from within other classes used in the build (classes
from the bui | dSr ¢ directory for example). Simply use an SLF4J logger. You can use this logger
the same way as you use the provided logger in the build script.

Page 101 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/logging/Logger.html

Example 16.3. Using SLF4J to write log messages
bui | d. gradl e

i mport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = Logger Factory. get Logger (' sone-| ogger")
sl f4j Logger.info(' An info | og nessage | ogged using SLF4j"')

16.3. Logging from external tools and libraries

Internally, Gradle uses Ant and lvy. Both have their own logging system. Gradle redirects their
logging output into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to
the Gradle log levels, except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log
level. This means the default Gradle log level will not show any Ant/lvy output unless it is an error
or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle
redirects standard output to the QUI ET log level and standard error to the ERROR level. This
behavior is configurable. The project object provides a Loggi ngManager , which allows you to
change the log levels that standard out or error are redirected to when your build script is
evaluated.

Example 16.4. Configuring standard output capture

bui l d. gradl e

| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
println 'A nessage which is | ogged at | NFO | evel

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 16.5. Configuring standard output capture for a task

bui I d. gradl e

task loglnfo {
| oggi ng. capt ur eSt andar dQut put LogLevel . | NFO
doFirst {
println 'A task nmessage which is | ogged at | NFO | evel
}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j
logging toolkits. Any log messages which your build classes write using these logging toolkits will
be redirected to Gradle's logging system.

Page 102 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/logging/LoggingManager.html

16.4. Changing what Gradle logs

You can replace much of Gradle's logging Ul with your own. You might do this, for example, if you
want to customize the Ul in some way - to log more or less information, or to change the
formatting. You replace the logging using the Gr adl e. useLogger () method. This is accessible
from a build script, or an init script, or via the embedding API. Below is an example init script which
changes how task execution and build completion is logged.

Example 16.6. Customizing what Gradle logs

init.gradle
uselLogger (new Cust onEvent Logger ())
cl ass Cust onEvent Logger extends Buil dAdapter inplenments TaskExecuti onlLi stener |

public void beforeExecute(Task task) {
println "[$task. nane] "

}

public void afterExecute(Task task, TaskState state) {
println()
}

public void buil dFi ni shed(Buil dResult result) {
println "build conpleted

}
}
Outputofgradle -1 init.gradle build
> gradle -1 init.gradle build
[conmpi | €]

conpi | i ng source

[test Conpil €]
conpi ling test source

[test]
running unit tests

[bui | d]

bui | d conpl et ed

Your logger can implement any of the listener interfaces listed below. When you register a logger,
only the logging for the interfaces that it implements is replaced. Logging for the other interfaces is
left untouched. You can find out more about the listener interfaces in Section 39.6, “Responding to
the lifecycle in the build script”.

® Bui |l dLi st ener

® Project Eval uati onLi st ener

Page 103 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/ProjectEvaluationListener.html

®* TaskExecuti onG aphlLi st ener

® TaskExecuti onLi st ener

® TaskActi onLi st ener

Page 104 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskActionListener.html

17
Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds
in your Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a
Gradle build script, than it is to use Ant's XML format. You could even use Gradle simply as a
powerful Ant task scripting tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the |
, the handling of the targets, special constructs like macrodefs, and so on. In other words,
everything except the Ant tasks and types. Gradle understands this language, and allows you to
import your Ant bui | d. xml directly into a Gradle project. You can then use the targets of your Ant
build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar. For this
layer Gradle provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external
process. Your build script may contain statements like:" ant cl ean conpil e". execute(). (6]

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For
example, you could start by importing your existing Ant build. Then you could move your
dependency declarations from the Ant script to your build file. Finally, you could move your tasks
across to your build file, or replace them with some of Gradle's plugins. This process can be done
in parts over time, and you can have a working Gradle build during the entire process.

17.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an
Ant Bui | der instance. This Ant Bui | der is used to access Ant tasks, types and properties from

your build script. There is a very simple mapping from Ant's bui | d. xm format to Groovy, which is
explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task
name as the method name. For example, you execute the Ant echo task by calling the ant . echo(

Page 105 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/AntBuilder.html

method. The attributes of the Ant task are passed as Map parameters to the method. Below is an
example which executes the echo task. Notice that we can also mix Groovy code and the Ant task
markup. This can be extremely powerful.

Example 17.1. Using an Ant task
buil d. gradl e
task hello << {

String greeting = "hello from Ant’
ant . echo(nmessage: greeting)

Outputof gradl e hell o
> gradle hello
‘hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this
example, we pass the message for the echo task as nested text:

Example 17.2. Passing nested text to an Ant task
bui I d. gradl e

task hello << {
ant . echo(' hello from Ant")
}

Outputof gradl e hell o
> gradle hello
thello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the
same way as tasks, by calling a method with the same name as the element we want to define.

Page 106 of 301

Example 17.3. Passing nested elements to an Ant task

bui | d. gradl e

task zip << {
ant.zip(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(nanme: ' **. xml")
excl ude(name: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as
the method name. The method call returns the Ant data type, which you can then use directly in
your build script. In the following example, we create an Ant pat h object, then iterate over the
contents of it.

Example 17.4. Using an Ant type
bui | d. gradl e

task list << {
def path = ant.path {
fileset(dir: '"libs", includes: "*.jar")

}

path.list().each {
println it

}

More information about Ant Bui | der can be found in '‘Groovy in Action' 8.4 or at the Groovy Wiki

17.1.1. Using custom Ant tasks in your build
To make custom tasks available in your build, you use the t ypedef Ant task, just as you would in

abuil d. xm file. You can then refer to the custom Ant task as you would a built-in Ant task.
Example 17.5. Using a custom Ant task

bui I d. gradl e

task check << {
ant . t askdef (resource: 'checkstyl etask. properties') {
classpath {
fileset(dir: '"libs', include: "*.jar")
}
}

ant. checkstyl e(config: 'checkstyle.xm") {
fileset(dir: "src')

}

You can use Gradle's dependency management to assemble the classpath to use for the custom

Page 107 of 301

http://groovy.codehaus.org/Using+Ant+from+Groovy

tasks. To do this, you need to define a custom configuration for the classpath, then add some
dependencies to the configuration. This is described in more detail in Section 35.3, “How to declare
your dependencies”.

Example 17.6. Declaring the classpath for a custom Ant task

bui l d. gradl e

configurations {
pmd
}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5
}

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 17.7. Using a custom Ant task and dependency management together

bui I d. gradl e

task check << {
ant . t askdef (nane: 'pnd', classnanme: 'net.sourceforge. pnd. ant. PMDTask', clat
ant. pnd(shortFil enanes: 'true', failonruleviolation: '"true', rulesetfiles:
formatter(type: 'text', toConsole: '"true')
fileset(dir: "src')

17.2. Importing an Ant build

You can use the ant . i nport Bui |l d() method to import an Ant build into your Gradle project.
When you import an Ant build, each Ant target is treated as a Gradle task. This means you can
manipulate and execute the Ant targets in exactly the same way as Gradle tasks.

Page 108 of 301

Example 17.8. Importing an Ant build
bui | d. gradl e

ant.inportBuild 'build. xm"’

buil d. xm
<pr oj ect >
<target name="hello0">
<echo>Hel | o, from Ant</echo>

</target>
</ proj ect >

Outputof gradl e hell o
> gradle hello
thello
[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tinme: 1 secs

You can add a task which depends on an Ant target:
Example 17.9. Task that depends on Ant target
bui |l d. gradl e

ant.inportBuild 'build. xm"’

task intro(dependsOn: hello) << {
printin 'Hello, from G adle'
}

Outputofgradl e intro
> gradle intro
“hello
[ant:echo] Hello, from Ant
sintro
Hel lo, from G adle
BUI LD SUCCESSFUL

Total tinme: 1 secs

Or, you can add behaviour to an Ant target:

Page 109 of 301

Example 17.10. Adding behaviour to an Ant target
bui | d. gradl e

ant.inportBuild 'build. xm"’

hello << {
println '"Hello, from G adle'

}

Output of gradl e hel |l o

> gradle hello

thello

[ant:echo] Hello, from Ant
Hell o, from G adl e

BU LD SUCCESSFUL

Total tinme: 1 secs

It is also possible for an Ant target to depend on a Gradle task:
Example 17.11. Ant target that depends on Gradle task
bui I d. gradl e

ant.inportBuild 'build. xm"’

task intro << {
printin 'Hello, from G adle'
}

buil d. xm

<pr oj ect >
<target name="hel | 0" depends="intro">
<echo>Hel | o, from Ant </ echo>
</target>
</ pr oj ect >

Output of gradl e hel |l o

> gradle hello

sintro

Hell o, from G adl e

chello

[ant:echo] Hello, from Ant

BU LD SUCCESSFUL

Total tine: 1 secs

Page 110 of 301

17.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You
can set the property directly on the Ant Bui | der instance. The Ant properties are also available as
a Map which you can change. You can also use the Ant property task. Below are some
examples of how to do this.

Example 17.12. Setting an Ant property

bui l d. gradl e
ant.buildDir = buildDir
ant . properties.buildDir = buildDr

ant.properties["buildDir'] = buildDr
ant . property(name: 'buildDir', location: buildDr)

buil d. xm

<echo>bui l dDir = ${buil dDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties
are also available as a Map. Below are some examples.

Example 17.13. Getting an Ant property
bui l d. xm

<property name="ant Prop" value="a property defined in an Ant build"/>

buil d. gradl e

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 17.14. Setting an Ant reference

bui | d. gradl e
ant.path(id: 'classpath', location: '"libs")
ant . references. classpath = ant.path(location: 'libs")
ant.references[' classpath'] = ant.path(location: 'libs")
build. xm

<pat h refid="classpath"/>

Page 111 of 301

There are several ways to get an Ant reference:

Example 17.15. Getting an Ant reference

bui l d. xm
<path id="antPath" |ocation="|ibs"/>
bui | d. gradl e

println ant.references. ant Path
println ant.references[' antPath']

17.4. API
The Ant integration is provided by Ant Bui | der .

[6] In Groovy you can execute Strings. To learn more about executing external processes with
Groovy have a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 112 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/AntBuilder.html

18
Using Plugins

Now we look at how Gradle provides build-by-convention and out of the box functionality. These
features are decoupled from the core of Gradle, and are provided via plugins. Although the plugins
are decoupled, we would like to point out that the Gradle core plugins are NEVER updated or
changed for a particular Gradle distribution. If there is a bug in the compile functionality of Gradle,
we will release a new version of Gradle. There is no change of behavior for the lifetime of a given
distribution of Gradle.

18.1. Declaring plugins

If you want to use the plugin for building a Java project, simply include

Example 18.1. Using a plugin
bui I d. gradl e

apply plugin: "java'

in your script. That's all. From a technological point of view plugins use just the same operations as
you can use from your build scripts. That is, they use the Project and Task API. The Gradle plugins
generally use this API to:

® Add tasks to the project (e.g. compile, test)
® Create dependencies between those tasks to let them execute in the appropriate order.
* Add dependency configurations to the project.

® Add a so called convention object to the project.

Let's check this out:

Page 113 of 301

Example 18.2. Applying a plugin by id
bui | d. gradl e

apply plugin: 'java

task show << {

println relativePath(conpil eJava. destinationDir)
println relativePat h(processResources. destinationDir)

Output of gradl e -q show
> gradl e -g show

bui | d/ cl asses/ nai n
bui | d/ resour ces/ nai n

The Java plugin adds a conpi | eJava task and a pr ocessResour ces task to the project object
which can be accessed by a build script. It has configured the dest i nati onDi r property of both
of these tasks.

The appl y() method either takes a string or a class as an argument. You can write

Example 18.3. Applying a plugin by type
buil d. gradl e

apply plugin: org.gradl e.api.plugins.JavaPl ugin

Thanks to Gradle's default imports (see Appendix D, Existing IDE Support and how to cope without
it) you can also write in this case.

Example 18.4. Applying a plugin by type
bui l d. gradl e

apply plugin: JavaPl ugin

as an argument. You don't need to configure anything else for this.

If you want to use your own plugins, you must make sure that they are accessible via the build
script classpath (see Chapter 43, Organizing Build Logic for more information). To learn more
about how to write custom plugins, see Chapter 42, Writing Custom Plugins.

18.2. Using the convention object

If you use the Java plugin for example, there are a conpi | eJava and a pr ocessResour ces
task for your production code (the same is true for your test code). What if you want to change the
default configuration? Let's try:

Page 114 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/Plugin.html

Example 18.5. Configuring a plugin task
bui | d. gradl e

apply plugin: '"java'

task show << {
processResour ces. destinationDir = new File(buildDir, 'output')
println relativePath(processResources. destinationDir)
println rel ativePath(conpil eJava. destinationDir)

Output of gradl e -g show

> gradle -q show
bui | d/ out put
bui | d/ cl asses/ mai n

Setting the dest i nat i onDi r of the pr ocessResour ces task had only an effect on the process
task. Maybe this was what you wanted. But what if you want to change the output directory for all
tasks? It would be unfortunate if you had to do this for each task separately.

Gradle's tasks are usually convention aware. A plugin can add a convention object to your project,
and map certain values of this convention object to task properties.

Example 18.6. Plugin convention object
bui l d. gradl e
apply plugin: 'java'
task show << {
sourceSets. mai n. out put. cl assesDir = new Fil e(buildDir, 'output/classes')

sourceSets. mai n. out put . resourcesDir = new File(buildDr, 'output/resources'

println relativePat h(conpil eJava. destinati onDir)
println rel ati vePat h(processResources. destinati onDir)

Output of gradl e -g show

> gradle -q show
bui | d/ out put/ cl asses
bui | d/ out put/resources

The Java plugin has added a convention object with a sour ceSet s property, which we use to set
the classes directory.

By setting a task attribute explicitly (as we have done in the first example) you overwrite the
convention value for this particular task.

Not all of the tasks attributes are mapped to convention object values. It is the decision of the
plugin to decide what are the shared properties and then bundle them in a convention object and

Page 115 of 301

map them to the tasks.

The properties of a convention object can be accessed as project properties. As shown in the
following example, you can also access the convention object explicitly.

Example 18.7. Using the plugin convention object

bui I d. gradl e

apply plugin: 'java
task show << {

println rel ati vePat h(sour ceSets. nai n. out put. cl assesDir)
println relativePat h(project.sourceSets. nain. output.classesDir)

println rel ativePat h(project.convention.sourceSets. mai n.output.classesDir)
println relativePath(project.convention.plugins.java.sourceSets. nai n. out pul

Output of gradl e -gq show

> gradl e -qg show

bui | d/ cl asses/ mai n
bui | d/ cl asses/ mai n
bui | d/ cl asses/ mai n
bui | d/ cl asses/ mai n

Every project object has a Conventi on object which is a container for convention objects
contributed by the plugins declared for your project. If you simply access or set a property or
access a method in your build script, the project object first looks if this is a property of itself. If not,
it delegates the request to its convention object. The convention object checks if any of the plugin
convention objects can fulfill the request (first wins and the order is not defined). The plugin

convention objects also introduce a namespace.

18.2.1. Declaring plugins multiple times

A plugin is only called once for a given project, even if you have multiple appl y() statements. An
additional call after the first call has no effect but doesn't hurt either. This can be important if you
use plugins which extend other plugins. For example the Groovy plugin automatically applies the
Java plugin. We say the Groovy plugin extends the Java plugin. But you might as well write:

Example 18.8. Explicit application of an implied plugin

bui I d. gradl e

apply plugin: '"java'
apply plugin: 'groovy'

If you use cross-project configuration in multi-project builds this is a useful feature.

Page 116 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/Convention.html

19

Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

19.1. Language plugins

These plugins add support for various languages which can be compiled and executed in the JVM.

Table 19.1. Language plugins

Plugin

Automatically Works
applies with

j ava- base -

j ava, groovy- base

j ava, scal a- base

j ava -

19.2. Integration plugins

These plugins provide some integration with various build and runtime technologies.

Description

Adds Java compilation, testing and bundling
capabilities to a project. It serves as the basis for
many of the other Gradle plugins. See also Chapter 6,
Java Quickstart.

Adds support for building Groovy projects. See also
Chapter 7, Groovy Quickstart.

Adds support for building Scala projects.

Adds support for generating parsers using Antlr.

Page 117 of 301

http://www.antlr.org/

Table 19.2. Integration plugins

Plugin Id Automatically Works Description
applies with

announce - - Publish messages to your favourite platforms,
such as Twitter or Growl.

application java - Adds tasks for running and bundling a project
as application.

ear - j ava Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web
container embedded in the build. See also
Chapter 8, Web Application Quickstart.

maven - j ava, war Adds support for deploying artifacts to Maven
repositories.

osgi j ava- base java Adds support for building OSGi bundles.

war. java - Adds support for assembling web application
WAR files. See also Chapter 8, Web
Application Quickstart.

19.3. Software development plugins

These plugins provide help with your software development process.

Page 118 of 301

Table 19.3. Software development plugins

Plugin Id Automatically
applies

code-qual ity reporting-base

eclipse }

eclipse-wp -

i dea -

pr oj ect - report reporting-base

19.4. Base plugins

Works Description
with

j ava, gr ookgrforms code quality checks and
generate reports from these checks.

j ava, gr oo@gnerates files that are used by
,scala Eclipse IDE, thus making it possible to

import the project into Eclipse. See
also Chapter 6, Java Quickstart.

ear,war Does the same as the eclipse plugin
plus generates eclipse WTP (Web
Tools Platform) configuration files.
After importing to eclipse your war/ear
projects should be configured to work
with WTP. See also Chapter 6, Java
Quickstart.

j ava Generates files that are used by
Intellij IDEA IDE, thus making it
possible to import the project into
IDEA.

- Generates reports containing useful
information about your Gradle build.

- Provides integration with the Sonar
code quality platform.

These plugins form the basic building blocks which the other plugins are assembled from. They are
available for you to use in your build files, and are listed here for completeness. However, be
aware that they are not yet considered part of Gradle's public API. As such, these plugins are not
documented in the user guide. You might refer to their APl documentation to learn more about

them.

Page 119 of 301

http://eclipse.org
http://www.jetbrains.com/idea/index.html

Table 19.4. Base plugins

Plugin Id Description

base Adds the standard lifecycle tasks to the project, plus some shared
convention properties.

java-base Adds the source sets concept to the project. Does not add any particular
source sets.

groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report
generation.

19.5. Third party plugins

You can find a list of external plugins on the wiki.

Page 120 of 301

http://gradle.codehaus.org/Plugins

20

The Java Plugin

The Java plugin adds Java compilation, testing and bundling capabilities to a project. It serves as
the basis for many of the other Gradle plugins.

20.1. Usage

To use the Java plugin, include in your build script:

Example 20.1. Using the Java plugin
buil d. gradl e

apply plugin: 'java'

20.2. Source sets

The Java plugin introduces the concept of a source set. A source set is a group of source files
which are compiled and executed together. These source files may include Java source files and
resource files. Other plugins add the ability to include Groovy and Scala source files in a source
set. A source set has an associated compile classpath, and runtime classpath.

You might use a source set to define an integration test suite, or for the API classes of your project,
or to separate source which needs to be compiled against different Java versions.

The Java plugin defines two standard source sets, called mai n and t est . The nai n source set
contains your production source code, which is compiled and assembled into a JAR file. The t est
source set contains your unit test source code, which is compiled and executed using JUnit or
TestNG.

20.3. Tasks

The Java plugin adds a number of tasks to your project, as shown below.
Table 20.1. Java plugin - tasks

Task name Depends on Type Description

Page 121 of 301

conpi | eJava All tasks which produce Conpi | e Compiles production
the compile classpath. Java source files
This includes the j ar task using javac.
for project dependencies

included in the conpi | e

configuration.
processResour ces - Copy Copies production
resources into the
production classes
directory.
cl asses conpi | eJava and processR&askrces Assembles the
. Some plugins add production classes
additional compilation directory.
tasks.
conpi | eTest Java conpi | e, plus all tasks Conpi | e Compiles test Java
which produce the test source files using
compile classpath. javac.
processTest Resources - Copy Copies test
resources into the
test classes
directory.
test Cl asses conpi | eTest Java and pr oc€asRKest ResAsseraisles the test
. Some plugins add classes directory.
additional test compilation
tasks.
jar conpi l e Jar Assembles the JAR
file
j avadoc conpil e Javadoc Generates API
documentation for
the production Java
source, using
Javadoc
t est conpi | e, conpi | eTest, Test Runs the unit tests
plus all tasks which using JUnit or
produce the test runtime TestNG.
classpath.
upl oadAr chi ves The tasks which produce Upl oad Uploads the artifacts
the artifacts in the ar chi ves in the ar chi ves
configuration, including j ar configuration,
including the JAR
file.

Page 122 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.Compile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.Compile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Upload.html

cl ean - Del et e Deletes the project
build directory.

cl eanTaskNane - Del et e Deletes the output
files produced by
the specified task.
For example cl eanJa
will delete the JAR
file created by the j ar
task, and cl eanTest
will delete the test
results created by
the t est task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Table 20.2. Java plugin - source set tasks

Task name Depends on Type

conpi | eSour calBetskawehich produce the source set's Compi | e

compile classpath.

pr ocessSour ceSet Resour ces Copy

Description

set's Java

source files
using javac.

Copies the

given source

set's

resources into
the classes

directory.

sour ceSet O asems | eSour ceSet Java and pr ocessSour ceSéltadRds our cedssembles

. Some plugins add additional compilation tasks
for the source set.

the given

source set's

classes
directory.

The Java plugin also adds a number of tasks which form a lifecycle for the project:

Page 123 of 301

Compiles the
given source

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.Compile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html

Table 20.3. Java plugin - lifecycle tasks

Task name Depends on Type Description

assenbl e All archive tasks in the project, Task Assembles all

inCIUding J ar. Some plugins add
additional archive tasks to the project.

the archives
in the project.

All verification tasks in the project, Performs all
including t est . Some plugins add verification
additional verification tasks to the tasks in the
project. project.
bui l d check and assenbl e Task Performs a
full build of
the project.
bui | dNeeded bui | d and bui | d tasks in all project Task Performs a
lib dependencies of the t est Runt i ne full build of
configuration. the project
and all
projects it
depends on.
bui | dDependent s bui | d and bui | d tasks in all projects Task Performs a
with a project lib dependency on this full build of
projectin at est Runti ne the project
configuration. and all
projects which
depend on it.
bui I dConf i gur at i onNahfee tasks which produce the artifacts Task Assembles
in configuration the artifacts in
Confi gur ati onNane. the specified

configuration.

upl oadConf i gur at i onNEmetasks which uploads the artifacts Upl oad Assembles
in configuration and uploads
Conf i gurati onNane. the artifacts in
the specified

configuration.

The following diagram shows the relationships between these tasks.

Page 124 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Upload.html

Figure 20.1. Java plugin - tasks

javadoc

complleJava

compileTestlava test }—b[

check

testClasses

processTestResources I'

uploadArchives

clean

20.4. Project layout

The Java plugin assumes the project layout shown below. None of these directories need exist or
have anything in them. The Java plugin will compile whatever it finds, and handles anything which

is missing.

Table 20.4. Java plugin - default project layout

Directory

src/ main/java

src/ mai n/ resour ces
src/test/java
src/test/resources
src/sourceSet/java

src/ sourceSet/resources

Meaning

Production Java source

Production resources

Test Java source

Test resources

Java source for the given source set

Resources for the given source set

20.4.1. Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in
more detail in the following sections. Here is a brief example which changes the main Java and

resource source directories.

Example 20.2. Custom Java source layout

bui l d. gradl e

sourceSets {
mai n {
java {

srcDir 'src/java'

}

resources {

srcDir 'src/resources'

}

Page 125 of 301

20.5. Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It
assigns those configurations to tasks such as conpi | eJava and test. To learn more about
configurations see Section 35.3.1, “Configurations” and Section 36.2, “Artifacts and configurations”.

Table 20.5. Java plugin - dependency configurations

Name Extends Used by tasks Meaning
compile - compileJava Compile time dependencies
runtime compile - Runtime dependencies
testCompile compile compileTestJava Additional dependencies for compiling
tests.
testRuntime runtime, test Additional dependencies for running
testCompile tests only.
archives - uploadArchives Artifacts (e.qg. jars) produced by this
project.
default runtime, - Artifacts produced and dependencies
archives required by this project.

Figure 20.2. Java plugin - dependency configurations

uploadArchives task ————-uﬁoa-ds_‘_‘
v

jar task ————addsjar—-™

—-used-by- compileJava task

testCompile
—=——usedby-——- compileTestJava task

20.6. Convention properties

The Java plugin adds a number of convention properties to the project, shown below. You can use
these properties in your build script as though they were properties of the project object (see
Section 18.2, “Using the convention object”).

Table 20.6. Java plugin - directory properties

Property name Type Default value Description

Page 126 of 301

report shDi r Name

reportshDir

t est Resul t sDi r Nane

test Resul tsDir

t est Report Di r Nane

test ReportDir

i bsDi r Nane

libsDr

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

reports The name of
the directory
to generate
reports into,
relative to the
build directory.

bui | dDi r/ reportsDi r Nane The directory
to generate
reports into.

test-results The name of
the directory
to generate
test result .xml
files into,
relative to the
build directory.

bui I dDi r/t est Resul t sDi r Nahfee directory
to generate
test result .xml
files into.

tests The name of
the directory
to generate
the test report
into, relative to
the reports
directory.

reportsbhir/test Report D r NEmedirectory
to generate
the test report
into.

l'i bs The name of
the directory
to generate
libraries into,
relative to the
build directory.

bui I dDi r/1i bsDi r Nane The directory
to generate
libraries into.

Page 127 of 301

di st sDi r Nanme

distsDr

docsDi r Nane

docsDir

dependencyCacheDi r Nane

dependencyCacheDi r

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

di stributions

bui | dDi r/ di st sDi r Nane

docs

bui | dDi r/ docsDi r Nane

dependency- cache

The name of
the directory
to generate
distributions
into, relative to
the build
directory.

The directory
to generate
distributions
into.

The name of
the directory
to generate
documentation
into, relative to
the build
directory.

The directory
to generate
documentation
into.

The name of
the directory
to use to
cache source
dependency
information,
relative to the
build directory.

bui | dDi r/ dependencyCacheD méNdimectory

to use to
cache source
dependency
information.

Page 128 of 301

Table 20.7. Java plugin - other properties

Property name

sourceSet s

sourceConpatibility

target Compatibility

ar chi vesBaseNane

mani f est

met al nf

Type

Sour ceSet Cont ai ner

(read-only)

JavaVer si on. Can
also set using a String
oraNumber,eg' 1.5
orl.5.

JavaVer si on. Can
also set using a String
or Number,eg' 1. 5'
orl.5.

String

Mani f est

Li st

Default value

Not null

1.5

sourceConpatibility

pr oj ect Nare

an empty manifest

[]

Descriptic

Contains
the project
source set

Java
version
compatibili
to use whe
compiling
Java
source.

Java
version to
generate
classes fol

The
basename
to use for
archives,
such as
JAR or ZIF
files.

The
manifest tc
include in
all JAR file

A set of file

specify the
files to
include in
the VETA-
directory o
all JAR file

These properties are provided by convention objects of type JavaPl ugi nConventi on,
BasePl ugi nConventi on and Reporti ngBasePl ugi nConventi on.

Page 129 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/JavaPluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/BasePluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/BasePluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/ReportingBasePluginConvention.html

20.7. Working with source sets

You can access the source sets of a project using the sour ceSet s property. This is a container
for the project's source sets, of type Sour ceSet Cont ai ner. There is also a sour ceSet s()
method, which you can pass a closure to which configures the source set container. The source
set container works pretty much the same way as other containers, such as t asks.

Example 20.3. Accessing a source set

buil d. gradl e

println sourceSets. nain.output.classesDir
println sourceSets[' nain'].output.classesDir
sourceSets {

println main.output.classesDir

}
sourceSets {
mai n {
println output.classesDr
}
}

sour ceSet s. each {SourceSet set ->
println set.nane
}

To configure an existing source set, you simply use one of the above access methods to set the
properties of the source set. The properties are described below. Here is an example which
configures the main Java and resources directories:

Example 20.4. Configuring the source directories of a source set

bui I d. gradl e

sourceSets {
mai n {
java {
srcDir 'src/java
}

resources {
srcDir 'src/resources

To define a new source set, you simply reference it in the sourceSets { } block. When you
define a source set, the Java plugin adds a number of tasks which assemble the classes for the
source set, as shown in Table 20.2, “Java plugin - source set tasks”. For example, if you add a
source set called i nt Test , the Java plugin adds conpi | el nt Test Java, pr ocessl nt Test Resc
and i nt Test C asses tasks.

Page 130 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/SourceSetContainer.html

Example 20.5. Defining a source set

bui | d. gradl e

sourceSets {
i nt Test

}

20.7.1. Source set properties

The following table lists some of the important properties of a source set. You can find more details
in the API documentation for Sour ceSet .

Table 20.8. Java plugin - source set properties

Property name

nane

cl assesDir

conpi | e asspat h

runti med asspath

j ava

Type
Stri ng (read-only)

File

Fil eCol | ecti on

Fil eCol | ecti on

Sour ceDi r ect or ySet

(read-only)

Default value

Not null

Description

The name of
the source set,
used to identify
it.

bui | dDi r/ cl asses/ nahtee directory

compi l e
Configuration.

to generate the
classes of this
source set into.

The classpath
to use when
compiling the
source files of
this source set.

cl assesDi r +runti meThe classpath

Configuration.

Not null

to use when
executing the
classes of this
source set.

The Java

source files of
this source set.
Contains only . j |
files found in

the Java

source
directories,

and excludes

all other files.

Page 131 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/SourceDirectorySet.html

java.srcDirs

resour ces

resources.srchDirs

al | Java

Set <Fi | e>. Can set
using anything
described in

Section 15.5,
“Specifying a set of
input files”.

Sour ceDi rect or ySet

(read-only)

Set <Fi | e>. Can set
using anything
described in

Section 155,
“Specifying a set of
input files”.

[proj ect Di r/ src/ nantiig avarice

Not null

directories
containing the
Java source
files of this
source set.

The resources
of this source
set. Contains
only resources,
and excludes
any.java
files found in
the resource
source
directories.
Other plugins,
such as the
Groovy plugin,
exclude
additional
types of files
from this
collection.

[proj ect D r/ src/ nantte ssmgeces]

j ava

directories
containing the
resources of
this source set.

All . j ava files
of this source
set. Some
plugins, such
as the Groovy
plugin, add
additional Java
source files to
this collection.

Page 132 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html

al | Source Fi | eTr ee (read-only) resources + java All source files
of this source
set. This
include all
resource files
and all Java
source files.
Some plugins,
such as the
Groovy plugin,
add additional
source files to
this collection.

20.7.2. Some source set examples
Using dependency configurations to define the source set classpath:

Example 20.6. Defining the classpath of a source set

buil d. gradl e

configurations {
i nt Test Conpi l e { extendsFrom conpile }
int Test Runtime { extendsFrom int Test Conpile, runtime }

}

sourceSets {
i nt Test {
comnpi | e asspath
runti med asspath

sourceSets. mai n. out put + configurations.intTest Conpi
out put + sourceSets. main.output + configurations.ini

Adding a JAR containing the classes of a source set:

Example 20.7. Assembling a JAR for a source set

bui I d. gradl e

task intTestJar(type: Jar) {
from sourceSets. int Test. out put
}

Generating Javadoc for a source set:

Page 133 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html

Example 20.8. Generating the Javadoc for a source set

bui | d. gradl e

task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

}

Adding a test suite to run the tests in a source set:

Example 20.9. Running tests in a source set

bui l d. gradl e

task intTest(type: Test) {
testCl assesDir = sourceSets.intTest.output.classesDir
classpath = sourceSets.intTest.runtineCd asspath

20.8. Javadoc

The j avadoc task is an instance of Javadoc. It supports the core javadoc options and the options
of the standard doclet described in the reference documentation of the Javadoc executable. For a
complete list of supported Javadoc options consult the APl documentation of the following classes:

Cor eJavadocOpt i ons and St andar dJavadocDocl et Opti ons.

Table 20.9. Java plugin - Javadoc properties

Task Property Type Default Value
cl asspath Fil eColl ection sourceSets. main.classes + sourceSets. m
source Fil eTree. Can sourceSets. nai n. al | Java
set using anything
described in
Section 15.5,
“Specifying a set
of input files”.
destinationDir File docsDir/j avadoc
title String The name and version of the project
20.9. Clean

The cl ean task is an instance of Del et e. It simply removes the directory denoted by its di r
property.

Page 134 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html

Table 20.10. Java plugin - Clean properties

Task Property Type Default Value
dir File bui | dDi r

20.10. Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set

in the project. You can find out more about the copy task in Section 15.6, “Copying files”.

Table 20.11. Java plugin - ProcessResources properties

Task Property Type Default Value

srcDirs bj ect . Can set using anything described sourceSet.resources
in Section 15.5, “Specifying a set of input
files”

destinationDir Fi | e. Can set using anything described in sour ceSet out put . resol
Section 15.1, “Locating files”.

20.11. CompileJava

The Java plugin adds a Conpi | e instance for each source set in the project. The compile task

delegates to Ant's javac task to do the compile. You can set most of the properties of the Ant javac
task.

Table 20.12. Java plugin - Compile properties

Task Property Type Default Value
cl asspath Fil eCol | ection sour ceSet. conpi |l ed
source Fi | eTr ee. Can set using anything described sourceSet . j ava
in Section 15.5, “Specifying a set of input
files”
destinationbDir File. sourceSet . cl assesDi
20.12. Test

source set. It also generates a report once test execution is complete. JUnit and TestNG are both
supported. Have a look at Test for the complete API.

how this happens.

Page 135 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.Compile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.testing.Test.html

There are a number of properties which control how the test process is launched. This includes
things such as system properties, JVM arguments, and the Java executable to use. The task also
provides a debug property, which when set to true, starts the test process in debug mode,
suspended and listening on port 5005. This makes it very easy to debug your tests. You may also
enable this using a system property as specified below.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test
execution by running multiple test processes concurrently. Each test process executes only a
single test at a time, so you generally don't need to do anything special to your tests to take
advantage of this. The nmaxPar al | el For ks property specifies the maximum number of test
processes to run at any given time. The default is 1, that is, do not execute the tests in parallel.

The test process sets the or g. gr adl e. t est. wor ker system property to a unique identifier for
that test process, which you can use, for example, in files names or other resource identifiers.

You can specify that test processes should be restarted after it has executed a certain number of
test classes. This can be a useful alternative to giving your test process a very large heap. The f or
property specifies the maximum number of test classes to execute in a test process. The default is
to execute an unlimited number of tests in each test process.

The task has an i gnor eFai | ur es property to control the behavior when tests fail. Test always
executes every test that it detects. It stops the build afterwards if i gnor eFai | ur es is false and
there are failing tests. The default value of i gnor eFai | ur es is false.

20.12.2. System properties

There are two system properties that can affect test execution. Both of these are based off of the
name of the test task with a suffix.

Setting a system property of t askName. si ngl e =t est NanePat t er n will only execute tests that
match the specified t est NanePatt ern. The t askName can be a full multi-project path like
":subl:sub2:test” or just the task name. The t est NanePat t er n will be used to form an include
pattern of "**/testNamePattern*.class". If no tests with this pattern can be found an exception is
thrown. This is to shield you from false security. If tests of more then one subproject are executed,
the pattern is applied to each subproject. An exception is thrown if no tests can be found for a
particular subproject. In such a case you can use the path notation of the pattern, so that the
pattern is applied only to the test task of a specific subproject. Alternatively you can specify the
fully qualified task name to be executed. You can also specify multiple patterns. Examples:

® gradle -Dtest.single=Thi sUni quel yNanedTest test

® gradle -Dtest.single=al/b/ test

® gradle -DintegTest.single=*IntegrationTest integTest
® gradle -Dtest.single=:projl:test:Custoner build

® gradle -DintegTest.single=c/d/ :projl:integTest

Setting a system property of t askNanme. debug will run the tests in debug mode, suspended and
listening on port 5005. For example: gradl e test -Dtest. singl e=Thi sUni quel yNanedTes

Page 136 of 301

20.12.3. Test detection

The Test task detects which classes are test classes by inspecting the compiled test classes. By
default it scans all . ¢l ass files. You can set custom includes / excludes, only those classes will be
scanned. Depending on the test framework used (JUnit / TestNG) the test class detection uses
different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria
match, the class is considered to be a JUnit test class:

® Class or a super class extends Test Case or G oovyTest Case

® Class or a super class is annotated with @RunW t h

® Class or a super class contain a method annotated with @est
When using TestNG, we scan for methods annotated with @est .

Note that abstract classes are not executed. Gradle also scan up the inheritance tree into jar files
on the test classpath.

In case you don't want to use the test class detection, you can disable it by setting scanFor Test Cl
to false. This will make the test task only use the includes / excludes to find test classes. If scanFot
is disabled and no include or exclude patterns are specified, the respective defaults are used. For
include thisis "**/ *Test s. cl ass", "**/*Test.cl ass" and the for exclude itis " **/ Abstr

20.12.4. Convention values
Table 20.13. Java plugin - test properties

Task Property Type Default Value

test Cl assesDi r File sourceSets.test.classesDir

cl asspath Fil eColl ection sourceSets.test.runtinmed asspath

testResultsDir File testResultsDir

testReportDir File test ReportDir

testSrcDirs Li st<Fil e> sourceSets.test.java.srcDirs
20.13. Jar

The j ar task creates a JAR file containing the class files and resources of the project. The JAR file
is declared as an artifact in the ar chi ves dependency configuration. This means that the JAR is
available in the classpath of a dependent project. If you upload your project into a repository, this
JAR is declared as part of the dependency descriptor. You can learn more about how to work with
archives in Section 15.8, “Creating archives” and artifact configurations in Chapter 36, Artifact
Management.

Page 137 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html

20.13.1. Manifest

archive is generated, a corresponding MANI FEST. MF file is written into the archive.

Example 20.10. Customization of MANIFEST.MF
bui | d. gradl e

jar {
mani f est {
attributes("Inplenentation-Title": "Gradle", "Inplenentation-Version"
}
}

You can create stand alone instances of a Mani f est. You can use that for example, to share
manifest information between jars.
Example 20.11. Creating a manifest object.

bui I d. gradl e

shar edMani fest = mani fest {
attributes("Inplementation-Title": "Gradle", "Inplenentation-Version": ver:

}
task fooJdar(type: Jar) {
mani f est = project. manifest {
from shar edMani f est
}

You can merge other manifests into any Mani f est object. The other manifests might be either
described by a file path or, like in the example above, by a reference to another Mani f est object.

Example 20.12. Separate MANIFEST.MF for a particular archive
bui I d. gradl e

task barJar(type: Jar) {
mani f est {
attri butes keyl: 'valuel
from sharedMani fest, 'src/config/ basemanifest.txt

from(' src/config/javabasemani fest.txt', 'src/config/libbasemanifest.txl
eachEntry { details ->
if (details.baseValue != details.nergeVal ue) {
det ai | s. val ue = baseVal ue
}
if (details.key == "foo') {
det ai | s. excl ude()
}

Page 138 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/java/archives/Manifest.html

Manifest are merged in the order they are declared by the f r omstatement. If the based manifest
and the merged manifest both define values for the same key, the merged manifest wins by
default. You can fully customize the merge behavior behavior by adding eachEnt ry actions in
which you have access to a Mani f est Mer geDet ai | s instance for each entry of the resulting
manifest. The merge is not immediately triggered by the from statement. It is done lazily, either
when generating the jar, or by calling wri t eTo or ef f ecti veMani f est

You can easily write a manifest to disk.
Example 20.13. Separate MANIFEST.MF for a particular archive
buil d. gradl e

jar.manifest.witeTo("$bui | dDi r/ nymani fest.nf")

20.13.2. Metalnf

The convention object of the Java plugin has a et al nf property pointing to a list of Fi | eSet
objects. With these file sets you can define which files should be in the META- | NF directory of a
JAR or a WAR archive.

met al nf << new Fi | eSet (soneDbir)

20.14. Uploading

How to upload your archives is described in Chapter 36, Artifact Management.

Page 139 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

21

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with
Groovy-only projects and with mixed Java/Groovy projects. It can even deal with Java-only

projects. 7] The Groovy plugin supports joint compilation of Java and Groovy. This means that
your project can contain Groovy classes which use Java classes, and vice versa.

21.1. Usage

To use the Groovy plugin, include in your build script:

Example 21.1. Using the Groovy plugin
bui I d. gradl e

apply plugin: 'groovy'

21.2. Tasks
The Groovy plugin adds the following tasks to the project.

Page 140 of 301

Table 21.1. Groovy plugin - tasks

Task name Depends on Type

conpi | eG oovy conpi | eJava G oovyConpi | e

conpi | eTest G oovy conpil eTestJava G oovyConpile

conpi | eSour ceSet G oavynpi | eSour ceSet Ja@aoovy Conpi | e

gr oovydoc - G oovydoc

Description

Compiles production
Groovy source files
using groovyc.

Compiles test Groovy
source files using
groovyc.

Compiles the given
source set's Groovy
source files using
groovyc.

Generates API
documentation for the
production Groovy
source files using
groovydoc.

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 21.2. Groovy plugin - additional task dependencies

Task name Depends on
classes compileGroovy
testClasses compileTestGroovy

sour ceSet Classes compileSour ceSet Groovy

Figure 21.1. Groovy plugin - tasks

[procewﬁesourceS]_’ CIasses] ;
compileGroovy

compileTestJava

21.3. Project layout

processTestResources

CompileTestGroovy

testClasses

The Groovy plugin assumes the project layout shown in Table 21.3, “Groovy plugin - project layout”

. All the Groovy source directories can contain Groovy and Java code. The Java source directories

may only contain Java source code. 8

] None of these directories need exist or have anything in

them. The Groovy plugin will compile whatever it finds, and handles anything which is missing.

Page 141 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

Table 21.3. Groovy plugin - project layout

Directory Meaning
src/ mai n/ j ava Production Java source

src/ mai n/ resour ces Production resources

src/ mai n/ gr oovy Production Groovy source. May also contain Java source for joint
compilation.
src/test/java Test Java source

src/test/resources Test resources

src/test/groovy Test Groovy source. May also contain Java source for joint
compilation.

src/sourceSet/java Java source for the given source set
src/ sour ceSet / r esour cRResources for the given source set

src/ sourceSet / groovy Groovy source for the given source set. May also contain Java
source for joint compilation.

21.3.1. Changing the project layout
TBD

Example 21.2. Custom Groovy source layout

bui l d. gradl e

sourceSets {
mai n {
groovy {
srcDir 'src/groovy'
}

21.4. Dependency management

The Groovy plugin adds a dependency configuration called gr oovy.

Gradle is written in Groovy and allows you to write your build scripts in Groovy. But this is an
internal aspect of Gradle which is strictly separated from building Groovy projects. You are free to
choose the Groovy version your project should be build with. This Groovy version is not just used
for compiling your code and running your tests. The gr oovyc compiler and the the gr oovydoc
tool are also taken from the Groovy version you provide. As usual, with freedom comes
responsibility ;). You are not just free to choose a Groovy version, you have to provide one. Gradle
expects that the groovy libraries are assigned to the gr oovy dependency configuration. Here is an
example using the public Maven repository:

Page 142 of 301

Example 21.3. Configuration of Groovy plugin

bui | d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
groovy group: 'org.codehaus.groovy', name: 'groovy', version: '1.7.10

}

And here is an example using the Groovy JARs checked into the | i b directory of the source tree:

Example 21.4. Configuration of Groovy plugin

bui I d. gradl e

repositories {
flatDir(dirs: file('lib"))
}

dependenci es {
groovy nmodul e(' :groovy:1.6.0") {
dependency(' asmasmal | :2.2.3")
dependency('antlr:antlr:2.7.7")
dependency(' conmons-cli:comons-cli:1l.2")
nmodul e(' :ant:1.7.0") {
dependencies(':ant-junit:1.7.0:jar', ':ant-launcher:1.7.0")
}

21.5. Convention properties

The Groovy plugin does not add any convention properties to the project.

21.6. Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You
can use these properties in your build script as though they were properties of the source set
object (see Section 18.2, “Using the convention object”).

Page 143 of 301

Table 21.4. Groovy plugin - source set properties

Property name Type Default Description
value
gr oovy Sour ceDi r ect or ySet Not null The Groovy source files of
(read-only) this source set. Contains

all . groovy and . j ava
files found in the Groovy
source directories, and
excludes all other types of

files.

groovy.srcDirs Set<Fil e>. Can set [proj ect Di r/ sThed saumeEglieatories
using anything containing the Groovy
described in source files of this source
Section 15.5, set. May also contain Java
“Specifying a set of source files for joint
input files”. compilation.

al | Groovy Fi | eTr ee (read-only) Not null All Groovy source files of

this source set. Contains
only the . gr oovy files
found in the Groovy source
directories.

These properties are provided by a convention object of type Gr oovySour ceSet .

The Groovy plugin also modifies some source set properties:
Table 21.5. Groovy plugin - source set properties

Property name Change
al | Java Adds all . j ava files found in the Groovy source directories.

al | Sour ce Adds all source files found in the Groovy source directories.

21.7. CompileGroovy

The Groovy plugin adds a Gr oovyConpi | e instance for each source set in the project. The task
type extends the Conpi | e task (see Section 20.11, “CompileJava”). The compile task delegates to
the Ant Groovyc task to do the compile. Via the compile task you can set most of the properties of
Ants Groovyc task.

Page 144 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/GroovySourceSet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Table 21.6. Groovy plugin - CompileGroovy properties

Task Property Type

cl asspath Fil eCol | ection

sour ce Fi | eTr ee. Can set using anything
described in Section 15.5, “Specifying a set
of input files’.

destinationDir File.

groovyC asspath Fil eCol | ecti on

Default Value
sour ceSet . conpi | ed

sour ceSet. groovy

sour ceSet . cl assesDi

gr oovy configuration

[7] We don't recommend this, as the Groovy plugin uses the Groovyc Ant task to compile the
sources. For pure Java projects you might rather stick with j avac. In particular as you would have

to supply a groovy jar for doing this.

[8] We are using the same conventions as introduced by Russel Winders Gant tool (

http://gant.codehaus.org).

Page 145 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileCollection.html
http://gant.codehaus.org

22
The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with
Scala-only projects and with mixed Java/Scala projects. It can even deal with Java-only projects.
The Scala plugin supports joint compilation of Java and Scala source. This means your project can
contain Scala classes which use Java classes, and vice versa.

22.1. Usage

To use the Scala plugin, include in your build script:

Example 22.1. Using the Scala plugin
bui | d. gradl e

apply plugin: 'scala

22.2. Tasks

The Scala plugin adds the following tasks to the project.

Page 146 of 301

Table 22.1. Scala plugin - tasks

Task name Depends on Type Description

conpi | eScal a conpi | eJava Scal aConpi |l e Compiles production
Scala source files using
scalac.

conpi | eTest Scal a conpi |l eTestJava Scal aConpil e Compiles test Scala
source files using scalac.

conpi | eSour ceSet Scat@pi | eSour ceSet Ja%@al aConpi | e ~ Compiles the given
source set's Scala source

files using scalac.

scal adoc - Scal aDoc Generates API
documentation for the
production Scala source
files using scaladoc.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table 22.2. Scala plugin - additional task dependencies

Task name Depends on
cl asses conpi |l eScal a
t est Cl asses conpi | eTest Scal a

sour ceSet Cl asses conpi | eSour ceSet Scal a

Figure 22.1. Scala plugin - tasks

processTestResources

testClasses

compileTestScala

compileJava [processResources '—P classes

compileScala

compileTestJava

scaladoc

22.3. Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can
contain Scala and Java code. The Java source directories may only contain Java source code.
None of these directories need exist or have anything in them. The Scala plugin will compile
whatever it finds, and handles anything which is missing.

Page 147 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Table 22.3. Scala plugin - project layout

Directory Meaning
src/ mai n/ j ava Production Java source

src/ mai n/ resour ces Production resources

src/ mai n/ scal a Production Scala source. May also contain Java source for joint
compilation.
src/test/java Test Java source

src/test/resources Test resources

src/test/scal a Test Scala source. May also contain Java source for joint
compilation.

src/sourceSet/java Java source for the given source set
src/ sour ceSet / r esour cRResources for the given source set

src/ sourceSet/scal a Scala source for the given source set. May also contain Java
source for joint compilation.

22.3.1. Changing the project layout
TBD

Example 22.2. Custom Scala source layout

bui l d. gradl e

sourceSets {
mai n {
scal a {
srchDir 'src/scala'

}

22.4. Dependency Management

The Scala plugin adds a scal aTool s configuration, which it uses to locate the Scala tools, such
as scalac, to use. You must specify the version of Scala to use. Below is an example.

Page 148 of 301

Example 22.3. Declaring the Scala version to use

bui | d. gradl e

repositories {

mavenCentral ()

}

dependenci es {

scal aTool s 'org. scal a-1 ang: scal a-conpi l er: 2. 8. 1
scal aTool s 'org. scal a-1ang: scal a-library: 2.8. 1

conpile 'org.scal a-l1ang: scala-library:2.8.1'

22.5. Convention Properties

The Scala plugin does not add any convention properties to the project.

22.6. Source set properties

The Scala plugin adds the following convention properties to each source set in the project. You
can use these properties in your build script as though they were properties of the source set
object (see Section 18.2, “Using the convention object”).

Table 22.4. Scala plugin - source set properties

Property name

scal a

scala.srcDirs

al | Scal a

Type

Sour ceDi r ect or ySet

(read-only)

Set <Fi | e>. Can set
using anything
described in

Section 15.5,

“Specifying a set of

input files”.

Default Description
value
Not null The Scala source files of this

source set. Contains all . scal
and . j ava files found in the
Scala source directories,

and excludes all other types
of files.

[proj ect Di r/ sThed naumeti@cejries
containing the Scala source
files of this source set. May
also contain Java source
files for joint compilation.

Not null All Scala source files of this
source set. Contains only
the . scal a files found in
the Scala source directories.

Page 149 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/FileTree.html

These convention properties are provided by a convention object of type Scal aSour ceSet .

The Scala plugin also modifies some source set properties:
Table 22.5. Scala plugin - source set properties

Property name Change
al | Java Adds all . j ava files found in the Scala source directories.

al | Sour ce Adds all source files found in the Scala source directories.

22.7. Fast Scala Compiler

The Scala plugin includes support for fsc, the Fast Scala Compiler. f sc runs in a separate daemon

process and can speed up compilation significantly.

Example 22.4. Enabling the Fast Scala Compiler
bui I d. gradl e

conpi | eScal a {
scal aConpi | eOpti ons. useConpi | eDaenmon = true
scal aConpi | eOpt i ons. daenonServer = "l ocal host: 4243"
Note that f sc expects to be restarted whenever the contents of its compile class path change. (It

does detect changes to the compile class path itself.) This makes it less suitable for multi-project
builds.

Page 150 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/ScalaSourceSet.html
http://www.scala-lang.org/docu/files/tools/fsc.html

23

The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files.
It disables the default JAR archive generation of the Java plugin and adds a default WAR archive

task.

23.1. Usage

To use the War plugin, include in your build script:

Example 23.1. Using the War plugin
bui I d. gradl e

apply plugin: "war'

23.2. Tasks
The War plugin adds the following tasks to the project.

Table 23.1. War plugin - tasks

Task name Depends on Type Description

war conpi l e Nar Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 23.2. War plugin - additional task dependencies

Task name Depends on

assemble war

Page 151 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.War.html

Figure 23.1. War plugin - tasks

classes]—P[war]—P[assemble

23.3. Project layout
Table 23.3. War plugin - project layout

Directory Meaning

src/ mai n/ webapp Web application sources

23.4. Dependency management

The War plugin adds two dependency configurations: pr ovi dedConpi | e and pr ovi dedRunt i e
. Those configurations have the same scope as the respective conpile and runtime
configurations, except that they are not added to the WAR archive. It is important to note that those
provi ded configurations work transitively. Let's say you add conmons- ht t pcl i ent: conmons-
to any of the provided configurations. This dependency has a dependency on commons- codec.
This means neither htt pcl i ent nor cormons- codec is added to your WAR, even if conmons- ¢
were an explicit dependency of your conpi | e configuration. If you don't want this transitive
behavior, simply declare your pr ovi ded dependencies like cormons- htt pcl i ent : comons- ht

23.5. Convention properties
Table 23.4. War plugin - directory properties
Property name Type Default value Description

webAppDi rName String src/ mai n/ webapp The name of the web application
source directory, relative to the
project directory.

webAppDi r File proj ect Di r/ webAppDéNevee application source
(read-only) directory.

These properties are provided by a War Pl ugi nConvent i on convention object.

23.6. War

The default behavior of the War task is to copy the content of sr ¢/ mai n/ webapp to the root of the
archive. Your webapp directory may of course contain a VEB- | NF sub-directory, which again may
contain a web. xm file. Your compiled classes are compiled to VEB- | NF/ cl asses. All the

dependencies of the r unt i me [l configuration are copied to V\EB- | NF/ | i b.

Page 152 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/WarPluginConvention.html

Have also a look at War .

23.7. Customizing

Here is an example with the most important customization options:

Example 23.2. Customization of war plugin

Page 153 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.War.html

bui l d. gradl e

group = 'gradle
version = '1.0'
apply plugin: "war'
apply plugin: "jetty

configurations {

}

nor eLi bs

repositories {

}

flatDir(dirs: "$projectDir/lib")
mavenCentral ()

dependenci es {

war

}

jar.

conpi |l e nmodul e(": conpile:1.0") {
dependency ":conpile-transitive-1.0@ar"
dependency ": provi dedConpil e-transitive: 1. 0@ar"
}
provi dedConpi |l e "j avax. servlet:servlet-api:2. 5"
provi dedConpi | e nmodul e(": provi dedConpi | e: 1. 0") {
dependency ": provi dedConpile-transitive: 1. 0@ ar"
}

runtime ":runtine:1.0"

provi dedRuntime ":provi dedRuntine: 1. 0@ ar"
testConpile "junit:junit:4.8. 2"

nor eLi bs ": ot herLib:1.0"

{

from'src/rootContent' // adds a file-set to the root of the archive
weblnf { from'src/additional WebInf' } // adds a file-set to the WEB-INF d
classpath fileTree('additional Libs') // adds a file-set to the WEB-INF/Ilib
classpath configurations.noreLibs // adds a configuration to the VEB-|NF/ I
webXm = file(' src/someVWeb.xm ') // copies a file to VEB-I NF/ web. xn

enabl ed = true

[jettyRun, jettyRunWar]*.daenbn = true
stopKey = 'foo

st opPor t
ht t pPor t

9451
8163

task runTest (dependsOn: jettyRun) << {

}

call Servlet()

task runWar Test (dependsOn: jettyRunWar) << {

}

cal |l Servlet()

private void call Servlet() {

URL url = new URL("http://Iocal host: $httpPort/custoni sed/ hello")
new File(buildDir, "servlet-out.txt").wite(url.text)
jettyStop. execute()

Page 154 of 301

Of course one can configure the different file-sets with a closure to define excludes and includes.

If you want to enable the generation of the default jar archive additional to the war archive just
type:

Example 23.3. Generation of JAR archive in addition to WAR archive

bui | d. gradl e

jar.enabled = true

[9] The runt i me configuration extends the conpi | e configuration.

Page 155 of 301

24
The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR
archive task. It doesn't require the Java plugin, but for projects that also use the Java plugin it
disables the default JAR archive generation.

24.1. Usage

To use the Ear plugin, include in your build script:

Example 24.1. Using the Ear plugin
bui I d. gradl e

apply plugin: "ear’

24.2. Tasks
The Ear plugin adds the following tasks to the project.

Table 24.1. Ear plugin - tasks

Task Depends on Type Description

name

ear conpi | e (only if the Java plugin is also Ear Assembles the application
applied) EAR file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.
Table 24.2. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

Page 156 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ear.Ear.html

24.3. Project layout
Table 24.3. Ear plugin - project layout
Directory Meaning

src/ mai n/ application Earresources, such as a META-INF directory

24.4. Dependency management

The Ear plugin adds two dependency configurations: depl oy and ear | i b. All dependencies in
the depl oy configuration are placed in the root of the EAR archive, and are not
transitive. All dependencies in the ear | i b configuration are placed in the 'lib' directory in the EAR
archive and are transitive.

24.5. Convention properties
Table 24.4. Ear plugin - directory properties

Property name Type
appDi r Name String
i bDi r Nane String

depl oynent Descri pt or org. gradl e. pl ugi ns. ear. descri pt or. Depl oynent Descr

These properties are provided by a Ear Pl ugi nConvent i on convention object.

24.6. Ear

The default behavior of the Ear task is to copy the content of sr ¢/ mai n/ appl i cati on to the root
of the archive. If your appl i cati on directory doesn't contain a META- | NF/ appl i cati on. xni
deployment descriptor then one will be generated for you.

Also have a look at Ear .

Page 157 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ear/EarPluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ear.Ear.html

24.7. Customizing

Here is an example with the most important customization options:

Example 24.2. Customization of ear plugin

bui l d. gradl e

apply pl ugin:

ear

apply plugin: 'java

repositories { mavenCentral () }

dependenci es {

ear

I/
/11

11
/11
11

}

jar.

//followi ng dependencies will becone the ear nodul es and placed in the ear
depl oy project(':war')

//follow ng dependencies will becone ear |ibs and placed in a dir configurt
earlib group: 'log4]', name: 'log4]', version: '1.2. 15", ext: 'jar'
{

appDi rNane 'src/main/app’ // use application netadata found in this foldel
libDirName 'APP-INF/1ib" // put dependency libraries into APP-INF/Ilib insi

/1 also nodify the generated depl oynent descri |
depl oyment Descriptor { // customentries for application.xmn:

fileName = "application.xm ™ // sane as the default val ue

version = "6" [/ sane as the default val ue

applicationName = "cust onear”

initializelnOrder = true

di spl ayNane = "Custom Ear" // defaults to project.nanme

description = "My custoni zed EAR for the G adle docunentation" // def:
libraryDirectory = "APP-INF/Iib" // not needed, because setting |ibDii
nodul e("ny.jar", "java") [// wouldn't deploy since ny.jar isn't a depl«
webModul e("ny.war", "/") [/ wouldn't deploy since ny.war isn't a depl

securityRol e "adm n"
securityRol e "superadm n"
withXm { provider -> // add a customnode to the XM
provi der. asNode() . appendNode(" dat a- source"”, "mny/ datal/ source")
}

enabl ed = true

You can also use customization options that the Jar task provides, such as f r omand net al nf .

If you want to enable the generation of the default jar archive additional to the EAR archive just

type:

Example 24.3. Generation of JAR archive in addition to EAR archive

bui l d. gradl e

jar.

enabl ed = true

Page 158 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Jar.html

24.8. Using custom descriptor file

Let's say you already have the appl i cati on. xm and want to use it instead of configuring the ea
section. To accommodate that place the META- | NF/ appl i cati on. xmi in the right place inside
your source folders (see the appDi r Nare property). The existing file contents will be used and the
explicit configuration in the ear . depl oynent Descri pt or will be ignored.

Page 159 of 301

25

The Jetty Plugin

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web
application to a Jetty web container embedded in the build.

25.1. Usage

To use the Jetty plugin, include in your build script:

Example 25.1. Using the Jetty plugin
buil d. gradl e

apply plugin: "jetty’

25.2. Tasks
The Jetty plugin defines the following tasks:

Table 25.1. Jetty plugin - tasks

Task name Depends Type Description
on
jettyRun conpile JettyRun Starts a Jetty instance and deploys the
exploded web application to it.
jettyRunWar war Jet t yRunWar Starts a Jetty instance and deploys the WAR
to it.
jettyStop - JettySt op Stops the Jetty instance.

Page 160 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.jetty.JettyStop.html

Figure 25.1. Jetty plugin - tasks

jettyRun]

war]—D[jettyRunWar

[classes

[jettyStop

25.3. Project layout

The Jetty plugin uses the same layout as the War plugin.

25.4. Dependency management

The Jetty plugin does not define any dependency configurations.

25.5. Convention properties

The Jetty plugin defines the following convention properties:

Table 25.2. Jetty plugin - properties

Property Type Default Description

name value

htt pPort I nt eger 8080 The TCP port which Jetty should listen for HTTP
requests on.

st opPort I nt eger nul | The TCP port which Jetty should listen for admin
requests on.

st opKey String nul | The key to pass to Jetty when requesting it to
stop.

These properties are provided by a Jet t yPl ugi nConvent i on convention object.

Page 161 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/jetty/JettyPluginConvention.html

26
The Code Quality Plugin

The code quality plugin adds tasks which perform code quality checks and generate reports from
these checks. The following tools are supported:

®* Checkstyle

26.1. Usage

To use the code quality plugin, include in your build script:

Example 26.1. Using the code quality plugin
bui | d. gradl e

apply plugin: 'code-quality’

26.2. Tasks

When used with the Java plugin, the code quality plugin adds the following tasks to the project:
Table 26.1. Code quality plugin - Java tasks

Task name Depends Type Description
on

checkst yl eMai n Checkstyl e Runs Checkstyle against the production

Java source files.

checkstyl eTest conpile Checkstyle Runs Checkstyle against the test Java
source files.

checkst yl eSour ceSet Checkstyl e Runs Checkstyle against the given source
set's Java source files.

When used with the Groovy plugin, the code quality plugin adds the following tasks to the project:

Page 162 of 301

http://checkstyle.sourceforge.net/index.html
http://codenarc.sourceforge.net/index.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Table 26.2. Code quality plugin - tasks

Task name Depends Type Description
on

codenarcMain - CodeNarc Runs CodeNarc against the production Groovy
source files.

codenarcTest - CodeNarc Runs CodeNarc against the test Groovy source
files.

codenarc - CodeNarc Runs CodeNarc against the given source set's

Sour ceSet Groovy source files.

The Code quality plugin adds the following dependencies to tasks added by the Java plugin.
Table 26.3. Code quality plugin - additional task dependencies

Task Depends on
name

check All Checkstyle and CodeNarc tasks, including checkst yl eMai n, checkst yl eTest
, codenar cMai n and codenar cTest

Figure 26.1. Code quality plugin - tasks

codenarchMain

codenarcTest

check

checkstyleMain

classes]—P checkstyleTest

26.3. Project layout

The code quality plugin expects the following project layout:

Table 26.4. Code quality plugin - project layout

File Meaning
confi g/ checkstyl e/ checkstyl e. xm Checkstyle configuration file

confi g/ codenar c/ codenar c. xm CodeNarc configuration file

Page 163 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.quality.CodeNarc.html

26.4. Dependency management

The code quality plugin does not add any dependency configurations.

26.5. Convention properties

When used with the Java plugin, the code quality plugin adds the following convention properties

to the project:

Table 26.5. Code quality plugin - convention properties

Property name Type

checkstyl eConfigFileNanme String

checkstyl eConfigFile File
(read-only)

checkstyl eResultsDirNanme String

checkstyl eResul tsDir File
(read-only)
checkstyl eProperties Map

Default value

confi g/ checkstyl e/ checkstyl e. xm

proj ect Di r/ checkst yl eConfi gFi | eNam

checkstyl e

bui I dDi r/ checkstyl eResul t sDi r Nane

[:]

These convention properties are provided by a convention object of type

JavaCodeQual i t yPl ugi nConvent i on.

When used with the Groovy plugin, the code quality plugin adds the following convention

Page 164 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/quality/JavaCodeQualityPluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/quality/JavaCodeQualityPluginConvention.html

properties to the project:
Table 26.6. Code quality plugin - convention properties

Property name Type Default value Descrif

codeNar cConfi gFil eNanme String confi g/ codenar c/ codenar c. xm The loci
of the
CodeN:z¢
configul
file, rela
to the
project
director

codeNar cConfigFil e File proj ect Di r/ codeNar cConfi gFi | eNahfee
(read-only) CodeN:¢
configui

file.

codeNar cReportsDirName String codenarc The nar
the dire
to gene
CodeNz¢
reports
relative
the repc
director

codeNar cReportsDi r File reportsbDi r/ codeNar cReport sDi r Nahfee
(read-only) director
generat
CodeNz¢
reports

These convention properties are provided by a convention object of type
G oovyCodeQual i t yPl ugi nConventi on.

Page 165 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/quality/GroovyCodeQualityPluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/quality/GroovyCodeQualityPluginConvention.html

21

The Sonar Plugin

quality. The plugin adds a sonar task to the project, which analyzes the project's source code and
stores the results in Sonar's database.

The sonar task is a standalone task that needs to be executed explicitly. By default, it gets
configured to analyze the Java code in the main source set. In a typical setup, the task would be
run once per day on a build server.

Only projects which have the Java plugin applied (possibly by way of another plugin) are affected
by the Sonar plugin. Other projects can still declare a task of type Sonar and configure it manually.

27.1. Usage

At a minimum, the Sonar plugin has to be applied to the project.

Example 27.1. Using the Sonar plugin
bui | d. gradl e

apply plugin: "sonar"

Typically, it is also necessary to configure connection settings for the Sonar server and database.

Example 27.2. Configuring connection settings

bui I d. gradl e

sonar {
serverUl = "http://ny.server.conf
gl obal Property "sonar.jdbc.url", "jdbc:nmysql://ny.server.com sonar"”
gl obal Property "sonar.jdbc. driverd assNane", "com nysql.jdbc.Driver"
gl obal Property "sonar.jdbc. usernane", "myusernane"
gl obal Property "sonar.j dbc. password", "mypassword"

}

Page 166 of 301

http://www.sonarsource.org
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.sonar.Sonar.html

For a complete documentation of all Sonar-specific configuration properties, see the Sonar
documentation.

27.2. Tasks

The Sonar plugin adds the following tasks to the project.

Table 27.1. Sonar plugin - tasks

Task Depends Type Description
name on
sonar - Sonar Analyzes the project's source code and stores results in

Sonar's database.
27.3. Limitations

®* The projects of a multi-project build are currently analyzed independently. This means that
no aggregated view will be available.

Page 167 of 301

http://docs.codehaus.org/display/SONAR/Advanced+parameters
http://docs.codehaus.org/display/SONAR/Advanced+parameters
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.sonar.Sonar.html

28

The OSGI Plugin

The OSGi plugin provides a factory method to create an Osgi Mani f est object. Gsgi Mani f est

extends Mani fest. To learn more about generic manifest handling, see Section 20.13.1,

default jar with an Gsgi Mani f est object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens BND tool.

28.1. Usage
To use the OSGi plugin, include in your build script:

Example 28.1. Using the OSGi plugin
bui l d. gradl e

apply plugin: '"osgi’

28.2. Implicitly applied plugins
Applies the Java base plugin.

28.3. Tasks

This plugin does not add any tasks.

28.4. Dependency management
TBD

28.5. Convention object

The OSGi plugin adds the following convention object: Osgi Pl ugi nConvent i on

Page 168 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Code/Bnd
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/osgi/OsgiPluginConvention.html

28.5.1. Convention properties
The OSGi plugin does not add any convention properties to the project.

28.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the APl documentation of the
convention object.

Table 28.1. OSGi methods

Method Return Type Description

osgiManifest() Csgi Mani f est Returns an OsgiManifest object.

osgiManifest(Closure ~ Osgi Mani f est Returns an OsgiManifest object configured by the
cl) closure.

The classes in the classes dir are analyzed regarding there package dependencies and the
packages they expose. Based on this the Import-Package and the Export-Package values of the
OSGi Manifest are calculated. If the classpath contains jars with an OSGi bundle, the bundle
information is used to specify version information for the Import-Package value. Beside the explicit
properties of the Gsgi Mani f est object you can add instructions.

Example 28.2. Configuration of OSGi MANIFEST.MF file
bui l d. gradl e

jar {
mani f est {
name = 'overwittenSpeci al Osgi Nane
i nstruction 'Private-Package',
‘org. myconp. packagel',
'org. myconp. package2
i nstruction 'Bundl e-Vendor', ' M/Conpany
i nstruction 'Bundl e-Description', 'Platforn2: Metrics 2 Measures Frane
i nstruction 'Bundl e-DocURL', 'http://ww. nyconpany. comni
}
}
task fooJdar(type: Jar) {
mani f est = osgi Mani fest {
i nstruction 'Bundl e-Vendor', ' MyConpany
}

The first argument of the instruction call is the key of the property. The other arguments form the
value. They are joined by Gradle with the , separator. To learn more about the available
instructions have a look at the BND tool.

Page 169 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Code/Bnd

29

The Eclipse Plugin

import the project into Eclipse (File - Import... - Existing Projects into Workspace). Both external
dependencies (including associated source and javadoc files) and project dependencies are
considered.

Since 1.0-milestone-4 WTP-generating code was refactored into a separate plugin called ecl i pse:
. So if you are interested in WTP integration then only apply the ecl i pse- wt p plugin. Otherwise
applying ecl i pse plugin is enough. This change was requested by eclipse users who take
advantage of war or ear plugin but they don't use eclipse WTP. Internally, ecl i pse-w p also
applies the ecl i pse plugin so you should not apply both of those plugins.

What exactly the Eclipse plugin generates depends on which other plugins are used:

Table 29.1. Eclipse plugin behavior

Plugin Description

None Generates minimal . pr oj ect file.
Java Adds Java configuration to . pr oj ect . Generates . cl asspat h and JDT settings
file.

Groovy Adds Groovy configuration to . pr oj ect file.

Scala Adds Scala support to . pr oj ect file.

War Adds web application support to . pr oj ect file. Generates WTP settings files only if
ecl i pse-wt p plugin was applied.

Ear Adds ear application support to . pr oj ect file. Generates WTP settings files only if ec
plugin was applied.

One focus of the Eclipse plugin is to be open to customization. Therfore it provides a standardized
set of hooks for adding and removing content from the generated files.

Page 170 of 301

http://eclipse.org

29.1. Usage

To use the Eclipse plugin, include this in your build script:

Example 29.1. Using the Eclipse plugin
bui | d. gradl e

apply plugin: '"eclipse'

The Eclipse plugin adds a number of tasks to your projects. The main tasks that you will use are
the ecl i pse and cl eanEcl i pse tasks.

29.2. Tasks

The Eclipse plugin adds the tasks shown below to a project.
Table 29.2. Eclipse plugin - tasks

Task name Depends on Type

ecli pse ecl i pseProject, eclipseC asspash

,eclipseddt, eclipseW pConponent
, cl eanEcl i pseW pFacet

cl eanEcl i pse cl eanEcl i pseProj ect, cl eanEcDélpste€’] asspat h

, cl eanEcl i pseJdt, cl eanEcl i pseW pConponent
, cl eanEcl i pseW pFacet

cl eanEcl i pseProj ect - Del et e

cl eanEcl i psed asspat h - Delete

cl eanEcl i pseJdt - Del et e

cl eanEcl i pseW pConponent - Del ete

cl eanEcl i pseW pFacet - Del et e

ecl i pseProj ect - Gener at eEcl i psePr oj
ecl i pseC asspat h - CGener at eEcl i psed as
ecl i pseJdt - Gener at eEcl i pseJdt
ecl i pseW pConponent - CGener at eEcl i pseW p(
ecl i pseW pFacet - Cener at eEcl i pseW pl

Page 171 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html

29.3. Configuration
Table 29.3. Configuration of the eclipse plugin
Model Reference name Description

Ecl i pseMbdel ecl i pse Top level element that enables
configuration of the eclipse plugin
in a DSL-friendly fashion

Ecl i pseProj ect ecl i pse. proj ect Allows configuring project
information

Ecl i pseC asspat h ecl i pse.classpath Allows configuring classpath
information

Ecl i pseJdt eclipse.jdt Allows configuring jdt information

(sourceftarget java compatibility)

Ecl i pseW pConponent ecli pse. wt p. conponent Allows configuring wtp
component information only if ecl i |

plugin was applied.

Ecl i pseW pFacet eclipse. wtp. facet Allows configuring wtp facet
information only if ecl i pse-wt p

plugin was applied.

29.4. Customizing the generated files

The eclipse plugin provides the same hooks and behavior for customizing the generated files.

The tasks recognize existing Eclipse files, and merge them with the generated content.

29.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

29.4.1.1. Disabling merging with a complete overwrite

To completely overwrite existing Eclipse files, execute a clean task together with its corresponding
generation task, for example gradl e cl eanEcli pse ecli pse (in that order). If you want to
make this the default behavior, add ecl i pse. dependsOn(cl eanEcl i pse) to your build script.
This makes it unnecessary to execute the clean task explicitly.

Complete overwrite works equally well for individual files, for example by executing gr adl e cl ear

29.4.2. Hooking into the generation lifecycle

The Eclipse plugin provides domain classes modeling the sections of the Eclipse files that are
generated by Gradle. The generation lifecycle is as follows:

Page 172 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

1. If there is an existing file, its whole XML content is parsed and stored in memory; otherwise,
a default file is used in its place

2. The domain objects are populated with the relevant content of the existing file

3. The bef or eMer ged hook is executed

4. The domain objects are populated with content from Gradle's build model, which may require
merging with content from the existing file

5. The whenMer ged hook is executed

6. All sections modeled by the domain objects are removed from the in-memory XML
representation

7. The domain objects inject their content into the in-memory XML representation

8. Thew t hXm hook is executed

9. The in-memory XML representation is written to disk

The following table lists the domain object used for each of the Eclipse model types:

Table 29.4. Advanced configuration hooks

Model beforeMerged { arg ->} whenMerged { arg ->} v
argument type argument type 3

Ecl i pseProj ect Project Proj ect %

Eclipsed asspath d asspath d asspath 2

EclipseJdt Jdt. Jdt.

Ecl i pseW pConponent W pConponent W pConponent X

Ecl i pseW pFacet W pFacet W pFacet 2

29.4.2.1. Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes
made directly in the IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts
of the existing content. The following example removes all existing dependencies from the Cl asspz
domain object:

Example 29.2. Partial Overwrite for Classpath

bui l d. gradl e

eclipse.classpath.file {
bef oreMerged { cl asspath ->
classpath.entries.removeAll { entry -> entry.kind == "[ib" || entry.Kkil

}

The resulting . cl asspat h file will only contain Gradle-generated dependency entries, but not any
other dependency entries that may have been present in the original file. (In the case of
dependency entries, this is also the default behavior.) Other sections of the . cl asspat h file will
be either left as-is or merged. The same could be done for the natures in the . pr oj ect file:

Page 173 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html

Example 29.3. Partial Overwrite for Project

bui | d. gradl e

eclipse.project.file.beforeMerged { project ->
proj ect. natures.clear()

}

29.4.2.2. Modifying the fully populated domain objects

The whenMer ged hook allows to manipulate the fully populated domain objects. Often this is the
preferred way to customize Eclipse files. Here is how you would export all the dependencies of an
Eclipse project:

Example 29.4. Export Dependencies

bui l d. gradl e

eclipse.classpath.file {
whenMerged { classpath ->
classpath.entries.findAll { entry -> entry.kind == "|ib" }*.exported =
}

29.4.2.3. Modifying the XML representation

The wi t hXm hook allows to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient
than manipulating the domain objects. In return, you get total control over the generated file,
including sections not modeled by the domain objects.

Example 29.5. Customizing the XML
bui I d. gradl e
apply plugin: '"eclipse-wp'

eclipse.wtp.facet.file.withXm { provider ->
provi der.asNode().fixed.find { it. @acet == "jst.java' }.@acet = "jst2.ja
}

Page 174 of 301

30

The IDEA Plugin

project from IDEA (File - Open Project). Both external dependencies (including associated source
and javadoc files) and project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:
Table 30.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace file
if the project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized
set of hooks for adding and removing content from the generated files.

30.1. Usage
To use the IDEA plugin, include this in your build script:

Example 30.1. Using the IDEA plugin
bui l d. gradl e

apply plugin: 'idea

The IDEA plugin adds a number of tasks to your project. The main tasks that you will use are the i ¢
and cl eanl dea tasks.

Page 175 of 301

http://www.jetbrains.com/idea/

30.2. Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that cl ean does not depend on ¢
. It's because workspace contains a lot of user specific temporary data and typically it is not
desirable to manipulate it outside IDEA.

Table 30.2. IDEA plugin - Tasks

Task name

i dea

cl eanl dea

cl eanl deaPr oj ect

cl eanl deaModul e

cl eanl deaWr kspace

i deaPr oj ect

i deaModul e

i deaWbr kspace

Depends on

Type

i deaPr oj ect, i deaMbdul e

, i deaWdr kspace

cl eanl deaPr oj ect
, cl eanl deaMbdul e

Del et e

Gener at el deaPr oj ect

Cener at el deaModul e

Gener at el deaWbr kspace

Descriptior

Generates
all IDEA
configuratio
files

Removes al
IDEA
configuratio
files

Removes
the IDEA
project file

Removes
the IDEA
module file

Removes
the IDEA
workspace
file

Generates
the . i pr
file. This
task is only
added to the
root project.

Generates
the . im fil

Generates
the . iws
file. This
task is only
added to the
root project.

Page 176 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

30.3. Configuration
Table 30.3. Configuration of the idea plugin
Model Reference name Description

| deaMbdel i dea Top level element that enables configuration of the
idea plugin in a DSL-friendly fashion

| deaPr oj ect i dea. proj ect Allows configuring project information

| deaMbdul e i dea. nodul e Allows configuring module information

| deaWbr kspace i dea. wor kspace Allows configuring the workspace xml

30.4. Customizing the generated files

IDEA plugin provides hooks and behavior for customizing the generated content. The workspace
file can effectively only be manipulated via the wi t hXm hook because its corresponding domain
object is essentially empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

30.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

30.4.1.1. Disabling merging with a complete overwrite

To completely overwrite existing IDEA files, execute a clean task together with its corresponding
generation task, for example gr adl e cl eanl dea i dea (in that order). If you want to make this
the default behavior, add i dea. dependsOn(cl eanl dea) to your build script. This makes it
unnecessary to execute the clean task explicitly.

Complete overwrite works equally well for individual files, for example by executing gr adl e cl ear

30.4.2. Hooking into the generation lifecycle

The IDEA plugin provides domain classes modeling the sections of the IDEA files that are
generated by Gradle. The generation lifecycle is as follows:

1. If there is an existing file, its whole XML content is parsed and stored in memory; otherwise,
a default file is used in its place

2. The domain objects are populated with the relevant content of the existing file

The bef or eMer ged hook is executed

4. The domain objects are populated with content from Gradle's build model, which may require
merging with content from the existing file

5. The whenMer ged hook is executed

6. All sections modeled by the domain objects are removed from the in-memory XML

w

Page 177 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

representation
7. The domain objects inject their content into the in-memory XML representation
8. Thew t hXml hook is executed
9. The in-memory XML representation is written to disk

The following table lists the domain objects used for each of the IDEA task types:

Table 30.4. Idea plugin hooks

Model beforeMerged { arg ->} whenMerged { arg ->} wthXn

argument type argument type argumen
| deaPr oj ect Project Project xm Prov
1 deaMbdul e Modul e Modul e Xm Prov
| deaWr kspace Wor kspace Wor kspace Xm Pr ov

30.4.2.1. Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes
made directly in the IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts
of the existing content. The following example removes all existing dependencies from the Modul e
domain object:

Example 30.2. Partial Overwrite for Module

bui I d. gradl e

i dea. nodul e.im {
bef oreMerged { nodule ->
nodul e. dependenci es. cl ear ()

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency
entries, this is also the default behavior.) Other sections of the module file will be either left as-is or
merged. The same could be done for the module paths in the project file:

Example 30.3. Partial Overwrite for Project
buil d. gradl e
i dea. project.ipr {

bef oreMerged { project ->
proj ect. nodul ePat hs. cl ear ()

}

Page 178 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/XmlProvider.html

30.4.2.2. Modifying the fully populated domain objects

The whenMer ged hook allows to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export all the dependencies of an
IDEA module:

Example 30.4. Export Dependencies

bui I d. gradl e

i dea. nodul e.im {
whenMerged { nodule ->
nodul e. dependenci es*. exported = true

}

30.4.2.3. Modifying the XML representation

The wi t hXm hook allows to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient
than manipulating the domain objects. In return, you get total control over the generated file,
including sections not modeled by the domain objects.

Example 30.5. Customizing the XML

bui | d. gradl e

i dea. project.ipr {
withXm { provider ->
provi der. node. conponent.find { it.@ane == 'VcsDirectoryMappi ngs' }.
}

30.5. Further things to consider

The paths of the dependencies in the generated IDEA files are absolute. If you manually define a
path variable pointing to the Gradle dependency cache, IDEA will automatically replace the
absolute dependency paths with this path variable. If you use such a path variable, you need to
configure this path variable via i dea. pat hVari abl es, so that it can do a proper merge without
creating duplicates.

Page 179 of 301

31

The Antlr Plugin

31.1. Usage

To use the Antlr plugin, include in your build script:

Example 31.1. Using the Antlr plugin
bui | d. gradl e

apply plugin: "antlr’

31.2. Tasks

The Antlr plugin adds a number of tasks to your project, as shown below.

Table 31.1. Antlr plugin - tasks

Task name Depends Type Description
on
gener at eG ammar Sour ce - Ant|rTask Generates the source files
for all production Antlr
grammars.
gener at eTest G ammar Source - Antl rTask Generates the source files

for all test Antlr grammatrs.

gener at eSour ceSet G anmar Source Ant|rTask Generates the source files
for all Antlr grammars for the
given source set.

The Antlr plugin adds the following dependencies to tasks added by the Java plugin.

Page 180 of 301

http://www.antlr.org/
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table 31.2. Antlr plugin - additional task dependencies

Task name Depends on
compileJava generateGrammarSource
compileTestJava generateTestGrammarSource

compileSour ceSet Java generateSour ceSet GrammarSource

31.3. Project layout
Table 31.3. Antlr plugin - project layout

Directory Meaning
src/main/antlr Production Antlr grammar files.
src/test/antlr Test Antlr grammar files.

src/sourceSet/antlr Antlr grammar files for the given source set.

31.4. Dependency management

The Antlr plugin adds an ant | r dependency configuration. You use this to declare the version of
Antlr you wish to use.
Example 31.2. Declare Antlr version

bui l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
antlr "antlr:antlr:2. 7.7

}

31.5. Convention properties

The Antlr plugin does not add any convention properties.

31.6. Source set properties

The Antlr plugin adds the following properties to each source set in the project.

Page 181 of 301

Table 31.4. Antlr plugin - source set properties

Property name Type Default Description
value
antlr Sour ceDi r ect or ySet Not null The Antlr grammar files of
(read-only) this source set. Contains all . g

found in the Antlr source
directories, and excludes all
other types of files.

antlr.srcDirs Set<File>. Can set [proj ect Di r/ sTled paurekaitectdries
using anything containing the Antlr
described in grammar files of this source
Section 15.5, set.
“Specifying a set of
input files”.

Page 182 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/SourceDirectorySet.html

32

The Project Report Plugin

The Project report plugin is currently a work in progress, and at this stage doesn't do
particularly much. We plan to add much more to these reports in future releases of Gradle.

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. Those tasks generate exactly the same content as the command line
reports triggered by gr adl e tasks, gradl e dependenci es and gradl e properties (see
Section 10.5, “Obtaining information about your build”). In contrast to the command line reports,
the report plugin generates the reports into a file. There is also an aggregating task that depends
on all report tasks added by the plugin.

32.1. Usage

To use the Project report plugin, include in your build script:

apply plugin: 'project-report’

32.2. Tasks

The project report plugin defines the following tasks:

Page 183 of 301

Table 32.1. Project report plugin - tasks

Task name Depends on Type

dependencyRepor t - DependencyReport Task
propertyReport - Propert yReport Task

t askReport - TaskReport Task

proj ect Report dependencyReport, pr opaskyReport

, taskReport

32.3. Project layout

The project report plugin does not require any particular project layout.

32.4. Dependency management

The project report plugin does not define any dependency configurations.

32.5. Convention properties

The project report defines the following convention properties:

Description

Generates
the project
dependency
report.

Generates
the project
property
report.

Generates
the project
task report.

Generates
all project
reports.

Page 184 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Task.html

Table 32.2. Project report plugin - convention properties

Property name

reportsDi r Nanme

reportshDir

proj ects

pr oj ect Report Di r Nanme

proj ect ReportDir

These convention properties

Type
String

File
(read-only)

Set <Pr oj ect >

String

File
(read-only)

Pr oj ect Repor t sPl ugi nConventi on.

Default value

reports

bui | dDi r/report sDi r Nane

A one el enent set with the project

pr oj ect

reportsDir/project ReportDir Name

are provided by a convention object of type

Page 185 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/ProjectReportsPluginConvention.html
http://www.gradle.org/releases/1.0-milestone-4/docs/groovydoc/org/gradle/api/plugins/ProjectReportsPluginConvention.html

33

The Announce Plugin

The Gradle announce plugin enables you to publish messages on succeeded tasks to your
favourite platforms. It supports

* Twitter

® Ubuntu Notify

¢ Snarl, a Windows Notification System

®* Growl, a Mac OS X Notification System

33.1. Usage

To use the announce plugin, include in your build script:

Example 33.1. Using the announce plugin

bui I d. gradl e

apply plugin: "announce'

After that, configure you username and password (if required for the service you want to announce
to) with:

Example 33.2. Configure the announce plugin

bui | d. gradl e
announce {
usernane = 'nyld
password = ' nyPassword'

}

Finally, you can use announce with any task by attaching it via task.dolast() as shown below

Page 186 of 301

http://twitter.com
http://ubuntu.com
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 33.3. Using the announce plugin

bui | d. gradl e

task helloWorld << {

ant . echo(nmessage:

}

hel | oVor | d.

announce("Bui | d conpl ete"”,
announce("Build conpl ete",

doLast {

"hel |l 0")

As you can see, the syntax in . doLast is

announce(" MESSAGE",

"TARCET")

"notify-send")
"twitter")

Where MESSAGE is any GString you pass (and might have constructed before). And TARGET

might one of the

following:

Table 33.1. announce plugin targets

target
literal

twitter

snarl

growl

notify-send

33.2. Tasks
TBD

target

Twitter

Snarl
Windows
Notification
Service

Growl Mac
0OS X
Notification
Service

Notify
Ubuntu
Notification
Service

33.3. Project layout

TBD

configuration
parameters

username ,
password

more information

You need to have notify-send installed for
this. Run sudo apt-get install |ibnotif
on Ubuntu to install it.

Page 187 of 301

33.4. Dependency management
TBD

33.5. Convention properties

The announce plugin adds an TBD

TBD

Page 188 of 301

34

The Application Plugin

The Gradle application plugin extends the language plugins with common application related tasks.
It allows running and bundling applications for the jvm.

34.1. Usage

To use the application plugin, include in your build script:

Example 34.1. Using the application plugin
buil d. gradl e

apply plugin: " application'

To define the main-class for the application you have to set the mai nCl assNane property as
shown below

Example 34.2. Configure the application main class

buil d. gradl e

mai nCl assNanme = "org. gradl e. sanmpl e. Mai n"

Then, you can run the application by running gr adl e run. Gradle will take care of building the
application classes, along with their runtime dependencies, and starting the application with the
correct classpath.

The plugin can also build a distribution for your application. The distribution will package up the
runtime dependencies of the application along with some OS specific start scripts. All files stored in
src/ di st will be added to the root of the distribution. You can run gradl e install App to
create an image of the application in bui | d/i nstal | / proj ect Nane. You can run gr adl e di st
to create a ZIP containing the distribution.

Page 189 of 301

34.2. Tasks
The Application plugin adds the following tasks to the project.

Table 34.1. Application plugin - tasks

Task name Depends on Type Description

run cl asses JavaExec Starts the application.

startScripts jar CreateStart Scripts Creates OS specific scripts
to run the project as a JVM
application.

i nstal | App jar,startScriptSync Installs the application into

a specified directory.

distZip jar,startScriptadi p Creates a full distribution
ZIP archive including
runtime libraries and OS
specific scripts.

34.3. Convention properties

The application plugin adds some properties to the project, which you can use to configure its
behaviour. See Pr oj ect .

34.4. Including other resources in the distribution

One of the convention properties added by the plugin is appl i cati onDi stri buti on whichis a
CopySpec. This specification is used by the i nst al | App and di st Zi p tasks as the specification
of what is to be include in the distribution. Above copying the starting scripts to the bi n dir and
necessary jars to | i b in the distribution, all of the files from the src/ di st directory are also
copied. To include any static files in the distribution, simply arrange them in the src/ di st

directory.

If your project generates files to be included in the distribution, e.g. documentation, you can add
these files to the distribution by adding to the appl i cati onDi stri buti on copy spec.

Page 190 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.application.CreateStartScripts.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/file/CopySpec.html

Example 34.3. Include output from other tasks in the application distribution

bui | d. gradl e

task createDocs {
def docs = file("$buil dbir/docs")
outputs.dir docs
doLast {
docs. nkdi rs()
new Fil e(docs, "readne.txt").wite("Read ne!")

}

applicationbDistribution.fron(createDocs.outputs.files) {
into "docs"

}

By specifying that the distribution should include the task's output files (see Section 14.8.1,
“Declaring a task's inputs and outputs”), Gradle knows that the task that produces the files must be
invoked before the distribution can be assembled and will take care of this for you.

Example 34.4. Automatically creating files for distribution

Output of gradl e distZip

> gradle distZip

: creat eDocs

: conpi | eJava

: processResources UP-TO DATE
: cl asses

djar

:startScripts

:distZp

BU LD SUCCESSFUL

Total tine: 1 secs

Page 191 of 301

35

Dependency Management

35.1. Introduction

This chapter gives an overview of issues related with dependency management and presents how
Gradle can be used to overcome them.

Gradle offers a very good support for dependency management. If you are familiar with Maven or
Ivy approach you will be delighted to learn that:

* All the concepts that you already know and like are still there and are fully supported by
Gradle. The current dependency management solutions all require to work with XML
descriptor files and are usually based on remote repositories for downloading the
dependencies. Gradle fully supports this approach.

® Gradle works perfectly with your existent dependency management infrastructure, be it
Maven or Ivy. All the repositories you have set up with your custom POM or ivy files can be
used as they are. No changes necessary.

* Additionally, Gradle offers a simpler approach, which might be better suited for some
projects.

35.2. Dependency management overview

We think dependency management is very important for almost any project. Yet the kind of
dependency management you need depends on the complexity and the environment of your
project. Is your project a distribution or a library? Is it part of an enterprise environment, where it is
integrated into other projects builds or not? But all types of projects share the following
requirements:

®* The version of the jar must be easy to recognize. Sometimes the version is in the Manifest
file of the jar, often not. And even if, it is rather painful to always look into the Manifest file to
learn about the version. Therefore we think that you should only use jars which have their
version as part of their file name.

® |t hopes to be clear what are the first level dependencies and what are the transitive ones.
There are different ways to achieve this. We will look at this later.

Page 192 of 301

® Conflicting versions of the same jar should be detected and either resolved or cause an
exception.

35.2.1. Versioning the jar name

Why do we think this is necessary? Without a dependency management as described above, your
are likely to burn your fingers sooner or later. If it is unclear which version of a jar your are using,
this can introduce subtle bugs which are very hard to find. For example there might be a project
which uses Hibernate 3.0.4. There are some problems with Hibernate so a developer installs
version 3.0.5 of Hibernate on her machine. This did not solve the problem but she forgot to roll
back Hibernate to 3.0.4. Weeks later there is an exception on the integration machine which can't
be reproduced on the developer machine. Without a version in the jar name this problem might
take a long time to debug. Version in the jar names increases the expressiveness of your project
and makes it easier to maintain.

35.2.2. Transitive dependency management

Why is transitive dependency management so important? If you don't know which dependencies
are first level dependencies and which ones are transitive you will soon lose control over your
build. Even Gradle has already 20+ jars. An enterprise project using Spring, Hibernate, etc. easily
ends up with 100+ jars. There is no way to memorize where all these jars come from. If you want to
get rid of a first level dependency you can't be sure which other jars you should remove. Because a
dependency of a first level dependency might also be a first level dependency itself. Or it might be
a transitive dependency of another of your first level dependencies. Many first level dependencies
are runtime dependencies and the transitive dependencies are of course all runtime dependencies.
So the compiler won't help you much here. The end of the story is, as we have seen very often, no
one dares to remove any jar any longer. The project classpath is a complete mess and if a
classpath problem arises, hell on earth invites you for a ride. In one of my former projects, | found
some Idap related jar in the classpath, whose sheer presence, as | found out after much research,
accelerated LDAP access. So removing this jar would not have led to any errors at compile or
runtime.

Gradle offers you different ways to express what are first level and what are transitive
dependencies. Gradle allows you for example to store your jars in CVS or SVN without XML
descriptor files and still use transitive dependency management. Gradle also validates your
dependency hierarchy against the reality of your code by using only the first level dependencies for
compiling.

35.2.3. Version conflicts

In your dependency description you tell Gradle which version of a dependency is needed by
another dependency. This frequently leads to conflicts. Different dependencies rely on different
versions of another dependency. The JVM unfortunately does not offer yet any easy way, to have
different versions of the same jar in the classpath (see Section 35.2.4, “Dependency management
and Java”). What Gradle offers you is a resolution strategy, by default the newest version is used.

To deal with problems due to version conflicts, reports with dependency graphs are also very
helpful. Such reports are another feature of dependency management.

Page 193 of 301

35.2.4. Dependency management and Java

Traditionally, Java has offered no support at all for dealing with libraries and versions. There are no
standard ways to say that f oo- 1. 0. j ar depends on a bar-2. 0. j ar. This has led to proprietary
solutions. The most popular ones are Maven and lvy. Maven is a complete build system whereas
Ivy focuses solely on dependency management.

Both approaches rely on descriptor XML files, which contains information about the dependencies
of a particular jar. Both also use repositories where the actual jars are placed together with their
descriptor files. And both offer resolution for conflicting jar versions in one form or the other. Yet we
think the differences of both approaches are significant in terms of flexibility and maintainability.
Beside this, lvy fully supports the Maven dependency handling. So with Ivy you have access to
both worlds. We like Ivy very much. Gradle uses it under the hood for its dependency
management. Ivy is most often used via Ant and XML descriptors. But it also has an APIl. We
integrate deeply with lvy via its API. This enables us to build new concepts on top of lvy which lvy
does not offer itself.

Right now there is a lot of movement in the field of dependency handling. There is OSGi and there

technologies deal, amongst many other things, also with a painful problem which is neither solved
by Maven nor by lvy. This is enabling different versions of the same jar to be used at runtime.

35.3. How to declare your dependencies

People who know Ivy have come across most of the concepts we are going to introduce now. But
Gradle does not use any XML for declaring the dependencies (e.g. no i vy. xni file). It has its own
notation which is part of the Gradle build file.

35.3.1. Configurations

Dependencies are grouped in configurations. Configurations have a name, a number of other
properties, and they can extend each other. For examples see: Section 9.1, “Artifact

your build. The plugin also assigns configurations to tasks. See Section 20.5, “Dependency
management” for details. Of course you can add your add custom configurations on top of that.
There are many use cases for custom configurations. This is very handy for example for adding
dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be
shipped with your distribution). The configurations are managed by a confi gur ati ons object.
The closure you pass to the configurations object is applied against its API. To learn more about

this API have a look at Conf i gur at i onCont ai ner .

35.3.2. Module dependencies

Module dependencies are the most common dependencies. They correspond to a dependency in
an external repository.

Page 194 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html

Example 35.1. Module dependencies

bui | d. gradl e

dependenci es {
runti me group: 'org.springframework', name: 'spring-core', version: '2.5
runtime 'org.springframework: spring-core: 2.5, 'org.springfranmework: spring
runtime(
[group: 'org.springframework', nane: 'spring-core', version: '2.5],
[group: 'org.springframework', name: 'spring-aop', version: '2.5']
)
runtime(' org. hi bernate: hi bernate: 3.0.5") {
transitive = true

}
runtinme group: 'org.hibernate', name: 'hibernate', version: '3.0.5, trans
runtime(group: 'org.hibernate', nanme: 'hibernate', version: '3.0.5) {

transitive = true

}

Gradle provides different notations for module dependencies. There is a string notation and a map
notation. A module dependency has an API which allows for further configuration. Have a look at
Ext er nal Modul eDependency to learn all about the API. This API provides properties and
configuration methods. Via the string notation you can define a subset the properties. With the map
notation you can define all properties. To have access to the complete API, either with the map or
with the string notation, you can assign a single dependency to a configuration together with a
closure.

If you declare a module dependency, Gradle looks for a corresponding module descriptor file (pom
orivy. xm) in the repositories. If such a module descriptor file exists, it is parsed and the artifacts
of this module (e.g. hi bernate-3.0.5.jar) as well as its dependencies (e.g. cglib) are
downloaded. If no such module descriptor file exists, Gradle looks for a file called hi ber nate-3. 0
to retrieve. In Maven a module can only have one and only one artifact. In Gradle and Ivy a module
can have multiple artifacts. Each artifact can have a different set of dependencies.

35.3.2.1. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the
name of the module. But sometimes, even if the repository contains module descriptors, you want

download a zip from a repository, that does not have module descriptors. Gradle provides an
artifact only notation for those use cases - simply prefix the extension that you want to be
downloaded with' @ sign:

Example 35.2. Artifact only notation

buil d. gradl e
dependenci es {

runtime "org.groovy:groovy:1.5.6@ar"
runtime group: 'org.groovy', nane: 'groovy', version: '1.5.6", ext: 'jar'

Page 195 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

An artifact only notation creates a module dependency which downloads only the artifact file with
the specified extension. Existing module descriptors are ignored.

35.3.2.2. Classifiers

The Maven dependency management has the notion of classifiers. [12 Gradle supports this. To

retrieve classified dependencies from a maven repository you can write:

Example 35.3. Dependency with classifier

bui | d. gradl e

conpile "org.gradle.test.classifiers:service:1.0:jdkl5@ar"
ot her Conf group: 'org.gradle.test.classifiers', name: 'service', version

As you can see in the example, classifiers can be used together with setting an explicit extension
(artifact only notation).

35.3.3. Client module dependencies

Client module dependencies enable you to declare transitive dependencies directly in your build
script. They are a replacement for a module descriptor XML file in an external repository.

Example 35.4. Client module dependencies - transitive dependencies

bui | d. gradl e

dependenci es {
runti me nodul e("org. codehaus. groovy: groovy-all:1.7.10") {
dependency(" commons-cli:comons-cli:1.0") {
transitive = fal se

}

nmodul e(group: 'org.apache.ant', name: 'ant', version: '1.8.2") {
dependenci es "org. apache. ant: ant-launcher:1.8.2@ar", "org.apache.

}

This declares a dependency of your project on Groovy. Groovy itself has dependencies. But
Gradle does not look for an XML descriptor to figure them out but gets the information from the
build file. The dependencies of a client module can be normal module dependencies or artifact
dependencies or another client module. Have also a look at the APl documentation:
Cl i ent Modul e

In the current release client modules have one limitation. Let's say your project is a library and you
want this library to be uploaded to your company's Maven or lvy repository. Gradle uploads the jars
of your project to the company repository together with the XML descriptor file of the
dependencies. If you use client modules the dependency declaration in the XML descriptor file is
not correct. We will improve this in a future release of Gradle.

Page 196 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ClientModule.html

35.3.4. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part
of the same multi-project build. For the latter you can declare Project Dependencies.

Example 35.5. Project dependencies

bui I d. gradl e

dependenci es {
conpi l e project (' :shared")
}

For more information see the APl documentation for Pr o] ect Dependency

Multi-project builds are discussed in Chapter 40, Multi-project Builds.

35.3.5. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding
them to a repository. This can be useful if you cannot, or do not want to, place certain files in a
repository. Or if you do not want to use any repositories at all for storing your dependencies.

dependency:

Example 35.6. File dependencies

bui I d. gradl e
dependenci es {
runtime files('libs/a.jar', "libs/b.jar")
runtine fileTree(dir: "libs', include: '"*.jar")

File dependencies are not included in the published dependency descriptor for your project.
However, file dependencies are included in transitive project dependencies within the same build.
This means they cannot be used outside the current build, but they can be used with the same
build.

You can declare which tasks produce the files for a file dependency. You might do this when, for
example, the files are generated by the build.

Page 197 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Example 35.7. Generated file dependencies

bui | d. gradl e

dependenci es {
conpile files("$buildDir/classes") {
builtBy 'conpile
}

}

task conpile << {
println 'compiling classes'
}

task |ist(dependsOn: configurations.conpile) << {
println "classpath = ${configurations.conpile.collect {File file -> file.n:
}

Outputofgradle -qg |i st

> gradle -g |ist
conpi li ng cl asses
cl asspath = [cl asses]

35.3.6. Gradle API Dependency

You can declare a dependency on the API of the current version of Gradle by using the
DependencyHandl| er . gr adl eApi () method. This is useful when you are developing custom
Gradle tasks or plugins.

Example 35.8. Gradle API dependencies
bui | d. gradl e

dependenci es {
conpi | e gradl eApi ()
}

35.3.7. Gradle's Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er. | ocal Groovy() method. This is useful when you are developing custom
Gradle tasks or plugins in Groovy.

Example 35.9. Gradle's Groovy dependencies

bui l d. gradl e

dependenci es {
groovy | ocal Groovy()

}

Page 198 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html#gradleApi()
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html#gradleApi()
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html#localGroovy()
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/dsl/DependencyHandler.html#localGroovy()

35.3.8. Excluding transitive dependencies
You can exclude a transitive dependency either by configuration or by dependency:

Example 35.10. Excluding transitive dependencies

buil d. gradl e

configurations {
conpi | e. excl ude nodul e: ' conmons
al |l *. exclude group: 'org.gradle.test.excludes', nmodule: 'reports

}

dependenci es {
conpi l e("org. gradl e. test. excl udes: api:1.0") {
excl ude nodul e: ' shared

}

If you define an exclude for a particular configuration, the excluded transitive dependency will be
filtered for all dependencies when resolving this configuration or any inheriting configuration. If you
want to exclude a transitive dependency from all your configurations you can use the Groovy
spread-dot operator to express this in a concise way, as shown in the example. When defining an
exclude, you can specify either only the organization or only the module name or both. Have also a
look at the API documentation of Dependency and Conf i gur ati on.

35.3.9. Optional attributes

All attributes for a dependency are optional, except the name. It depends on the repository type,
which information is need for actually finding the dependencies in the repository. See Section 35.5,

name and version. If you work with filesystem repositories you might only need the name or the
name and the version.

Example 35.11. Optional attributes of dependencies

bui I d. gradl e

dependenci es {
runtime ":junit:4.8.2", ":testng"
runtinme nane: 'testng'

You can also assign collections or arrays of dependency notations to a configuration:

Page 199 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.artifacts.Configuration.html

Example 35.12. Collections and arrays of dependencies

bui | d. gradl e

Li st groovy = ["org.codehaus. groovy: groovy-all:1.7.10@ ar",
"commons-cli:comons-cli:1l.0@ar",
"org.apache.ant:ant:1.8.2@ar"]

Li st hibernate = ['org. hibernate: hi bernate:3.0.5@ar', 'somegroup:soneorg: 1. 0@

dependenci es {

runtime groovy, hibernate
}

35.3.10. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different
configurations). If you don't specify anything explicitly, Gradle uses the default configuration of the
dependency. For dependencies from a Maven repository, the default configuration is the only
available one anyway. If you work with Ivy repositories and want to declare a non-default
configuration for your dependency you have to use the map notation and declare:

Example 35.13. Dependency configurations

bui I d. gradl e

dependenci es {
runtime group: 'org.sonmegroup', nanme: 'sonedependency', version: '1.0', co
}

To do the same for project dependencies you need to declare:

Example 35.14. Dependency configurations for project

bui I d. gradl e

dependenci es {
conpil e project(path: ':api', configuration: 'spi")
}

35.3.11. Dependency reports

You can generate dependency reports from the command line (see Section 10.5.3, “Listing project
dependencies”). With the help of the Project report plugin (see Chapter 32, The Project Report

35.4. Working with dependencies

For the examples below we have the following dependencies setup:

Page 200 of 301

Example 35.15. Configuration.copy

bui | d. gradl e

configurations {
sealife
alllife.extendsFromsealife

}

dependenci es {
seal i fe "sea. sanmal s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife "air.birds:al batros: 1.0"

}

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

You can use the configuration to access the declared dependencies or a subset of those:

Example 35.16. Accessing declared dependencies

bui l d. gradl e
task dependenci es << {
configurations.alllife.dependencies.each { dep -> println dep.nane }
println()
configurations.alllife.all Dependencies.each { dep -> println dep.nane }
println()
configurations.alllife.all Dependencies.findAll { dep -> dep.nane != 'orca

Output of gr adl e -gq dependenci es

> gradl e -q dependenci es
al batros

al bat ros
orca
shar k
t una

shar k
al bat ros
t una

dependenci es returns only the dependencies belonging explicitly to the configuration.
al | Dependenci es includes the dependencies from extended configurations.

To get the library files of the configuration dependencies you can do:

Page 201 of 301

Example 35.17. Configuration.files

bui | d. gradl e

task all Files << {
configurations.sealife.files.each { file ->
printin file.nane
}

Outputofgradle -q all Files

> gradle -q allFiles
orca-1.0.jar

seal -2.0.jar
shark-1.0.jar
tuna-1.0.jar
herring-1.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 35.18. Configuration.files with spec

bui l d. gradl e

task files << {
configurations.sealife.files { dep -> dep.name == 'orca' }.each { file ->
println file.nane
}

Outputofgradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Configuration.files method always retrieves all artifacts of the whole configuration. It
then filters the retrieved files by specified dependencies. As you can see in the example, transitive
dependencies are included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies
from the orginal configuration should be copied. The copying methods come in two flavors. The
copy method copies only the dependencies belonging explicitly to the configuration. The

copyRecur si ve method copies all the dependencies, including the dependencies from extended
configurations.

Page 202 of 301

Example 35.19. Configuration.copy
bui | d. gradl e

task copy << {
configurations.alllife.copyRecursive { dep -> dep.name != "orca' }.all Depe
println dep. nane

}

println()

configurations.alllife.copy().allDependencies.each { dep ->
println dep.nane

}

Output of gradl e -qg copy

> gradle -qg copy
al batros

shar k

tuna

al bat r os

It is important to note that the returned files of the copied configuration are often but not always the
same than the returned files of the dependency subset of the original configuration. In case of
version conflicts between dependencies of the subset and dependencies not belonging to the
subset the resolve result might be different.

Example 35.20. Configuration.copy vs. Configuration.files

bui I d. gradl e

task copyVsFiles << {
configurations. sealife.copyRecursive { dep -> dep.nanme == 'orca' }.each { f
println file.nane

}

println()

configurations.sealife.files { dep -> dep.nane == '"orca' }.each { file ->
println file.nane

}

Outputof gradl e -gq copyVsFi |l es

> gradl e -q copyVsFiles
orca-1.0.jar
seal -1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency
on seal - 2. 0. The original configuration has therefore a version conflict which is resolved to the
newer seal - 2. 0 version. The fil es method therefore returns seal -2. 0 as a transitive

Page 203 of 301

dependency of or ca. The copied configuration only has or ca as a dependency and therefore
there is no version conflict and seal - 1. 0 is returned as a transitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its
dependencies will cause an exception. You can always copy a resolved configuration. The copied
configuration is in the unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the APl documentation:
Confi gurati on.

35.5. Repositories

Gradle repository management, based on Apache lvy, gives you a lot of freedom regarding
repository layout and retrieval policies. Additionally Gradle provides various convenience method
to add preconfigured repositories.

35.5.1. Maven repositories
To add the central Maven2 repository (http://repol.maven.org/maven2) simply type:

Example 35.21. Adding central Maven repository

buil d. gradl e
repositories {

mavenCentral ()

}

Now Gradle will look for your dependencies in this repository.

Quite often certain jars are not in the official Maven repository for licensing reasons (e.g. JTA), but
its POMs are.

Example 35.22. Adding several Maven repositories

buil d. gradl e
repositories {

mavenCentral nanme: 'single-jar-repo', urls: "http://repo. nmyconpany.conljar:
mavenCentral name: 'nulti-jar-repos', urls: ["http://repo.nyconpany.conj al

Gradle will look first in the central Maven repository for the POM and the JAR. If the JAR can't be
found there, it will look for it in the other repositories.

For adding a custom Maven repository you can say:

Page 204 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.artifacts.Configuration.html
http://repo1.maven.org/maven2

Example 35.23. Adding custom Maven repository

bui | d. gradl e
repositories {

mavenRepo urls: "http://repo. myconpany. coni naven2"

}

To declare additional repositories to look for jars (like above in the example for the central Maven
repository), you can say:

Example 35.24. Adding additional Maven repositories for JAR files
buil d. gradl e

repositories {
mavenRepo urls: ["http://repo2. myconpany. conl maven2", "http://repo. nyconpal
}

The first URL is used to look for POMs and JARs. The subsequent URLs are used to look for
JARS.

To use the local Maven cache as a repository you can say:

Example 35.25. Adding the local Maven cache as a repository

buil d. gradl e

repositories {
mavenLocal ()
}

35.5.1.1. Accessing password protected Maven repositories

To access a password protected Maven repository (basic authentication) you need to use one of
Ivy features:

Example 35.26. Accessing password protected Maven repository

bui | d. gradl e

org. apache.ivy.util.url.Credential sStore.| NSTANCE. addCr edenti al s("REALM', "HOS

Host name should not include "ht t p: / /" prefix. It is advisable to keep your login and password
in gradl e. properti es rather than directly in the build file.

35.5.2. Flat directory resolver
If you want to use a (flat) filesytem directory as a repository, simply type:

Page 205 of 301

Example 35.27. Flat repository resolver

bui | d. gradl e
repositories {
flatDir nane: '|ocal Repository', dirs: "lib'
flatDir dirs: ['libl", "Iib2"]

This adds repositories which look into one or more directories for finding dependencies. If you only
work with flat directory resolvers you don't need to set all attributes of a dependency. See
Section 35.3.9, “Optional attributes”

35.5.3. lvy repositories
To use an lvy repository:

Example 35.28. Ivy repository
bui l d. gradl e

repositories {
vy {
name = 'ivyRepo'
artifactPattern "http://repo. myconpany. conl [organi sati on]/[nodul e]/[re

See |l vyArti fact Repository for details.

35.5.3.1. Accessing password protected lvy repositories

To access an lvy repository which uses basic authentication, you specify the username and
password to use when you define the repository:

Example 35.29. Ivy repository

bui | d. gradl e
repositories {
ivy {
name = 'privatel vyRepo'
user Name = 'user'
password = ' password'

artifactPattern "http://repo. myconpany. coni[organi sation]/[nodule]/[re

Page 206 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/dsl/IvyArtifactRepository.html

35.5.4. More about preconfigured repositories

The methods above for creating preconfigured repositories share some common behavior. For all
of them, defining a name for the repository is optional. If no name is defined a default name is
calculated, depending on the type of the repository. You might want to assign a hame, if you want
to access the declared repository. For example if you want to use it also for uploading your project
artifacts. An explicit name might also be helpful when studying the debug output.

The values passed as arguments to the repository methods can be of any type, not just String. The
value that is actually used, is the t 0St r i ng result of the argument object.

35.5.5. Cache

When Gradle downloads artifacts from remote repositories it stores them in a local cache located
at USER_HOVE/ . gr adl e/ cache. When Gradle downloads artifacts from one of its predefined
local resolvers (e.qg. flat directory resolver), the cache is not used.

35.5.6. More about Ivy resolvers
Gradle, thanks to Ivy under its hood, is extremely flexible regarding repositories:

®* There are many options for the protocol to communicate with the repository (e.g. filesystem,
http, ssh, ...)

® Each repository can have its own layout.

Let's say, you declare a dependency on the junit:junit: 3. 8. 2 library. Now how does Gradle
find it in the repositories? Somehow the dependency information has to be mapped to a path. In
contrast to Maven, where this path is fixed, with Gradle you can define a pattern that defines what

the path will look like. Here are some examples: =2

/1 Maven2 layout (if a repository is marked as Maven2 conpati bl e, the organi zat
soneroot/[organi sation]/[nodul e]/[revision]/[nodul e]-[revision].[ext]

/1 Typical layout for an ivy repository (the organization is not split into su
somer oot /[organi sation]/[nodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinple layout (the organization is not used, no nested fol ders.)
soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Page 207 of 301

Example 35.30. Definition of a custom repository

bui | d. gradl e

repositories {
add(new or g. apache. i vy. pl ugi ns. resol ver. Fi | eSyst enResol ver()) {
nane = 'repo’
addl vyPattern "$projectDir/repo/[organi sation]/[nodul e]-ivy-[revision].
addArtifactPattern "$projectDir/repo/[organisation]/[nodul e]-[revision]
descriptor = 'optional"’
checknodi fied = true

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found here.
With Gradle you just don't configure them via XML but directly via their API.

35.6. Strategies for transitive dependency management

Many projects rely on the Maven2 repository. This is not without problems.

® The IBibilio repository can be down or has a very long response time.

®* The pom xml 's of many projects have wrong information (as one example, the POM of comr
declares JUnit as a runtime dependency).

®* For many projects there is not one right set of dependencies (as more or less imposed by
the pomformat).

If your project relies on the IBibilio repository you are likely to need an additional custom repository,
because:

® You might need dependencies that are not uploaded to IBibilio yet.
* You want to deal properly with wrong metadata in a IBibilio pom xmi .

®* You don't want to expose people who want to build your project, to the downtimes or
sometimes very long response times of IBibilio.

It is not a big deal to set-up a custom repository. [24] But it can be tedious, to keep it up to date. For
a new version, you have always to create the new XML descriptor and the directories. And your
custom repository is another infrastructure element which might have downtimes and needs to be
updated. To enable historical builds, you need to keep all the past libraries and you need a backup.
It is another layer of indirection. Another source of information you have to lookup. All this is not
really a big deal but in its sum it has an impact. Repository Manager like Artifactory or Nexus make
this easier. But for example open source projects don't usually have a host for those products.

This is a reason why some projects prefer to store their libraries in their version control system.
This approach is fully supported by Gradle. The libraries can be stored in a flat directory without
any XML module descriptor files. Yet Gradle offers complete transitive dependency management.
You can use either client module dependencies to express the dependency relations, or artifact

Page 208 of 301

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://repo1.maven.org/maven2

dependencies in case a first level dependency has no transitive dependencies. People can check
out such a project from svn and have everything necessary to build it.

If you are working with a distributed version control system like Git you probably don't want to use
the version control system to store libraries as people check out the whole history. But even here
the flexibility of Gradle can make your life easier. For example you can use a shared flat directory
without XML descriptors and yet you can have full transitive dependency management as
described above.

You could also have a mixed strategy. If your main concern is bad metadata in the pom xnl and
maintaining custom XML descriptors, Client Modules offer an alternative. But you can of course still
use Maven2 repo and your custom repository as a repository for jars only and still enjoy transitive
dependency management. Or you can only provide client modules for POMs with bad metadata.
For the jars and the correct POMs you still use the remote repository.

35.6.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do
this with Gradle, but we don't recommend it. We mention it for the sake of completeness and
comparison with other build tools.

The trick is to use only artifact dependencies and group them in lists. That way you have somehow
expressed, what are your first level dependencies and what are transitive dependencies (see
Section 35.3.9, “Optional attributes”). But the draw-back is, that for the Gradle dependency
management all dependencies are considered first level dependencies. The dependency reports
don't show your real dependency graph and the conpi | e task uses all dependencies, not just the
first level dependencies. All in all, your build is less maintainable and reliable than it could be when
using client modules. And you don't gain anything.

[10] JSR 294: Improved Modularity Support in the JavaTM Programming Language,

http://jcp.org/en/jsr/detail ?id=294

[11] Gradle supports partial multiproject builds (seeChapter 40, Multi-project Builds).

[1 2]

http://lwww.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships

[13] At http://ant.apache.org/ivy/history/latest-milestone/concept.html you can learn more about ivy

You probably want to set-up a repository proxy for this. In an enterprise environment this is rather
common. For an open source project it looks like overkill.

Page 209 of 301

http://jcp.org/en/jsr/detail?id=294
http://www.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

36

Artifact Management

36.1. Introduction

This chapter is about how you declare what are the artifacts of your project and how to work with
them (e.g. upload them). We define the artifacts of the projects as the files the project want to
provide to the outside world. This can be a library or a distribution or any other file. Usually artifacts
are archives, but not necessarily. In the Maven world a project can provide only one artifact. With
Gradle a project can provide as many artifacts as needed.

36.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain
both, artifacts and dependencies, at the same time. To assign an artifact to a configuration, you
can write:

Example 36.1. Assignment of an artifact to a configuration

buil d. gradl e
task myJar(type: Jar)

artifacts {
archi ves nyJar
}

What do you gain by assigning an artifact to a configuration? For each configuration (also for the
custom ones added by you) Gradle provides the tasks upl oad[Confi gur ati onNane] and

belonging to the respective configuration.

Table Table 20.5, “Java plugin - dependency configurations” shows the configurations added by
the Java plugin. Two of the configurations are relevant for the usage with artifacts. The ar chi ves
configuration is the standard configuration to assign your artifacts to. The Java plugin automatically
assigns the default jar to this configuration. We will talk more about the def aul t configuration in
Section 36.4, “More about project libraries”. As with dependencies, you can declare as many
custom configurations as you like and assign artifacts to them.

Page 210 of 301

It is important to note that the custom archives you are creating as part of your build are not
automatically assigned to any configuration. You have to explicitly do this assignment.

36.3. Uploading artifacts

We have said that there is a specific upload task for each configuration. But before you can do an
upload, you have to configure the upload task and define where to upload. The repositories you
have defined (as described in Section 35.5, “Repositories”) are not automatically used for
uploading. In fact, some of those repositories allow only for artifacts downloading. Here is an
example how you can configure the upload task of a configuration:

Example 36.2. Configuration of the upload task

bui I d. gradl e

repositories {
flatDir(name: 'fileRepo', dirs: "S$projectDir/repo")
}

upl oadAr chi ves {
upl cadDescri ptor = fal se
repositories {
add project.repositories.fil eRepo
add(new org. apache.ivy. pl ugi ns. resol ver. SshResol ver()) {

name = ' sshRepo

user = 'usernane

user Password = ' pw

host = "http://repo. myconpany. cont

As you can see, you can either use a reference to an existing repository or create a new
repository. As described in Section 35.5.6, “More about lvy resolvers”, you can use all the lvy
resolvers suitable for the purpose of uploading.

Uploading to a Maven repository is described in Section 37.6, “Interacting with Maven repositories”

36.4. More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this
library and what are the dependencies of these artifacts. The Java plugin adds a def aul t
configuration for this purpose. This configuration extends both the ar chi ves and the runti ne
configuration, with the implicit assumption that the r unt i me dependencies are the dependencies
of the ar chi ves configuration. Of course this is fully customizable. You can add your own custom
configuration or let the the existing configurations extends from other configurations. You might
have different group of artifacts which have a different set of dependencies. This mechanism is
very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare on which

Page 211 of 301

configuration of the dependency to depend on. A Gradle dependency offers the confi gurati on
property to declare this. If this is not specified, the defaul t configuration is used (see
Section 35.3.10, “Dependency configurations”). Using your project as a library can either happen
from within a multi-project build or by retrieving your project from a repository. In the latter case, an
ivy.xml descriptor in the repository is supposed to contain all the neccesary information. If you work
with Maven repositories you don't have the flexibility as described above. For how to publish to a
Maven repository, see the section Section 37.6, “Interacting with Maven repositories”.

[15] To be exact, the Base plugin provides those tasks. The BasePlugin is automatically applied, if

you use the Java plugin.

Page 212 of 301

37

The Maven Plugin

This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

37.1. Usage

To use the Maven plugin, include in your build script:

Example 37.1. Using the Maven plugin
buil d. gradl e

apply plugin: 'maven'

37.2. Tasks

The Maven plugin defines the following tasks:

Table 37.1. Maven plugin - tasks

Task Depends Type Description

name on

install Alltasks Upl oad Installs the associated artifacts to the local Maven
that build cache, including Maven metadata generation. By
the default the install task is associated with the ar chi ves
associated configuration. This configuration has by default only the
archives. default jar as an element. To learn more about installing

to the local repository, see: Section 37.6.3, “Installing to
the local repository”

37.3. Dependency management

The Maven plugin does not define any dependency configurations.

Page 213 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.Upload.html

37.4. Convention properties

The Maven plugin defines the following convention properties:

Table 37.2. Maven plugin - properties

Property name

ponDi r Nane

ponDi r

conf 2ScopeMappi ngs

These properties are provided by a MavenP| ugi nConvent i on convention object.

Type

String

File (read-only)

Conf 2ScopeMappi ngCont ai ner

37.5. Convention methods

The maven plugin provides a factory method for creating a POM. This is useful if you need a POM
without the context of uploading to a Maven repo.

Default
value

pomns

Description

The path of tt
directory to w
the generate
POMs, relativ
to the build
directory.

bui | dDi r/ ponDIi'méNdimectory

n/ a

where the
generated
POMs are
written to.

Instructions fi
mapping Gra
configuration:
Maven scope
See

Section 37.6.

Page 214 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/MavenPluginConvention.html

Example 37.2. Creating a stand alone pom.

bui | d. gradl e

task writeNewPom << {
pom {
project {
i nceptionYear '2008
licenses {
license {

name ' The Apache Software License, Version 2.0
url "http://ww. apache. org/|licenses/ LI CENSE- 2. 0. t xt
distribution 'repo'

}

}
}.witeTo("$buil dDi r/ newpom xm ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more
about the Gradle Maven POM object, see MavenPom See also: MavenP| ugi nConventi on

37.6. Interacting with Maven repositories

37.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository.
This includes all Maven metadata manipulation and works also for Maven snapshots. In fact,
Gradle's deployment is 100 percent Maven compatible as we use the native Maven Ant tasks
under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle
can generate this POM for you using the dependency information it has.

37.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a
remote Maven repository.

Example 37.3. Upload of file to remote Maven repository
bui | d. gradl e

apply plugin: 'maven'

upl oadAr chi ves {

reposi tories. mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
}

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and
the pom to the specified repository.

Page 215 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/MavenPluginConvention.html

There is some more work to do if you need support for other protocols than fi | e. In this case the
native Maven code we delegate to needs additional libraries. Which libraries depend on the
protocol you need. The available protocols and the corresponding libraries are listed in Table 37.3,

“Protocol jars for Maven deployment” (those libraries have again transitive dependencies which
have transitive dependencies). (18] For example to use the ssh protocol you can do:

Example 37.4. Upload of file via SSH

bui I d. gradl e

configurations {
depl oyer Jars

}

repositories {
mavenCent ral ()

}

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 1. 0- bet a- 2"

}

upl oadAr chi ves {
repositories. mvenDepl oyer {

name = 'sshDepl oyer'
configuration = configurations. depl oyerJars
repository(url: "scp://repos. myconpany. conirel eases") {

aut henti cation(user Nanme: "ne", password: "nyPassword")

}

There are many configuration options for the Maven deployer. The configuration is done via a
Groovy builder. All the elements of this tree are Java beans. To configure the simple attributes you
pass a map to the bean elements. To add another bean elements to its parent, you use a closure.
“Configuration elements of the MavenDeployer” lists the available bean elements and a link to the
javadoc of the corresponding class. In the javadoc you can see the possible attributes you can set
for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot
repository is defined, releases and snapshots are both deployed to the r eposit ory element.
Otherwise snapshots are deployed to the snapshot Reposi t ory element.

Page 216 of 301

Table 37.3. Protocol jars for Maven deployment

Protocol Library
http org.apache.maven.wagon:wagon-http:1.0-beta-2
ssh org.apache.maven.wagon:wagon-ssh:1.0-beta-2

ssh-external org.apache.maven.wagon:wagon-ssh-external:1.0-beta-2

scp org.apache.maven.wagon:wagon-scp:1.0-beta-2

ftp org.apache.maven.wagon:wagon-ftp:1.0-beta-2

webdav org.apache.maven.wagon:wagon-webdav-jackrabbit:1.0-beta-6
file -

Table 37.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant. Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
shapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

37.6.3. Installing to the local repository

The Maven plugin adds an i nst al | task to your project. This task depends on all the archives
task of the ar chi ves configuration. It installs those archives to your local Maven repository. If the
default location for the local repository is redefined in a Maven set ti ngs. xm , this is considered
by this task.

37.6.4. Maven POM generation

The Maven POMs for uploading are automatically generated by Gradle. The groupld, artifactid,
version and packaging values are taken from the project object. The dependency elements are
created from the Gradle dependency declarations. You can find the generated POMs in the
directory <bui | dDi r >/ pons. You can further customize the POM via the API of the MavenPonr
object.

You might want the artifact deployed to the maven repository to have a different version or name
than the artifact generated by Gradle. To customize these you can do:

Page 217 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Authentication.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Proxy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

Example 37.5. Customization of pom

bui | d. gradl e

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
pomversion = ' 1. 0Maven'
pomartifactld = ' nyMavenNane'

Or you want to add new elements like license information.

Example 37.6. Builder style customization of pom

bui | d. gradl e

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")
pom proj ect {
licenses {
license {

name ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE- 2. 0. t xt
distribution 'repo'

We use a builder here. You could also add the artifactld and groupld via the builder.

The pom object offers a whenConfi gur e method, if you need to modify the autogenerated
content.

Example 37.7. Modifying auto-generated content

bui I d. gradl e

[installer, deployer]*.pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3" && dep.artifactld ==
}

If you have more than one artifact to publish, things work a little bit differently. SeeSection 37.6.4.1,
“Multiple artifacts per project”.

To customize the settings for the Maven installer (seeSection 37.6.3, “Installing to the local
repository”), you can do:

Page 218 of 301

Example 37.8. Customization of Maven installer

bui | d. gradl e

configure(install.repositories. mvenlnstaller) {
pom proj ect {
version '1.0Maven
artifactld ' myNane'

In contrast to the example above we use the builder here for changing groupld and artifactld.

37.6.4.1. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven
POM. We think there are many situations where it makes sense to have more than one artifact per
project. In such a case you need to generate multiple POMs. In such a case you have to explicitly
declare each artifact you want to publish to a Maven repository. The MavenDepl oyer and the
Maveninstaller both provide an API for this:

Example 37.9. Generation of multiple poms

bui I d. gradl e

upl oadAr chi ves {
repositories. mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
addFilter('api') {artifact, file ->
artifact.name == "api'

addFilter('service') {artifact, file ->
artifact.nane == 'service'

}

pon(' api').version = 'nySpecial MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean
expression for which Gradle artifact it accepts. Each filter has a POM associated with it which you
can configure. To learn more about this have a look at PonFi | t er Cont ai ner and its associated
classes.

37.6.4.2. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the
Java and War plugin and the Maven scopes. Most of the time you don't need to touch this and you
can safely skip this section. The mapping works like the following. You can map a configuration to
one and only one scope. Different configurations can be mapped to one or different scopes. One
can assign also a priority to a particular configuration-to-scope mapping. Have a look at
Conf 2ScopeMappi ngCont ai ner to learn more. To access the mapping configuration you can
say:

Page 219 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Example 37.10. Accessing a mapping configuration

bui | d. gradl e

task mappi ngs << {
println conf2ScopeMappi ngs. mappi ngs
}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if
in the Gradle exclude rule the group as well as the module name is specified (as Maven needs
both in contrast to lvy). Per-configuration excludes are also included in the Maven POM, if they are
convertible.

[16] It is planned for a future release to provide out-of-the-box support for this

Page 220 of 301

38
The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures
can then be used to prove who built the artifact the signature is attached to as well as other
information such as when the signature was generated.

The signing plugin currently only provides support for generating PGP signatures (which is the
signature format required for publication to the Maven Central Repository).

38.1. Usage

To use the Signing plugin, include in your build script:

Example 38.1. Using the Signing plugin
buil d. gradl e

apply plugin: 'signing

38.2. Signatory credentials

In order to create PGP signatures, you will need a key pair (instructions on creating a key pair
using the GnuPG tools can be found here). You need to provide the signing plugin with your key

information, which means three things:
® The public key ID (an 8 character hexadecimal string).
®* The absolute path to the secret key ring file containing your private key.
®* The passphrase used to protect your private key.

These items must be supplied as the property projects si gni ng. keyl d, si gni ng. password
and si gni ng. secr et KeyRi ngFi | e respectively. Given the personal and private nature of these
values, a good practice is to store them in the user gradl e. properti es file (described in

Section 12.2, “Gradle properties and system properties”).

Page 221 of 301

http://www.pgpi.org/
https://docs.sonatype.org/display/Repository/Central+Sync+Requirements
http://www.gnupg.org/
http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto-3.html#ss3.1

si gni ng. keyl d=24875D73
si gni ng. passwor d=secr et
si gni ng. secret KeyRi ngFi | e=/ User s/ nme/ . gnupg/ secri ng. gpg

If specifying this information in the user gradl e. properti es file is not feasible for your
environment, you can source the information however you need to and set the project properties
manually.

i mport org.gradle. plugins. signing. Sign

gradl e. t askG aph. whenReady { taskG aph ->
if (taskGaph.all Tasks.any { it instanceof Sign }) {

/1l Use Java 6's console to read fromthe console (no good for a Cl envi
Consol e consol e = System consol e()
consol e.printf "\n\nWe have to sign sone things in this build.\n\nPl ea:
al | proj ect s*. set Property("signing. keyld", console.readLi ne("PGP Key I|d:
al | projects*. setProperty("signing.secretKeyRi ngFile", consol e.readLi ne(
al | proj ect s*. set Property("signing. password", consol e.readPassword(" PGP
consol e. printf "\ nThanks.\n\n"

38.3. Specifying what to sign

As well as configuring how things are to be signed (i.e. the signatory configuration), you must also
specify what is to be signed. The Signing plugin provides a DSL that allows you to specify the
tasks and/or configurations that should be signed.

38.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin

configures a jar to built and this jar artifact is added to the ar chi ves configuration. Using the
Signing DSL, you can specify that all of the artifacts of this configuration should be signed.

Example 38.2. Signing a configuration

bui | d. gradl e

signing {
sign configurations. archives
}

This will create a task (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar

artifacts (if needed) and then generate signatures for them. The signature files will be placed
alongside the artifacts being signed.

Page 222 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.signing.Sign.html

Example 38.3. Signing a configuration output

Output of gr adl e si gnAr chi ves

> gradl e signArchives
: conpi | eJava

: processResour ces

. cl asses

Djar

: si gnArchi ves

BU LD SUCCESSFUL

Total tine: 1 secs

38.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you
can directly sign the task that produces the artifact to sign.

Example 38.4. Signing a task
bui | d. gradl e

task stuffzip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}
signing {

sign stuffzip
}

input task's archive (if needed) and then sign it. The signature file will be placed alongside the
artifact being signed.

Example 38.5. Sighing a task output
Output of gradl e signStuffZp
> gradle signStuffzip
cstuffzip
:signStuffzip
BUI LD SUCCESSFUL

Total tine: 1 secs

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar
, Zi p,Jar, War and Ear tasks.

Page 223 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.plugins.ear.Ear.html

38.3.3. Conditional Signing
A common usage pattern is to only sign build artifacts under certain conditions. For example, you

may not wish to sign artifacts for non release versions. To achieve this, you can wrap whatever
logic you need around the signing DSL.

Example 38.6. Conditional signing

bui l d. gradl e

version = ' 1. 0- SNAPSHOT'
i sRel easeVersion = !version.endsWth("SNAPSHOT")

signi ng {
if (isReleaseVersion) {
sign configurations. archives
}

38.4. Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are
automatically added to the “si gnat ur es” dependency configuration that the signing plugin adds.
This means that if you want to upload your signatures to your distribution repository along with the
artifacts for which the signature is for you are going to have to create a new configuration that
combines them. By default, created artifacts such as jars and the like are added to the “ar chi ves”
configuration. You can create a new configuration that extends “ar chi ves” and “si gnhat ur es”.

Example 38.7. Adding the published configuration
bui l d. gradl e

configurations {
publ i shed. ext endsFrom ar chi ves, signatures

}

This also means that instead of configuring and using the “upl oadAr chi ves” to distribute your
artifacts, you would use the equivalent “upl oadPubl i shed” task. See Chapter 36, Artifact
Management for more on artifacts and configurations.

38.5. Signing POM files

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the
published POM file. The signing plugin adds a si gnPom() method that can be used in the bef or e
block in your upload task configuration.

Page 224 of 301

Example 38.8. Signing a POM for deployment
bui | d. gradl e

upl oadPubl i shed {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynent -> si gnPon{depl oynent
}

Page 225 of 301

39

The Build Lifecycle

We said earlier, that the core of Gradle is a language for dependency based programming. In
Gradle terms this means that you can define tasks and dependencies between tasks. Gradle
guarantees that these tasks are executed in the order of their dependencies, and that each task is
executed only once. Those tasks form a Directed Acyclic Graph. There are build tools that build up
such a dependency graph as they execute their tasks. Gradle builds the complete dependency
graph before any task is executed. This lies at the heart of Gradle and makes many things possible
which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build
configuration scripts.

39.1. Build phases
A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle
determines which projects are going to take part in the build, and creates a Proj ect
instance for each of these projects.

Configuration
The build scripts of all projects which are part of the build are executed. This configures the
project objects.

Execution
Gradle determines the subset of the tasks, created and configured during the configuration
phase, to be executed. The subset is determined by the task name arguments passed to the
gradle command and the current directory. Gradle then executes each of the selected tasks.

39.2. Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle
via a naming convention. The default name for this file is set t i ngs. gr adl e. Later in this chapter
we explain, how Gradle looks for a settings file.

Page 226 of 301

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html

The settings file gets executed during the initialization phase. A multiproject build must have a set t
file in the root project of the multiproject hierarchy. It is required because in the settings file it is
defined, which projects are taking part in the multi-project build (see Chapter 40, Multi-project
Builds). For a single-project build, a settings file is optional. You might need it for example, to add

libraries to your build script classpath (see Chapter 43, Organizing Build Logic). Let's first do some
introspection with a single project build:

Example 39.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.'

bui l d. gradl e
println 'This is executed during the configuration phase.

task configured {
println 'This is also executed during the configuration phase.'

}

task test << {
println 'This is executed during the execution phase.

}

Output of gr adl e test

> gradl e test

This is executed during the initialization phase.
This is executed during the configuration phase.

This is al so executed during the configuration phase.
itest

This is executed during the execution phase.

BU LD SUCCESSFUL

Total tinme: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly
property access and method calls within the settings file is delegated to a settings object. Have a
look at Set ti ngs.

39.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of
Gradle. You have to declare the projects taking part in the multiproject build in the settings file.
There is much more to say about multi-project builds in the chapter dedicated to this topic (see
Chapter 40, Multi-project Builds).

Page 227 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.initialization.Settings.html

39.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree
represent a project. A project has a virtual and a physical path. The virtual path denotes the
position of the project in the multi-project build tree. The project tree is created in the set ti ngs. gr
file. By default it is assumed that the location of the settings file is also the location of the root
project. But you can redefine the location of the root project in the settings file.

39.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat
physical layouts get special support.

39.3.2.1. Hierarchical layouts
Example 39.2. Hierarchical layout

settings.gradle

i nclude 'projectl', 'project2', 'project2:childl'

The i ncl ude method takes as an argument a relative virtual path to the root project. This relative
virtual path is assumed to be equal to the relative physical path of the subproject to the root
project. You only need to specify the leafs of the tree. Each parent path of the leaf project is
assumed to be another subproject which obeys to the physical path assumption described above.

39.3.2.2. Flat layouts
Example 39.3. Flat layout

settings.gradle

i ncl udeFl at 'project3, 'project4d’

The i ncl udeFl at method takes directory names as an argument. Those directories need to exist
at the same level as the root project directory. The location of those directories are considered as
child projects of the root project in the virtual multi-project tree.

39.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You
can modify these descriptors in the settings file at any time. To access a descriptor you can do:

Example 39.4. Modification of elements of the project tree

settings.gradle

println rootProject.name
println project(':projectA).name

Using this descriptor you can change the name, project directory and build file of a project.

Page 228 of 301

Example 39.5. Modification of elements of the project tree

settings.gradle
root Proj ect.name = ' nain'

project(':projectA).projectDir = new File(settingsDir, '../ny-project-a")
project (' :projectA).buildFileName = 'projectA gradle'

Have a look at Pr oj ect Descr i pt or for more details.

39.4. Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject
build from the directory where the settings file is, things are easy. But Gradle also allows you to
execute the build from within any subproject taking part in the build. %=~ If you execute Gradle from
within a project that has no set ti ngs. gr adl e file, Gradle does the following:

® |t searches for a settings. gradl e in a directory called mast er which has the same
nesting level as the current dir.

®* Ifnosettings. gradl e isfound, it searches the parent directories for the existence of a se
file.

* |fnosettings. gradl e file is found, the build is executed as a single project build.

®* |f a settings.gradl e file is found, Gradle checks if the current project is part of the
multiproject hierarchy defined in the found setti ngs. gradl e file. If not, the build is
executed as a single project build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Somehow Gradle has to find out, whether the project you are
into, is a subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject
and its dependent projects are build. But Gradle needs to create the build configuration for the
whole multiproject build (see Chapter 40, Multi-project Builds). Via the - u command line option,
you can tell Gradle not to look in the parent hierarchy for a setti ngs. gr adl e file. The current
project is then always build as a single project build. If the current project contains a setti ngs. gr
file, the - u option has no meaning. Such a build is always executed as:

® asingle project build, if the sett i ngs. gr adl e file does not define a multiproject hierarchy

* a multiproject build, if the set ti ngs. gr adl e file does define a multiproject hierarchy.

The auto search for a settings file does only work for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally obey to the naming convention
described above. Gradle supports arbitrary physical layouts for a multiproject build. But for such
arbitrary layouts you need to execute the build from the directory where the settings file is located.
For how to run partial builds from the root see Section 40.4, “Running tasks by their absolute path”.
In our next release we want to enable partial builds from subprojects by specifying the location of
the settings file as a command line parameter. Gradle creates Project objects for every project
taking part in the build. For a single project build this is only one project. For a multi-project build

Page 229 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

these are the projects specified in Settings object (plus the root project). Each project object has by
default a name equals to the name of its top level directory. Every project except the root project
has a parent project and might have child projects.

39.5. Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build
script is executed against the project object that was created during the initialization phase. Then
Gradle looks for tasks with names equal to those passed as command line arguments. If these
task names exist, they are executed as a separate build in the order you have passed them. The
configuration and execution for multi-project builds is discussed in Chapter 40, Multi-project Builds.

39.6. Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecyle. These
notifications generally take 2 forms: You can either implement a particular listener interface, or you
can provide a closure to execute when the notification is fired. The examples below use closures.
For details on how to use the listener interfaces, refer to the APl documentation.

39.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be
used to do things like performing additional configuration once all the definitions in a build script
have been applied, or for some custom logging or profiling.

Below is an example which adds a t est task to each project with the hasTest s property set to
true.

Example 39.6. Adding of test task to each project which has certain property set

bui | d. gradl e

al | projects {
afterEval uate { project ->
if (project.hasTests) ({
println "Adding test task to $project"”
project.task('test') << {
println "Running tests for $project"”

}

proj ect A gradl e

hasTests = true

Output of gradl e -qg test

> gradle -q test
Addi ng test task to project ':projectA
Running tests for project ':projectA

Page 230 of 301

This example uses method Pr oj ect. aft er Eval uat e() to add a closure which is executed
after the project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs
some custom logging of project evaluation. Notice that the af t er Pr oj ect notification is received
regardless of whether the project evaluates successfully or fails with an exception.

Example 39.7. Notifications

bui | d. gradl e

gradl e. afterProject {project, projectState ->
if (projectState.failure) {
println "Eval uation of $project FAILED
} else {
println "Eval uation of $project succeeded"

}

Outputofgradl e -q test

> gradle -q test

Eval uati on of root project 'buil dProjectEval uateEvents' succeeded
Eval uati on of project ':projectA succeeded

Eval uati on of project ':projectB FAlILED

39.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to
set some default values or add behaviour before the task is made available in the build file.

The following example sets the sr cDi r property of each task as it is created.

Example 39.8. Setting of certain property to all tasks

buil d. gradl e
t asks. whenTaskAdded { task ->
task.srcDir = 'src/min/java'
}
task a

println "source dir is $a.srcDir"

Outputofgradle -q a

> gradle -q a
source dir is src/main/java

You can also add an Acti on to a TaskCont ai ner to receive these events.

Page 231 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/Action.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskContainer.html

39.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We
have seen this already in Section 5.13, “Configure by DAG”.

You can also add a TaskExecut i onG aphLi st ener to the TaskExecut i onG aph to receive
these events.

39.6.4. Task execution
You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task
notification is received regardless of whether the task completes successfully or fails with an
exception.

Example 39.9. Logging of start and end of each task execution

bui l d. gradl e
task ok

task broken(dependsOn: ok) << {
t hrow new Runti meException(' broken")

}

gradl e. t askG aph. beforeTask { Task task ->
println "executing $task ..."
}

gradl e. t askG aph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAl LED'

}
el se {

println "done"
}

Output of gradl e -qg broken

> gradle -q broken
executing task ': ok’
done

executing task ':broken'
FAI LED

You can also use a TaskExecuti onLi st ener to the TaskExecuti onG aph to receive these
events.

[17] Gradle supports partial multiproject builds (see Chapter 40, Multi-project Builds).

Page 232 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskExecutionGraph.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

40
Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is
also the most intellectually challenging.

40.1. Cross project configuration
Let's start with a very simple multi-project build. After all Gradle is a general purpose build tool at
its core, so the projects don't have to be java projects. Our first examples are about marine life.

40.1.1. Defining common behavior

We have the following project tree. This is a multi-project build with a root project wat er and a
subproject bl uewhal e.
Example 40.1. Multi-project tree - water & bluewhale projects

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti project/fir
which is in both the binary and source distributions of Gradle.

settings.gradle

i ncl ude ' bl uewhal e'

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional.
Obviously for a single project build, a project without a build script doesn't make much sense. For
multiproject builds the situation is different. Let's look at the build script for the wat er project and
execute it:

Page 233 of 301

Example 40.2. Build script of water (parent) project

bui | d. gradl e

Closure cl ={ task -> println "I'm $task. proj ect.nane" }
task hello << cl
project (':bluewhale") {
task hello << cl
}

Outputof gradle -q hello

> gradle -q hello
' m wat er
' m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project
API provides a method called pr oj ect (), which takes a path as an argument and returns the
Project object for this path. The capability to configure a project build from any build script we call
cross project configuration. Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It is inconvenient to add the task
explicitly for every project. We can do better. Let's first add another project called kri | | to our
multi-project build.

Example 40.3. Multi-project tree - water, bluewhale & krill projects

Build layout
wat er /
bui |l d. gradl e
settings.gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ add
which is in both the binary and source distributions of Gradle.

settings.gradle

i nclude ' bl uewhale', "krill

Now we rewrite the wat er build script and boil it down to a single line.

Page 234 of 301

Example 40.4. Water project build script
bui | d. gradl e

al |l projects {
task hello << { task -> println

}

Outputofgradl e -q hello

> gradle -q hello
I'' m wat er

I'"'m bl uewhal e
I"mkrill

“1' m $t ask. proj ect. nane" }

Is this cool or is this cool? And how does this work? The Project API provides a property al | pr oj €
which returns a list with the current project and all its subprojects underneath it. If you call al | pr 0]
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj
. You could also do an iteration via al | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also
offer inheritance for projects as you will see later. But Gradle uses configuration injection as the
usual way of defining common behavior. We think it provides a very powerful and flexible way of

configuring multiproject builds.

40.2. Subproject configuration

The Project API also provides a property for accessing the subprojects only.

40.2.1. Defining common behavior

Example 40.5. Defining common behaviour of all projects and subprojects

bui l d. gradl e

al |l projects {
task hello << {task -> println

“1' m $t ask. proj ect. nane" }

}
subproj ects {

hello << {println "- | depend on water"}
}

Outputofgradle -q hello

> gradle -q hello
' mwat er

' m bl uewhal e

- | depend on water
I"mKkrill

- | depend on water

Page 235 of 301

40.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific
behavior in the build script of the project where we want to apply this specific behavior. But as we
have already seen, we don't have to do it this way. We could add project specific behavior for the bl
project like this:

Example 40.6. Defining specific behaviour for particular project

bui | d. gradl e
al |l projects {
task hello << {task -> println "|I'm $task. proj ect.nanme" }
}
subproj ects {
hello << {println "- | depend on water"}
}
project (' :bluewhale").hello << {
println "- I'"mthe |argest aninmal that has ever lived on this planet."”
}

Outputofgradle -q hello

> gradle -q hello

| m wat er

I'' m bl uewhal e

- | depend on water

- I'mthe largest aninmal that has ever lived on this planet.
I"mkrill

| depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this
project. Let's refactor and also add some project specific behavior to the kri | | project.

Page 236 of 301

Example 40.7. Defining specific behaviour for project krill

Build layout
wat er /
bui |l d. gradl e
settings.gradle
bl uewhal e/
bui | d. gradl e

krill/
build.gradle

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spr
which is in both the binary and source distributions of Gradle.

settings.gradle

i ncl ude ' bl uewhal e', "krill

bl uewhal e/ bui | d. gradl e

hel | 0. doLast { println "- I'mthe [argest animal that has ever lived on this p

krill/build.gradle

hel | 0. doLast {

println "- The weight of nmy species in sumrer is twice as heavy as all hum
}
bui I d. gradl e
al | projects {
task hello << {task -> println "I'm $task. proj ect.nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}

Outputofgradle -q hello

> gradle -q hello

' mwat er

I m bl uewhal e

- | depend on water

- I'mthe largest aninmal that has ever lived on this planet.

I"mkrill

| depend on wat er

- The weight of mnmy species in sumrer is twi ce as heavy as all human bei ngs.

Page 237 of 301

40.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi ¢
and add more behavior to the build via the build script of the wat er project.

40.2.3.1. Filtering by name

Example 40.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er/

bui I d. gradl e
settings.gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ add
which is in both the binary and source distributions of Gradle.

settings.gradle

i ncl ude ' bluewhale', "krill', "tropicalFish'
bui I d. gradl e
al | projects {
task hello << {task -> println "I"'m $task. project.nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}
configure(subprojects.findAll {it.nane != "tropical Fish'}) {
hello << {println '"- | love to spend tine in the arctic waters."'}
}

Outputofgradle -q hello

> gradle -q hello

' m wat er

' m bl uewhal e

- | depend on water

- | love to spend time in the arctic waters.

- I'mthe largest aninmal that has ever lived on this planet.
I"mkrill

| depend on wat er

| love to spend time in the arctic waters.

The wei ght of ny species in summer is twice as heavy as all human bei ngs.
"' mtropical Fi sh

| depend on wat er

Page 238 of 301

The configure() method takes a list as an argument and applies the configuration to the
projects in this list.

40.2.3.2. Filtering by properties
Using the project name for filtering is one option. Using dynamic project properties is another.

Example 40.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout
wat er /

buil d. gradl e
settings.gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e

tropi cal Fi sh/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti project/tro
which is in both the binary and source distributions of Gradle.

settings.gradle

i nclude ' bluewhale', "krill', 'tropical Fish'

bl uewhal e/ bui | d. gradl e

arctic = true
hel | 0. doLast { println "- I'mthe [argest animal that has ever lived on this p

krill/build.gradle

arctic = true
hel | 0. doLast {

println "- The weight of ny species in summer is twice as heavy as all hum
}

tropical Fi sh/build.gradle

arctic = fal se

bui I d. gradl e

Page 239 of 301

al |l projects {

task hello << {task -> println "|I'm $task. proj ect.nanme" }
}
subproj ects {
hello {
doLast {println "- | depend on water"}
afterEval uate { Project project ->
if (project.arctic) { doLast {
println '- | love to spend time in the arctic waters."' }
}
}
}
}

Outputofgradle -q hello

> gradle -q hello

"' m wat er

' m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever |ived on this planet.
- |1 love to spend tine in the arctic waters.

I"mkrill

| depend on wat er

- The weight of nmy species in sumrer is twi ce as heavy as all human bei ngs.
I love to spend tine in the arctic waters.
I"mtropical Fi sh

| depend on wat er

In the build file of the wat er project we use an af t er Eval uat e notification. This means that the
closure we are passing gets evaluated after the build scripts of the subproject are evaluated. As
the property ar cti c is set in those build scripts, we have to do it this way. You will find more on
this topic in Section 40.6, “Dependencies - Which dependencies?”

40.3. Execution rules for multi-project builds

When we have executed the hel | o task from the root project dir things behaved in an intuitive
way. All the hel | o tasks of the different projects were executed. Let's switch to the bl uewhal e dir
and see what happens if we execute Gradle from there.

Example 40.10. Running build from subproject

Outputofgradle -q hello

''m bl uewhal e
| depend on wat er

- I'"'mthe largest animal that has ever lived on this planet.
| love to spend tine in the arctic waters.

> gradle -q hello
I

The basic rule behind Gradle's behavior is simple. Gradle looks down the hierarchy, starting with
the current dir, for tasks with the name hel | o an executes them. One thing is very important to

Page 240 of 301

note. Gradle always evaluates every project of the multi-project build and creates all existing task
objects. Then, according to the task name arguments and the current dir, Gradle filters the tasks

Page 241 of 301

which should be executed. Because of Gradle's cross project configuration every project has to be
evaluated before any task gets executed. We will have a closer look at this in the next section.
Let's now have our last marine example. Let's add a task to bl uewhal e and kri | | .

Example 40.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e

arctic = true
hello << { println "- I'"mthe |argest aninmal that has ever lived on this planel

task di stanceTol ceberg << {
println '20 nautical mles'

}

krill/build.gradle

arctic = true
hello << { println "- The weight of ny species in sunmer is twice as heavy as

task di stanceTol ceberg << {
println '5 nautical mles
}

Output of gradl e -qg di stanceTol ceberg

> gradle -q di stanceTol ceberg
20 nautical mles
5 nautical mles

Here the output without the - q option:

Example 40.12. Evaluation and execution of projects

Output of gr adl e di st anceTol ceberg

> gradl e di stanceTol ceberg

: bl uewhal e: di st anceTol ceberg
20 nautical mles
ckrill:distanceTol ceberg

5 pnautical niles

BU LD SUCCESSFUL

Total tinme: 1 secs

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with
the name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above

is: Execute all tasks down the hierarchy which have this name. Only complain if there is no such
task!

Page 242 of 301

40.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the
build from there. All matching task names of the project hierarchy starting with the current dir are
executed. But Gradle also offers to execute tasks by their absolute path (see also Section 40.5,
“Project and task paths”):

Example 40.13. Running tasks by their absolute path

Outputofgradle -gq :hello :krill:hello hello
> gradle -q :hello :krill:hello hello
' m wat er
I"mkrill

| depend on water

The wei ght of ny species in sunmer is twice as heavy as all human bei ngs.
I love to spend tine in the arctic waters.

I'mtropical Fi sh

| depend on wat er

The build is executed from the t r opi cal Fi sh project. We execute the hel | o tasks of the wat er
,the krill and the t ropi cal Fi sh project. The first two tasks are specified by there absolute
path, the last task is executed on the name matching mechanism described above.

40.5. Project and task paths

A project path has the following pattern: It starts always with a colon, which denotes the root
project. The root project is the only project in a path that is not specified by its name. The path : bl t
corresponds to the file system path wat er / bl uewhal e in the case of the example above.

The path of a task is simply its project path plus the task name. For example : bl uewhal e: hel | o.

Within a project you can address a task of the same project just by its name. This is interpreted as
a relative path.

Originally Gradle has used the ' /' character as a natural path separator. With the introduction of
directory tasks (see Section 12.1, “Directory creation”) this was no longer possible, as the name of
the directory task contains the ' /' character.

40.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies.
They had only Configuration Dependencies. Here is an example where this is different:

Page 243 of 301

40.6.1. Execution dependencies

40.6.1.1. Dependencies and execution order
Example 40.14. Dependencies and execution order

Build layout

messages/
settings.gradle
consuner/
bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dep
which is in both the binary and source distributions of Gradle.

settings.gradle

i ncl ude 'consuner', 'producer'

consurner/ bui l d. gradl e

task action << {
println("Consuni ng nessage: " +
(root Proj ect. hasProperty(' producerMessage') ? rootProject. producerl

producer/buil d. gradl e

task action << {
println "Produci ng nessage: "
root Proj ect. producer Message = 'Watch the order of execution.'

Outputof gradl e -gq action

> gradle -qg action
Consum ng nessage: nul
Pr oduci ng nmessage:

This did not work out. If nothing else is defined, Gradle executes the task in alphanumeric order.
Therefore : consumer : acti on is executed before : producer: acti on. Let's try to solve this
with a hack and rename the producer project to aPr oducer .

Page 244 of 301

Example 40.15. Dependencies and execution order

Build layout

nmessages/
settings.gradle
aPr oducer/

bui | d. gradl e
consurmer/
bui |l d. gradl e

settings.gradle

i ncl ude 'consuner', 'aProducer'

aProducer/buil d. gradl e

task action << {
println "Produci ng nessage: "
r oot Proj ect. producer Message = ' Watch the order of execution.

consurer/ bui l d. gradl e

task action << {
println("Consuni ng nessage: " +
(root Proj ect. hasProperty(' producer Message') ? rootProject. producerl

Outputof gradl e -gq action

> gradle -g action
Pr oduci ng nmessage:
Consum ng nessage: Watch the order of execution

Now we take the air out of this hack. We simply switch to the consun®er dir and execute the build.

Example 40.16. Dependencies and execution order

Output of gradl e -qg action

> gradle -q action
Consumni ng message: nul

For Gradle the two act i on tasks are just not related. If you execute the build from the nessages
project Gradle executes them both because they have the same name and they are down the
hierarchy. In the last example only one acti on was down the hierarchy and therefore it was the
only task that got executed. We need something better than this hack.

Page 245 of 301

40.6.1.2. Declaring dependencies
Example 40.17. Declaring dependencies

Build layout
nmessages/
settings.gradle
consuner/
bui | d. gradl e

producer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dep
which is in both the binary and source distributions of Gradle.

settings.gradle

i ncl ude ' consuner', 'producer'’

consuner/ buil d. gradl e
dependsOn(' : producer')
task action << {

println("Consuni ng nessage: " +
(root Proj ect. hasProperty(' producerMessage') ? rootProject. producerl

producer/buil d. gradl e
task action << {

println "Produci ng nessage: "
r oot Proj ect. producer Message = 'Watch the order of execution.

Outputofgradl e -gq action
> gradle -g action

Pr oduci ng nmessage:
Consumi ng message: Watch the order of execution

Running this from the consuner directory gives:

Example 40.18. Declaring dependencies

Output of gradl e -qg action

> gradle -q action
Produci ng nmessage:
Consum ng nessage: Watch the order of execution

Page 246 of 301

We have now declared that the consumer project has an execution dependency on the pr oducer
project. For Gradle declaring execution dependencies between projects is syntactic sugar. Under
the hood Gradle creates task dependencies out of them. You can also create cross project tasks
dependencies manually by using the absolute path of the tasks.

40.6.1.3. The nature of project dependencies
Let's change the naming of our tasks and execute the build.

Example 40.19. Project execution dependencies
consuner/ buil d. gradl e
dependsOn(' : producer')

task consume << {
println("Consum ng nessage: " +
(root Proj ect. hasProperty(' producerMessage') ? rootProject. producerl

producer/buil d. gradl e

task produce << {
println "Producing nessage:"
r oot Proj ect. producer Message = 'Watch the order of execution.

Output of gradl e -q consune

> gradle -qgq consune
Consum ng nessage: nul

Oops. Why does this not work? The dependsOn command is created for projects with a common
lifecycle. Provided you have two Java projects where one depends on the other. If you trigger a
compile for the dependent project you don't want that all tasks of the other project get executed.
Therefore a dependsOn creates dependencies between tasks with equal names. To deal with the
scenario above you would do the following:

Page 247 of 301

Example 40.20. Cross project task dependencies

consurer/ bui |l d. gradl e
task consume(dependsOn: ':producer: produce') << {

println("Consuni ng nessage: " +
(root Proj ect. hasProperty(' producerMessage') ? rootProject. producerl

producer/buil d. gradl e
task produce << {

println "Produci ng nessage: "
root Proj ect. producer Message = 'Watch the order of execution.

Output of gradl e -gq consune
> gradl e -g consume

Pr oduci ng nessage:
Consum ng nessage: Watch the order of execution

40.6.2. Configuration time dependencies

Let's have one more example with our producer-consumer build before we enter Java land. We
add a property to the producer project and create now a configuration time dependency from
consumer on producer.

Example 40.21. Configuration time dependencies

consuner/ buil d. gradl e
message = root Proj ect. hasProperty(' producer Message') ? root Project. producer Mes:

task consune << {
println("Consum ng nessage: " + nessage)
}

producer/buil d. gradl e

root Proj ect. producer Message = 'Watch the order of eval uation.

Output of gradl e -q consune

> gradle -q consune
Consumi ng message: nul

The default evaluation order of the projects is alphanumeric (for the same nesting level). Therefore
the consuner project is evaluated before the pr oducer project and the key value of the pr oduce
is set after it is read by the consumer project. Gradle offers a solution for this.

Page 248 of 301

Example 40.22. Configuration time dependencies - evaluationDependsOn

consurer/ bui |l d. gradl e
eval uati onDependsOn(' : producer")
nmessage = root Project. hasProperty(' producer Message') ? rootProject. producer Mes:

task consune << {
println("Consum ng nessage: " + nessage)

}

Output of gradl e -q consune

> gradle -q consune
Consum ng nessage: Watch the order of evaluation

The command eval uat i onDependsOn triggers the evaluation of pr oducer before consuner is
evaluated. The example is a bit contrived for the sake of showing the mechanism. In this case
there would be an easier solution by reading the key property at execution time.

Example 40.23. Configuration time dependencies

consurer/ bui l d. gradl e

task consume << {
println("Consuni ng nessage: " +
(root Proj ect. hasProperty(' producerMessage') ? rootProject. producerl

Output of gradl e -q consune

> gradle -qgq consune
Consum ng nessage: Watch the order of eval uation

Configuration dependencies are very different to execution dependencies. Configuration
dependencies are between projects whereas execution dependencies are always resolved to task
dependencies. Another difference is that always all projects are configured, even when you start
the build from a subproject. The default configuration order is top down, which is usually what is
needed.

On the same nesting level the configuration order depends on the alphanumeric position. The most
common use case is to have multi-project builds that share a common lifecycle (e.g. all projects
use the Java plugin). If you declare with dependsOn a execution dependency between different
projects, the default behavior of this method is to create also a configuration dependency between
the two projects. Therefore it is likely that you don't have to define configuration dependencies
explicitly.

Page 249 of 301

40.6.3. Real life examples

Gradle's multi-project features are driven by real life use cases. The first example for describing
such a use case, consists of two webapplication projects and a parent project that creates a

distribution out of them. (28] For the example we use only one build script and do cross project
configuration.

Page 250 of 301

Example 40.24. Dependencies - real life example - crossproject configuration

Build layout

webDi st/
settings.gradle
buil d. gradl e
dat e/
src/ mai n/ j aval
or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/j aval
or g/ gradl e/ sanpl e/
Hel | oServl et. java

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dep
which is in both the binary and source distributions of Gradle.

settings.gradle

include 'date', "hello

bui I d. gradl e
dependsOnChi | dren()

al | projects {
apply plugin: 'java
group = 'org.gradle.sanple'
version = '1.0

}

subproj ects {
apply plugin: "war'
repositories {
mavenCentral ()
}

dependenci es {
conpil e "javax.servlet:servlet-api:2. 5"
}

}

task expl odedDi st (dependsOn: assenble) << {
Fil e expl odedDi st = nkdir(buildDir, 'explodedDi st")
subproj ects. each {project ->
proj ect.tasks.w thType(Jar).each {archiveTask ->
copy {
from archi veTask. ar chi vePat h
i nto expl odedDi st

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a

Page 251 of 301

configuration dependency on webDi st , as all the build logic for the webapp projects is injected by \
. The execution dependency is in the other direction, as webDi st depends on the build artifacts of |
and hel | 0. There is even a third dependency. webDi st has a configuration dependency on dat e
and hel | o because it needs to know the ar chi vePat h. But it asks for this information at
execution time. Therefore we have no circular dependency.

Such and other dependency patterns are daily bread in the problem space of multi-project builds. If
a build system does not support such patterns, you either can't solve your problem or you need to
do ugly hacks which are hard to maintain and massively afflict your productivity as a build master.

There is one more thing to note from the current example. We have used the command dependsQ
. It is a convenience method and calls the dependsOn method of the parent project for every child
project (not every sub project). It declares a execut i on dependency of webDi st on dat e and hel

Another use case would be a situation where the subprojects have a configuration and execution
dependency on the parent project. This is the case when the parent project does configuration
injection into its subprojects, and additionally produces something at execution time that is needed
by its child projects (e.g. code generation). In this case the parent project would call the chi | dr enl
method to create an execution dependency for the child projects. We might add an example for
this in a future version of the user guide.

40.7. Project lib dependencies

What if one projects needs the jar produced by another project in its compile path? And not just the
jar but also the transitive dependencies of this jar? Obviously this is a very common use case for
Java multi-project builds. As already mentioned in Section 35.3.4, “Project dependencies”, Gradle
offers project lib dependencies for this.

Page 252 of 301

Example 40.25. Project lib dependencies
Build layout

j aval
settings.gradle
buil d. gradl e
api /
src/ mai n/ j aval
or g/ gradl e/ sanpl e/
api/
Per son. j ava
api | npl/
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j ava/
org/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal
or g/ gradl e/ sanpl e/ servi ces/
PersonServi ceTest. j ava
shar ed/
src/ mai n/ j aval
or g/ gr adl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dep
which is in both the binary and source distributions of Gradle.

We have the projects shar ed, api andper sonSer vi ce. per sonSer vi ce has a lib dependency
on the other two projects. api has a lib dependency on shar ed. ==

Page 253 of 301

Example 40.26. Project lib dependencies

settings.gradle

i nclude "api', 'shared', 'services: personService

buil d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanple’
version = '1.0
repositories {
mavenCentral ()

}

dependenci es {
testConmpile "junit:junit:4.8.2"
}

}

project(':api') {
dependenci es {
conpil e project(':shared")
}

}

project(':services:personService') {
dependenci es {
conpil e project(':shared"), project(':api")
}
}

dependsOnChi | dren()

All the build logic is in the bui | d. gr adl e of the root project. (291 A lib dependency is a special
form of an execution dependency. It causes the other project to be built first and adds the jar with
the classes of the other project to the classpath. It also adds the dependencies of the other project
to the classpath. So you can enter the api directory and trigger a gr adl e conpi | e. First shar ed
is built and then api is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from lvy land, you
might expect some more fine grained control. Gradle offers this to you:

Page 254 of 301

Example 40.27. Fine grained control over dependencies

bui | d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanpl e’
version = '1.0

}

project(':api') {
configurations {
spi
}
dependenci es {
conpil e project(':shared")

}
task spiJar(type: Jar) {
baseNane = 'api - spi
dependsOn cl asses
from sour ceSet s. nai n. out put
i ncl ude(' org/ gradl e/ sanmpl e/ api /**")
}
artifacts {
spi spiJar
}

}

project (':services: personService') {
dependenci es {
conpil e project(':shared")
conpi l e project(path: ':api', configuration: 'spi')
testConpile "junit:junit:4.8.2", project(' :api")

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this
example we create an additional library containing only the interfaces of the api project. We
assign this library to a new dependency configuration. For the person service we declare that the
project should be compiled only against the api interfaces but tested with all classes from api .

40.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partial build. To disable
the build of the depended on projects you can run gradle with the - a option.

40.8. Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks
(if the CodeQuality plugin is used) of a single project. In multi-project builds you may often want to
do all of these tasks across a range of projects. The bui | dNeeded and bui | dDependent s tasks
can help with this.

Let's use the project structure shown in Example 40.26, “Project lib dependencies”. In this example
:services:personservice depends on both :api and :shared. The :api project also depends on

Page 255 of 301

:shared.

Assume you are working on a single project, the :api project. You have been making changes, but
have not built the entire project since performing a clean. You want to build any necessary
supporting jars, but only perform code quality and unit tests on the project you have changed. The t
task does this.

Example 40.28. Build and Test Single Project
Outputofgradl e :api:build

> gradle :api:build

: shared: conpi | eJava

: shar ed: processResour ces
: shar ed: cl asses
:shared:jar

;api: conpil eJava

:api: processResour ces
;api:cl asses

capi:jar

:api : assenbl e

:api: conpil eTest Java
:api : processTest Resour ces
;api:testC asses

s api:test
:api : check
capi:build

BU LD SUCCESSFUL

Total tinme: 1 secs

While you are working in a typical development cycle repeatedly building and testing changes to
the :api project (knowing that you are only changing files in this one project), you may not want to
even suffer the expense of :shared:compile checking to see what has changed in the :shared
project. Adding the - a option will cause gradle to use cached jars to resolve any project lib
dependencies and not try to re-build the depended on projects.

Page 256 of 301

Example 40.29. Partial Build and Test Single Project

Outputof gradl e -a :api:build

> gradle -a :api:build

:api

api
:api
api
:api

capi:
:testd asses
‘test

: check

api
api
api

papi:

: conpi | eJava
Dapi:
. cl asses

Djar

. assenbl e
:conpi | eTest Java

pr ocessResour ces

processTest Resour ces

build

BU LD SUCCESSFUL

Tot al

time: 1 secs

If you have just gotten the latest version of source from your version control system which included
changes in other projects that :api depends on, you might want to not only build all the projects you
depend on, but test them as well. The bui | dNeeded task also tests all the projects from the

project lib dependencies of the testRuntime configuration.

Page 257 of 301

Example 40.30. Build and Test Depended On Projects
Output of gradl e : api : bui | dNeeded

> gradl e :api: buil dNeeded
: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

;api : conpil eJava

:api : processResour ces
;api:cl asses

capi:jar

;api: assenbl e
;api:conpi |l eTest Java

:api : processTest Resources
;api:testd asses

;api:test
:api: check
;api:build

: shared: assenbl e

: shared: conpi | eTest Java

: shar ed: processTest Resour ces
:shared: test d asses

:shared: test

: shar ed: check

:shared: buil d

: shar ed: bui | dNeeded

:api : bui | dNeeded

BU LD SUCCESSFUL

Total tine: 1 secs

You also might want to refactor some part of the :api project that is used in other projects. If you
make these types of changes, it is not sufficient to test just the :api project, you also need to test all
projects that depend on the :api project. The bui | dDependent s task also tests all the projects
that have a project lib dependency (in the testRuntime configuration) on the specified project.

Page 258 of 301

Example 40.31. Build and Test Dependent Projects

Output of gradl e : api: bui | dDependent s

> gradl e : api: buil dDependent s
: shar ed: conpi | eJava

: shar ed: processResour ces
: shared: cl asses
:shared:jar

;api : conpil eJava

:api : processResour ces
;api:cl asses

capi:jar

;api: assenbl e
;api:conpi |l eTest Java

:api : processTest Resources
;api:testd asses

;api:test
:api: check
;api:build

: services: personServi ce: conpi | eJava

: services: personServi ce: processResour ces
. services: personServi ce: cl asses
:services: personService:jar

. services: personServi ce: assenbl e
:services: personServi ce: conpi | eTest Java
. services: personServi ce: processTest Resour ces
:services: personServi ce: test Cl asses
:services: personService: t est

: services: personServi ce: check

. services: personService: build

: services: personServi ce: bui | dDependent s
:api : bui | dDependent s

BU LD SUCCESSFUL

Total tine: 1 secs

Finally, you may want to build and test everything in all projects. If the root project has declared def
(as this one does), then any task you run against the root project will cause that same named task
to be run on all the children. So you can just run gr adl e bui | d to build and test all projects.

40.9. Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an
alternative to configuration injection. But we think that the model of inheritance does not reflect the
problem space of multi-project builds very well. In a future edition of this user guide we might write
more about this.

Method inheritance might be interesting to use as Gradle's Configuration Injection does not support
methods yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don't like that much.
One reason is that it is offered by other tools and we want to have the check mark in a feature
comparison :). And we like to offer our users a choice.

Page 259 of 301

40.10. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final
message for this chapter is that multi-project builds with Gradle are usually not difficult. There are
six elements you need to remember: al | pr oj ect s, subpr oj ect s, dependsOn, chi | dr enDepe
, dependsOnChi | dren and project lib dependencies. [21] with those elements, and keeping in
mind that Gradle has a distinct configuration and execution phase, you have already a lot of
flexibility. But when you enter steep territory Gradle does not become an obstacle and usually
accompanies and carries you to the top of the mountain.

[18] The real use case we had, was using http://lucene.apache.org/solr, where you need a
separate war for each index your are accessing. That was one reason why we have created a
distribution of webapps. The Resin servlet container allows us, to let such a distribution point to a

base installation of the servlet container.

[19] servi ces is also a project, but we use it just as a container. It has no build script and gets

nothing injected by another build script.

[20] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff

into the build script of the respective projects.

[21] So we are well in the range of the 7 plus 2 Rule)

Page 260 of 301

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

41

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with
an action closure. We have seen these in Chapter 5, Build Script Basics. For this type of task, the
action closure determines the behaviour of the task. This type of task is good for implementing
one-off tasks in your build script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task
provides some properties which you can use to configure the behaviour. We have seen these in
Chapter 14, More about Tasks. Most Gradle plugins use enhanced tasks. With enhanced tasks,
you don't need to implement the task behaviour as you do with simple tasks. You simply declare
the task and configure the task using its properties. In this way, enhanced tasks let you reuse a
piece of behaviour in many different places, possibly across different builds.

The behaviour and properties of an enhanced task is defined by the task's class. When you
declare an enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task
class in pretty much any language you like, provided it ends up compiled to bytecode. In our
examples, we are going to use Groovy as the implementation language, but you could use, for
example, Java or Scala. In general, using Groovy is the easiest option, because the Gradle API is
designed to work well with Groovy.

41.1. Packaging a task class

There are several places where you can put the source for the task class.

Build script
You can include the task class directly in the build script. This has the benefit that the task
class is automatically compiled and included in the classpath of the build script without you
having to do anything. However, the task class is not visible outside the build script, and so
you cannot reuse the task class outside the build script it is defined in.

bui | dSr c project
You can put the source for the task class in the r oot Proj ect Di r/ bui | dSrc/ src/ mai n/ ¢
directory. Gradle will take care of compiling and testing the task class and making it available
on the classpath of the build script. The task class is visible to every build script used by the

Page 261 of 301

build. However, it is not visible outside the build, and so you cannot reuse the task class
outside the build it is defined in. Using the bui | dSr c project approach keeps separate the
task declaration - that is, what the task should do - from the task implementation - that is,
how the task does it.

See Chapter 43, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project
You can create a separate project for your task class. This project produces and publishes a
JAR which you can then use in multiple builds and share with others. Generally, this JAR
might include some custom plugins, or bundle several related task classes into a single
library. Or some combination of the two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we

will look at creating a standalone project.

41.2. Writing a simple task class

To implement a custom task class, you extend Def aul t Task.

Example 41.1. Defining a custom task

bui | d. gradl e

class GreetingTask extends Default Task {

}

This task doesn't do anything useful, so let's add some behaviour. To do so, we add a method to
the task and mark it with the TaskAct i on annotation. Gradle will call the method when the task

executes. You don't have to use a method to define the behaviour for the task. You could, for
instance, call doFi r st () or doLast () with a closure in the task constructor to add behaviour.

Example 41.2. A hello world task
bui I d. gradl e
task hello(type: G eetingTask)
cl ass GreetingTask extends Defaul t Task {
@askActi on

def greet() {
println "hello from G eetingTask'

}

Outputofgradle -q hello

> gradle -q hello
hell o from G eeti ngTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you

Page 262 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/DefaultTask.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/tasks/TaskAction.html

declare a task, you can set the properties or call methods on the task object. Here we add a gr eet
property, and set the value when we declare the gr eet i ng task.
Example 41.3. A customizable hello world task

bui | d. gradl e

/1 Use the default greeting
task hell o(type: G eetingTask)

/[l Custom ze the greeting

task greeting(type: G eetingTask) {
greeting = 'greetings from G eetingTask'

}

cl ass GreetingTask extends Defaul t Task {
def String greeting = "hello from G eetingTask’

@askAction

def greet() {
println greeting

}

Output of gradl e -g hell o greeting

> gradle -q hello greeting
hell o from G eeti ngTask
greetings from GreetingTask

41.3. A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others.
This project is simply a Groovy project that produces a JAR containing the task class. Here is a
simple build script for the project. It applies the Groovy plugin, and adds the Gradle API as a
compile-time dependency.

Example 41.4. A build for a custom task
bui l d. gradl e

apply plugin: '"groovy'

dependenci es {

conpi | e gradl eApi ()
groovy | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n which is in both
the binary and source distributions of Gradle.

We just follow the convention for where the source for the task class should go.

Page 263 of 301

Example 41.5. A custom task
src/ mai n/ groovy/ org/ gradl e/ G eeti ngTask. gr oovy
package org.gradle

i mport org.gradl e. api . Def aul t Task
i mport org.gradle. api.tasks. TaskActi on

cl ass GreetingTask extends Defaul t Task {
String greeting = "hello from G eeti ngTask’

@askActi on

def greet() {
println greeting
}

41.3.1. Using your task class in another project

To use a task class in a build script, you need to add the class to the build script's classpath. To do
this, you use a bui Il dscri pt { } block, as described in Section 43.5, “External dependencies

for the build script”. The following example shows how you might do this when the JAR containing

the task class has been published to a local repository:
Example 41.6. Using a custom task in another project
usesCust onffask. gradl e
bui | dscript {
repositories {

mavenRepo urls: uri (' repo’)
}

dependenci es {

classpath group: 'org.gradle', nane: 'custonPl ugin',

}
}

task greeting(type: org.gradle. GeetingTask) {
greeting = ' howdy!’
}

41.3.2. Writing tests for your task class

version: '1.0-SNAl

You can use the Pr oj ect Bui | der class to create Pr 0j ect instances to use when you test your

task class.

Page 264 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html

Example 41.7. Testing a custom task

src/test/groovy/org/gradl e/ GeetingTaskTest. groovy

class GreetingTaskTest {
@est
public void canAddTaskToProj ect () {
Proj ect project = ProjectBuilder. builder().build()
def task = project.task('greeting', type: G eetingTask)
assert True(task instanceof G eetingTask)

Page 265 of 301

Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many
different projects and builds. Gradle allows you to implement your own custom plugins, so you can
reuse your build logic, and share it with others.

You can implement a custom plugin in any language you like, provided the implementation ends up
compiled as bytecode. For the examples here, we are going to use Groovy as the implementation
language. You could use Java or Scala instead, if you want.

42.1. Packaging a plugin

There are several places where you can put the source for the plugin.

Build script
You can include the source for the plugin directly in the build script. This has the benefit that
the plugin is automatically compiled and included in the classpath of the build script without
you having to do anything. However, the plugin is not visible outside the build script, and so
you cannot reuse the plugin outside the build script it is defined in.

bui | dSr ¢ project
You can put the source for the plugin in the r oot Proj ect Di r/ bui | dSrc/ src/ mai n/ gr o«
directory. Gradle will take care of compiling and testing the plugin and making it available on
the classpath of the build script. The plugin is visible to every build script used by the build.
However, it is not visible outside the build, and so you cannot reuse the plugin outside the
build it is defined in.

See Chapter 43, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project
You can create a separate project for your plugin. This project produces and publishes a
JAR which you can then use in multiple builds and share with others. Generally, this JAR
might include some custom plugins, or bundle several related task classes into a single
library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will
look at creating a standalone project.

Page 266 of 301

42.2. Writing a simple plugin

plugin and calls the plugin instance's Pl ugi n. appl y() method when the plugin is used with a
project. The project object is passed as a parameter, which the plugin can use to configure the
project however it needs to. The following sample contains a greeting plugin, which adds a hel | o
task to the project.

Example 42.1. A custom plugin

bui l d. gradl e
apply plugin: GeetingPlugin

class GreetingPlugin inplements Plugin<Project> {
def void appl y(Project project) {
project.task('hello") << {
println "Hello fromthe G eetingPl ugi n"
}

Outputofgradle -q hello

> gradle -q hello
Hel lo fromthe G eetingPlugin

One thing to note is that a new instance of a given plugin is created for each project it is applied to.

42.3. Getting input from the build

Most plugins need to obtain some configuration from the build script. One method for doing this is
to use convention objects. The Gradle Pr oj ect has a Convent i on object that helps keep track
of all the settings and properties being passed to plugins. You can capture user input by telling the
Project Convention about your plugin. To capture input, simply add a Java Bean compliant class
into the Convention's list of plugins. Groovy is a good language choice for a plugin because plain

old Groovy objects contain all the getter and setter methods that a Java Bean requires.

Let's add a simple convention object to the project. Here we add a gr eeti ng property to the
project, which allows you to configure the greeting.

Page 267 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/plugins/Convention.html

Example 42.2. A custom plugin convention

bui | d. gradl e
apply plugin: GeetingPlugin
greeting = 'H from G adl e’

class GreetingPlugin inplenments Plugin<Project> {
def void apply(Project project) {
proj ect. convention. pl ugi ns. greet = new G eeti ngPl ugi nConventi on()
project.task('hello") << {
println project.convention.plugins.greet.greeting

}
}

cl ass GreetingPl ugi nConvention {
def String greeting = '"Hello from G eetingPl ugin'
}

Outputofgradle -q hello

> gradle -q hello
H from Gadle

In this example, Gr eet i ngPl ugi nConventi on is a plain old Groovy object with a field called gr e
. The convention object is added to the plugin list with the name gr eet . The name of the variable
in the build needs to match the name of the field in the convention object. The name you choose
for your plugin (gr eet) is arbitrary and can be whatever you choose.

Oftentimes, you have several related properties you need to specify on a single plugin. With
Groovy plugins it is easy to offer a configuration closure block to group settings together. The
following example shows you how to do this.

Page 268 of 301

Example 42.3. A custom plugin with closure convention

bui | d. gradl e
apply plugin: GeetingPlugin

greet {
message = 'H from G adl e’
}

cl ass GreetingPlugin inplenments Plugin<Project> {
def void apply(Project project) {

proj ect. convention. pl ugi ns. greet = new G eetingPl ugi nConventi on()
project.task('hello") << {
println project.convention. plugins. greet.nessage

}
}

cl ass GreetingPl ugi nConvention {
String nessage

def greet(C osure closure) {
cl osure.del egate = this
cl osure()

Outputofgradle -q hello

> gradle -q hello
H from Gradle

In this example, several convention settings can be grouped together within the gr eet closure.
The name of the closure block in the build script (gr eet) needs a matching method on the
convention object, and that method must take a closure as an argument. Then, when the closure is
executed, the fields on the convention object will be mapped to the variables within the closure
based on the standard Groovy closure delegate feature. This technique is possible in other JVM
languages but may not be as convenient as in Groovy.

42.3.1. Using conventions for default values

The convention mechanism is also a powerful way of declaring default values for objects such as
tasks. Furthermore, these default values can be specified in terms of other properties.

Page 269 of 301

Example 42.4. A task with a configuration property
bui | d. gradl e
class GreetingTask extends Default Task {
String greeting
@askAction

def greet() {
println getGeeting()

}

Given the above task, we can wire in a default value for the gr eet i ng property that is any value.
In this case we defer to a project property of the same name.

Example 42.5. Wiring in the task property default value with conventions
bui I d. gradl e
class GreetingPlugin inplenments Plugin<Project> {
def void apply(Project project) {

project.tasks.withType(G eetingTask) { task ->
t ask. conventi onMappi ng. map(' greeting') { project.greeting }

}

By using the convention mapping above to map the value of the project property gr eet i ng as the
value for the gr eet i ng property on all Gr eet i ngTask tasks, we have effectively configured this
as the default value. That is, individual tasks can be overridden in such a way to override this
default.

Example 42.6. Overriding conventional defaults

bui I d. gradl e

apply plugin: GeetingPlugin

greeting = "Hellol"
task hell o(type: G eetingTask)

task bonjour(type: G eetingTask) {
greeting = "Bonjour!"
}

In the above, the hel | o task will assume the default value, while bonj our overrides this explicitly.

Page 270 of 301

Example 42.7. Conventional defaults in action

Output of gradl e -g hel l o bonj our

> gradle -q hello bonjour
Hel | o!
Bonj our!

Note that the convention mapping is “live” in that the convention mapping closure will be evaluated
everytime that the value is requested. In this example this means that the default value for the task
property will always be the value of pr oj ect . gr eeti ng, no matter when or how it changes.

42.4. Working with files in custom tasks and plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting
input configuration for file locations. To do this, you can leverage the Proj ect . fi |l e() method to

resolve values to files as late as possible.

Example 42.8. Evaluating file properties lazily

buil d. gradl e

class GreetingToFi |l eTask extends Defaul t Task {

def destination

File getDestination() {
project.fil e(destination)

}

@askAction

def greet() {
def file = getDestination()
file.parentFile.nkdirs()
fileewite "Hello!"

}

task greet(type: G eetingToFileTask) {
destination = { project.greetingFile }
}

task sayG eeting(dependsOn: greet) << {
printin file(greetingFile).text
}

greetingFile = "$buildDir/hello.txt"

Output of gradl e -q sayGreeting

> gradle -q sayGeeting
Hel | o!

In this example, we configure the greet task desti nati on property as a closure, which is

Page 271 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

evaluated with the Proj ect.fil e() method to turn the return value of the closure into a file
object at the last minute. You will notice that in the above example we specify the greeti ngFi |l e
property value after we have configured to use it for the task. This kind of lazy evaluation is a key
benefit of accepting any value when setting a file property, then resolving that value when reading
the property.

42.5. A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others.
This project is simply a Groovy project that produces a JAR containing the plugin classes. Here is
a simple build script for the project. It applies the Groovy plugin, and adds the Gradle API as a
compile-time dependency.

Example 42.9. A build for a custom plugin

bui | d. gradl e

apply plugin: 'groovy'

dependenci es {

conmpi | e gradl eApi ()
groovy | ocal Groovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n which is in both
the binary and source distributions of Gradle.

So how does Gradle find the Pl ugi n implementation? The answer is you need to provide a

properties file in the jar's META- | NF/ gr adl e- pl ugi ns directory that matches the name of your
plugin.

Example 42.10. Wiring for a custom plugin

src/ mai n/ resour ces/ META-| NF/ gr adl e- pl ugi ns/ greeti ng. properties

i mpl enent ati on-cl ass=org. gradl e. Greeti ngPl ugi n

Notice that the properties filename matches the plugin's name and is placed in the resources
folder, and that the i npl enent ati on-cl ass property identifies the Pl ugi n implementation
class.

42.5.1. Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script's classpath.
To do this, you use a buildscript { } block, as described in Section 43.5, “External
dependencies for the build script”. The following example shows how you might do this when the
JAR containing the plugin has been published to a local repository:

Page 272 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/Plugin.html

Example 42.11. Using a custom plugin in another project

usesCust onPl ugi n. gradl e

bui | dscript {
repositories {
mavenRepo urls: uri('repo’)
}

dependenci es {
classpath group: 'org.gradle', name: 'custonPlugin', version: '1.0-SNA
}

}

apply plugin: 'greeting

42.5.2. Writing tests for your plugin

You can use the Pr oj ect Bui | der class to create Pr o] ect instances to use when you test your
plugin implementation.

Example 42.12. Testing a custom plugin

src/test/groovy/ org/gradl e/ GeetingPl ugi nTest. groovy

class GreetingPl ugi nTest {
@est
public void greeterPlugi nAddsG eeti ngTaskToPr oj ect ()
Proj ect project = ProjectBuilder.builder().build(
project.apply plugin: "greeting

{
)

assert True(project.tasks. hell o i nstanceof G eetingTask)

42.6. Maintaining multiple domain objects

Gradle provides some utility classes for maintaining collections of object, which work well with the
Gradle build language.

Example 42.13. Managing domain objects

bui l d. gradl e

Page 273 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html

apply plugin: DocunentationPlugin

books {
qui ckStart {
sourceFile = file(' src/docs/quick-start")
}

user Qui de {

}
devel oper Gui de {

}
}

task books << {
books. each { book ->
println "$book. nane -> $book. sourceFil e"
}
}

cl ass Docunent ati onPl ugi n i npl ements Pl ugi n<Proj ect > {
def void apply(Project project) {
def books = project. contai ner (Book)
books. al | {
sourceFile = project.file("src/docs/ $nane")
}

proj ect. conventi on. pl ugi ns. docunent ati on = new Docunent at i onPl ugi nConv

}

cl ass Book {
final String nane
File sourceFile

Book(String name) {
thi s. nane = nane

}
}

cl ass Document ati onPl ugi nConventi on {
final NanedDonmai nCbj ect Cont ai ner <Book> books

Docunent at i onPl ugi nConvent i on(NanedDormai nObj ect Cont ai ner <Book> books) {
thi s. books = books

}

def books(C osure cl) {
books. confi gure(cl)

}

Output of gradl e -gq books

> gradl e -q books

devel oper Gui de -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi c/ cust o1
qui ckStart -> /hone/user/gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ug
user GQui de -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi

Page 274 of 301

The Proj ect. contai ner() methods create instances of NanmedDomai nObj ect Cont ai ner,
that have many useful methods for managing and configuring the objects. In order to use a type
with any of the pr oj ect . cont ai ner methods, it MUST expose a property named “nane” as the
unique, and constant, name for the object. The proj ect. cont ai ner (Cl ass) variant of the
container method creates new instances by attempting to invoke the constructor of the class that
takes a single string argument, which is the desired name of the object. See the above link for pr oj
method variants taht allow custom instantiation strategies.

Page 275 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/NamedDomainObjectContainer.html

43
Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic
directly in the action closure of a task. If a couple of tasks share the same logic you can extract this
logic into a method. If multiple projects of a multi-project build share some logic you can define this
method in the parent project. If the build logic gets too complex for being properly modeled by
methods you want have an OO Model. [22] Gradle makes this very easy. Just drop your classes in
a certain directory and Gradle automatically compiles them and puts them in the classpath of your
build script.

Here is a summary of the ways you can organise your build logic:

® POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build
script. The build script is written in Groovy, after all, and Groovy provides you with lots of
excellent ways to organize code.

* Inherited properties and methods. In a multi-project build, sub-projects inherit the properties
and methods of their parent project.

® Configuration injection. In a multi-project build, a project (usually the root project) can inject
properties and methods into another project.

® bui | dSr c project. Drop the source for your build classes into a certain directory and Gradle
automatically compiles them and includes them in the classpath of your build script.

® Shared scripts. Define common configuration in an external build, and apply the script to

multiple projects, possibly across different builds.

® Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

® Custom plugins. Put your build build logic into a custom plugin, and apply that plugin to
multiple projects. The plugin must be in the classpath of your build script. You can achieve
this either by using bui | d sources or by adding an external library that contains the

olugin, T T

® Execute an external build. Execute another Gradle build from the current build.

® External libraries. Use external libraries directly in your build file.

Page 276 of 301

43.1. Inherited properties and methods

Any method or property defined in a project build script is also visible to all the sub-projects. You
can use this to define common configurations, and to extract build logic into methods which can be

reused by the sub-projects.
Example 43.1. Using inherited properties and methods
bui l d. gradl e

srcDirNane = 'src/java'

def getSrcDir(project) {

return project.file(srcDirNane)

}

chil d/ buil d. gradl e
task show << {

println 'srcDirNanme: ' + srcDi rName

File srcDir = getSrcDir(project)
println "srcDir: ' + rootProject.relativePath(srcDir)

Output of gradl e -gq show

> gradle -q show
srcDi r Nane: src/java
srcDir: child/src/java

43.2. Injected configuration

You can use the configuration injection technique discussed in Section 40.1, “Cross project

configuration” and Section 40.2, “Subproject configuration” to inject properties and methods into
various projects. This is generally a better option than inheritance, for a number of reasons: The
injection is explicit in the build script, You can inject different logic into different projects, And you
can inject any kind of configuration such as repositories, plug-ins, tasks, and so on. The following

sample shows how this works.

Page 277 of 301

Example 43.2. Using injected properties and methods
bui | d. gradl e
subproj ects {
srcDirName = 'src/java'

srcDir = { file(srcDirNane) }

task show << {

println "project: ' + project.path

println 'srcDirName: ' + srcDirNane

File srcDir = srcDir()

println "srcDir: ' + rootProject.relativePath(srcDir)

project(':child2") {
srcDi rNane = "$srcDirNanme/ | egacy”

}

chil d1/ buil d. gradl e

srcDirName = 'java'
def dir = srcDir()

Output of gradl e -q show

> gradle -g show

project: :childl

srcDi r Nane: java

srcDir: childl/java

project: :child2

srcDi rNane: src/javall egacy
srcDir: child2/src/javall egacy

43.3. Build sources in the bui | dSr ¢ project

When you run Gradle, it checks for the existence of a directory called bui | dSr c. Just put your
build source code in this directory and stick to the layout convention for a Java/Groovy project (see
Table 20.4, “Java plugin - default project layout”). Gradle then automatically compiles and tests this
code and puts it in the classpath of your build script. You don't need to provide any further
instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one bui | dSr ¢ directory, which has to be in the root
project directory.

Listed below is the default build script that Gradle applies to the bui | dSr ¢ project:

Page 278 of 301

Figure 43.1. Default buildSrc build script

apply plugin: 'groovy
dependenci es {

conpi | e gradl eApi ()
groovy | ocal Groovy()

This is probably good enough for most cases. If you need more flexibility, you can provide your
own bui | d. gradl e and asettings. gradl e file in the bui | dSr c directory. If you like, you can
even have a multi-project build in there. Gradle applies the default build script regardless of
whether there is one specified. This means you only need to declare the extra things you need.
Below is an example. Notice that this example does not need to declare a dependency on the
Gradle API, as this is done by the default build script:

Example 43.3. Custom buildSrc build script
bui | dSrc/buil d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
testConmpile group: 'junit', name: 'junit', version: '4.8.2

}

43.4. Running another Gradle build from a build

You can use the Gr adl eBui | d task. You can use either of the di r or bui | dFi | e properties to
specify which build to execute, and the t asks property to specify which tasks to execute.

Example 43.4. Running another build from a build

bui I d. gradl e
task build(type: GradleBuild) {

buildFile = "other.gradl e
tasks = ['hello']

ot her.gradl e

task hello << {
println "hello fromthe other build."

}

Outputofgradle -q build

> gradle -q build
hello fromthe other build.

Page 279 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.GradleBuild.html

43.5. External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script's classpath in the
build script itself. You do this using the bui | dscri pt () method, passing in a closure which
declares the build script classpath.

Example 43.5. Declaring external dependencies for the build script

bui | d. gradl e

bui | dscript {
repositories {
mavenCentral ()

}

dependenci es {
classpath group: 'commons-codec', nane: 'commons-codec', version: 1.2

}

The closure passed to the bui | dscri pt () method configures a Scri pt Handl er instance. You
declare the build script classpath by adding dependencies to the cl asspat h configuration. This is
the same way you declare, for example, the Java compilation classpath. You can use any of the
dependency types described in Section 35.3, “How to declare your dependencies”, except project
dependencies.

Having declared the build script classpath, you can use the classes in your build script as you
would any other classes on the classpath. The following example adds to the previous example,
and uses classes from the build script classpath.

Example 43.6. A build script with external dependencies

bui l d. gradl e

i nport org. apache. cormons. codec. bi nary. Base64

bui I dscri pt {
repositories {
mavenCentral ()

}

dependenci es {
classpath group: 'comons-codec', nane: 'commons-codec', version: 1.2

}
}

task encode << {
def byte[] encodedString = new Base64().encode(' hello world\n'.getBytes())
println new String(encodedString)

Output of gradl e -gq encode

> gradl e -g encode
aGvshGBgd29ybGXK

Page 280 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

For multi-project builds, the dependencies declared in the a project's build script, are available to
the build scripts of all sub-projects.

43.6. Ant optional dependencies

For reasons we don't fully understand yet, external dependencies are not picked up by Ant's
optional tasks. But you can easily do it in another way. <2

Example 43.7. Ant optional dependencies

bui | d. gradl e

configurations {
ft pAnt Task
}

dependenci es {
ft pAnt Task("org. apache. ant : ant - commons-net: 1. 8. 2") {
nmodul e(" commons- net : commons-net: 1.4.1") {
dependencies "oro:oro:2.0.8:jar"

}
}
}
task ftp << {
ant {
t askdef (nane: 'ftp',
cl assnane: 'org.apache.tools. ant.taskdefs. optional.net.FTP,
cl asspath: configurations. ftpAnt Task. asPat h)
ftp(server: "ftp.apache.org", userid: "anonynous", password: "nme@ryorg.
fileset(dir: "htdocs/manual")
}
}
}

This is also nice example for the usage of client modules. The pom.xml in maven central for the
ant-commons-net task does not provide the right information for this use case.

43.7. Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for
your domain and find the right balance between unnecessary indirections, and avoiding
redundancy and a hard to maintain code base. It is our experience that even very complex custom
build logic is rarely shared between different builds. Other build tools enforce a separation of this
build logic into a separate project. Gradle spares you this unnecessary overhead and indirection.

[22] Which might range from a single class to something very complex.

task need the same library you would have to define it two times. In such a case it would be nice, if
Ant's optional task would automatically pickup the classpath defined in the gr adeset t i ngs.

Page 281 of 301

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current
environment. This mechanism also supports tools that wish to integrate with Gradle.

44.1. Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however,
are run before the build starts. Here are several possible uses:

® Set up properties based on the current environment (such as a developer's machine vs. a
continuous integration server).

® Supply personal information about the user to the build, such as repository or database
authentication credentials.

® Define machine specific details, such as where JDKs are installed.

® Register build listeners. External tools that wish to listen to Gradle events might find this
useful.

® Register build loggers. You might wish to customise how Gradle logs the events that it
generates.

One main limitation of init scripts is that they cannot access classes in the buildSrc project (see
Section 43.3, “Build sources in the bui | dSr ¢ project” for details of this feature).

There are two ways to use init scripts. Either put a file called i ni t. gr adl e in USER_HOWE/ . gr ad
, or specify the file on the command line. The command line option is -1 or --init-script
followed by the path to the script. The command line option can appear more than once, each time
adding another init script. If more than one init script is found they will all be executed. This allows
for a tool to specify an init script and the user to put home in their home directory for defining the
environment and both scripts will run when gradle is executed.

44.2. Writing an init script

Similar to a Gradle build script, an init script is a groovy script. Each init script has a Gr adl e

Page 282 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.invocation.Gradle.html

instance associated with it. Any property reference and method call in the init script will delegate to
this Gr adl e instance.

Each init script also implements the Scr i pt interface.

44.3. External dependencies for the init script

In Section 43.5, “External dependencies for the build script” is was explained how to add external
dependencies to a build script. Init scripts can similarly have external dependencies defined. You
do this using the i nitscri pt() method, passing in a closure which declares the init script
classpath.

Example 44.1. Declaring external dependencies for an init script

init.gradle

initscript {
repositories {
mavenCent ral ()
}

dependenci es {
cl asspath group: 'org.apache.conmons', name: 'commons-nmath', version:

}

The closure passed to the i nitscri pt () method configures a Scri pt Handl er instance. You
declare the init script classpath by adding dependencies to the cl asspat h configuration. This is
the same way you declare, for example, the Java compilation classpath. You can use any of the
dependency types described in Section 35.3, “How to declare your dependencies”, except project
dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example, and uses
classes from the init script classpath.

Page 283 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.Script.html
http://www.gradle.org/releases/1.0-milestone-4/docs/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 44.2. An init script with external dependencies
init.gradle
i mport org.apache. cormons. mat h. fracti on. Fracti on

initscript {
repositories {
mavenCentral ()

}
dependenci es {

cl asspath group: 'org.apache. commons', nanme: 'commons- nath'
}

}
println Fraction. ONE_FI FTH. mul ti pl y(2)
Outputofgradle --init-script init.gradl e -qgq doNothing

> gradle --init-script init.gradle -q doNothing
2/ 5

, Vversion:

Page 284 of 301

45

The Gradle Wrapper

Gradle is a new tool. You can't expect it to be installed on machines beyond your sphere of
influence. An example are continuous integration server where Gradle is not installed and where
you have no admin rights for the machine. Or what if you provide an open source project and you
want to make it as easy as possible for your users to build it?

There is a simple and good W apper task. [24] You can create such a task in your build script.

Example 45.1. Wrapper task
bui | d. gradl e

task wrapper(type: Wapper) {
gradl eVersion = ' 0.9
}

The build master usually explicitly executes this task. After such an execution you find the following
new or updated files in your project directory (in case the default configuration of the wrapper task
is used).

Example 45.2. Wrapper generated files

Build layout

si npl e/
gr adl ew
gr adl ew. bat
gr adl e/ wr apper/
gr adl e-w apper.jar
gr adl e-w apper. properties

All these files must be submitted to your version control system. The gradlew command can be
used exactly the same way as the gradle command.

If you want to switch to a new version of Gradle you don't need to rerun the wrapper task. It is good
enough to change the respective entry in the gr adl e- wr apper . properti es file. But if there is
for example an improvement in the gradle-wrapper functionality you need to regenerate the

Page 285 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

wrapper files.

45.1. Configuration

If you run Gradle with gradlew, Gradle checks if a Gradle distribution for the wrapper is available.
If not it tries to download it, otherwise it delegates to the gradle command of this distribution with
all the arguments passed originally to the gradlew command.

You can specify where the wrapper files should be stored (within your project directory):

Example 45.3. Configuration of wrapper task

buil d. gradl e

task wrapper(type: Wapper) {
gradl eVersion = ' 0. 9
jarFile = "w apper/w apper.jar'

Build layout

cust om zed/
gr adl ew
gr adl ew. bat
wr apper/
wWr apper. j ar
Wr apper . properties

You can specify the download URL of the wrapper distribution. You can also specify where the
wrapper distribution should be stored and unpacked (either within the project or within the gradle
user home dir). If the wrapper is run and there is local archive of the wrapper distribution Gradle
tries to download it and stores it at the specified place. If there is no unpacked wrapper distribution
Gradle unpacks the local archive of the wrapper distribution at the specified place. All the
configuration options have defaults except the version of the wrapper distribution.

If you don't want any download to happen when your project is build via gradlew, simply add the
Gradle distribution zip to your version control at the location specified by your wrapper
configuration. Relative url is supported - you can specify a distribution file relative to the location of
file.

If you build via the wrapper, any existing Gradle distribution installed on the machine is ignored.

45.2. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution for the gradlew *NIX
command. Subversion preserves this file permission. We are not sure how other version control
systems deal with this. What should always work is to execute sh gr adl ew.

Page 286 of 301

http://www.gradle.org/releases/1.0-milestone-4/docs/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

45.3. Environment variable

Some rather exotic use cases might occur when working with the Gradle Wrapper. For example
the continuos integration server goes down during unzipping the Gradle distribution. As the
distribution directory exists gradlew delegates to it but the distribution is corrupt. Or the
zZip-distribution was not properly downloaded. When you have no admin right on the continuous
integration server to remove the corrupt files, Gradle offers a solution via environment variables.

Table 45.1. Gradle wrapper environment variables

Variable Name Meaning

GRADLE_WRAPPER_ALWAYS_ UNPACK If settot r ue, the distribution directory gets
always deleted when gradlew is run and the
distribution zip is freshly unpacked. If the zip
is not there, Gradle tries to download it.

GRADLE_WRAPPER_ALWAYS DOWNLOAD Ifsettotrue, the distribution directory and
the distribution zip gets always deleted
when gradlew is run and the distribution zip
is freshly downloaded.

[24] If you download the Gradle source distribution or check out Gradle from SVN, you can build

Gradle via the Gradle wrapper. Gradle itself is continuously built by Bamboo and Teamcity via this
wrapper. See http://www.gradle.org/ci-server.html

Page 287 of 301

http://www.gradle.org/ci-server.html

46
Embedding Gradle

t.b.d.

Page 288 of 301

A

Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution.
You can find these samples in the GRADLE_HOVE/ sanpl es directory of the distribution.

Table A.1. Samples included in the distribution

Sample

announce

application

codeQual ity

cust onBui | dLanguage

cust onPl ugi n

ear/ ear Cust om zed/ ear

ear/ ear Wt hWar

groovy/ cust oni zedLayout

groovy/ groovy-1.5.6

groovy/ groovy-1.6.7

gr oovy/ m xedJavaAndG oovy

Description

A project which uses the announce plugin

A project which uses the application plugin

A project which uses the code quality plugin.

This sample demonstrates how to add some custom
elements to the build DSL. It also demonstrates the use
of custom plug-ins to organize build logic.

A project which implements a custom plugin and task.

Web application ear project with customized contents

Web application ear project

Groovy project with a custom source layout

Groovy project using Groovy 1.5.6

Groovy project using Groovy 1.6.7

Project containing a mix of Java and Groovy source

Page 289 of 301

groovy/ mul ti proj ect

groovy/ qui ckstart

j aval base

j aval/ cust om zedLayout

javal mul ti pr oj ect

j aval qui ckst art

java/wi thl ntegrationTests

maven/ pontzener ati on

maven/ qui ckst art

0sgi

scal a/ cust om zedLayout

scal a/ fsc

scal a/ m xedJavaAndScal a

scal a/ qui ckstart

t ool i ngApi / bui |l d

t ool i ngApi / nodel

webAppl i cati on/ cust om sed

Build made up of multiple Groovy projects. Also
demonstrates how to exclude certain source files, and the
use of a custom Groovy AST transformation.

Groovy quickstart sample

Java base project

Java project with a custom source layout

This sample demonstrates how an application can be
composed using multiple Java projects.

Java quickstart project

This sample demonstrates how to use a source set to
add an integration test suite to a Java project.

Demonstrates how to deploy and install to a Maven
repository. Also demonstrates how to deploy a javadoc
JAR along with the main JAR, how to customize the
contents of the generated POM, and how to deploy
snapshots and releases to different repositories.

Demonstrates how to deploy and install artifacts to a
Maven repository.

A project which builds an OSGi bundle

Scala project with a custom source layout

Sala project using the Fast Scala Compiler (fsc).

A project containing a mix of Java and Scala source.

Scala quickstart project

An application which uses the tooling API to execute a
Gradle build.

An application which uses the tooling API to build the
model for a project.

Web application with customized WAR contents.

Page 290 of 301

webAppl i cati on/ qui ckstart Web application quickstart project

A.l. Sample cust onBui | dLanguage

This sample demonstrates how to add some custom elements to the build DSL. It also
demonstrates the use of custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the
second represents a product module. Each product includes one or more product modules, and
each product module may be included in multiple products. That is, there is a many-to-many
relationship between these products and product modules. For each product, the build produces a
ZIP containing the runtime classpath for each product module included in the product. The ZIP also
contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basi cEc
). Notice that the build script uses the pr oduct { } element. This is a custom element.

The build scripts of each project contain only declarative elements. The bulk of the work is done by
2 custom plug-ins found in bui | dSr c/ src/ mai n/ gr oovy.

A.2. Samplej aval/ nul ti proj ect

This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a
client ZIP which includes an APl JAR, which a 3rd party application would compile against, and a
client runtime. Then, there is a server WAR which provides a web service.

Page 291 of 301

B

Potential Traps

B.1. Groovy script variables

For Gradle users it is important to understand how Groovy deals with script variables. Groovy has
two types of script variables. One with a local scope and one with a script wide scope.

Page 292 of 301

Example B.1. Variables scope: local and script wide

scope. gr oovy

String | ocal Scopel = '| ocal Scopel
def | ocal Scope2 = '| ocal Scope2'
scri pt Scope = 'script Scope

println | ocal Scopel
println | ocal Scope2
println scriptScope

closure = {
println | ocal Scopel
println | ocal Scope2
println scriptScope

def nmethod() {
try {local Scopel} catch(M ssingPropertyException e) {println 'local ScopelN
try {local Scope2} catch(M ssingPropertyException e) {println 'l ocal Scope2N
println scriptScope

}

closure.call ()
met hod()

Output of gr adl e

> gradl e

| ocal Scopel

| ocal Scope?2

scri pt Scope

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal ScopelNot Avai | abl e
| ocal Scope2Not Avai | abl e
scri pt Scope

Variables which are declared with a type modifier are visible within closures but not visible within
methods. This is a heavily discussed behavior in the Groovy community. (23]

B.2. Configuration and execution phase

It is important to keep in mind that Gradle has a distinct configuration and execution phase (see
Chapter 39, The Build Lifecycle).

Page 293 of 301

Example B.2. Distinct configuration and execution phase

bui | d. gradl e

classesDir = file(' build/classes")
cl assesDi r. nkdirs()
task clean(type: Delete) {

delete 'build
}
task conpil e(dependsOn: 'clean') << {

if (!classesDir.isDirectory()) {

println ' The class directory does not exist. | can not operate

Output of gradl e -q conpile

> gradle -q conpile
The class directory does not exist. | can not operate

As the creation of the directory happens during the configuration phase, the cl ean task removes
the directory during the execution phase.

[25] One of those discussions can be found here:

http://lwww.nabble.com/script-scoping-question-td16034724.html

Page 294 of 301

http://www.nabble.com/script-scoping-question-td16034724.html

C

Gradle Command Line

The gradle command has the following usage:

gradle [option...] [task...]
The command-line options available for the gradle command are listed below:

-?,-h,--help
Shows a help message.

-C,--cache
Specifies how compiled build scripts should be cached. Possible values are: r ebui | d or on.
Default value is on. See Section 12.7, “Caching”.

--project-cache-dir
Specifies the project-specific cache directory. Can be absolute or relative to the project's dir.
Default value is . gr adl e. See Section 12.7, “Caching”.

-D, --system prop
Sets a system property of the JVM, for example - Dy pr op=nyval ue.

-l,--init-script
Specifies an initialization script. See Chapter 44, Initialization Scripts.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=nyval ue.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See Chapter 16, Logging.

-a,--no-rebuild
Do not rebuild project dependencies.

--all
Shows additional detail in the task listing. See Section 10.5.2, “Listing tasks”.

-b,--build-file

Page 295 of 301

Specifies the build file. See Section 10.4, “Selecting which build to execute”.

-c,--settings-file
Specifies the settings file.

-d, - -debug
Log in debug mode (includes normal stacktrace). See Chapter 16, Logging.

- e, --enbedded
Specify an embedded build script.

-g,--gradl e-user-hone
Specifies the Gradle user home directory.

- - gui
Launches the Gradle GUI. See Chapter 11, Using the Gradle Graphical User Interface.

-i,--info
Set log level to info. See Chapter 16, Logging.

-m--dry-run
Runs the build with all task actions disabled.

--no-col or
Do not use color in the console output.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory. See Section 10.4,
“Selecting which build to execute”.

--profile
Profiles build execution time and generates a report in the <build_dir>/reports/profile
directory.

-, --qui et
Log errors only. See Chapter 16, Logging.

-s,--stacktrace

- u, - - no-sear ch- upwar ds
Don't search in parent directories for a set ti ngs. gr adl e file.

-V, --Vversion
Prints version info.

- X, --excl ude-t ask
Specifies a task to be excluded from execution. See Section 10.2, “Excluding tasks”.

The above information is printed to the console when you execute gr adl e - h.

Page 296 of 301

C.1. Deprecated command-line options

The following options are deprecated and will be removed in a future version of Gradle:

-n, - -dependenci es
(deprecated) Show list of all project dependencies. You should use gr adl e dependenci es
instead. See Section 10.5.3, “Listing project dependencies”.

-r,--properties
(deprecated) Show list of all available project properties. You should use gr adl e properti
instead. See Section 10.5.4, “Listing project properties”.

-t,--tasks
(deprecated) Show list of available tasks. You should use gr adl e tasks instead. See
Section 10.5.2, “Listing tasks”.

C.2. Experimental command-line options

The following options are experimental:

- - daenon
Uses the Gradle daemon to run the build. Starts the daemon if not running.

--foreground
Starts the Gradle daemon in the foreground.

- - no- daenon
Do not use the Gradle daemon to run the build.

--stop
Stops the Gradle daemon if it is running.

C.3. System properties

The following system properties are available for the gradle command. Note that command-line
options take precedence over system properties.

gradl e. user. hone
Specifies the Gradle user home directory.

org. gradl e. daenon
When set to t r ue, use the Gradle daemon to run the build.

C.4. Environment variables

The following environment variables are available for the gradle command. Note that
command-line options and system properties take precedence over environment variables.

GRADLE OPTS

Page 297 of 301

Specifies command-line arguments to use to start the JVM. This can be useful for setting the
system properties to use for running Gradle. For example you could set GRADLE _OPTS="- X
to use the Gradle daemon without needing to use the - - daenon option every time you run
Gradle.

GRADLE_USER_HOVE
Specifies the Gradle user home directory.

Page 298 of 301

D

Existing IDE Support and how to cope
without it

D.1. IntelliJ

Gradle has been mainly developed with Idea IntelliJ and its very good Groovy plugin. Gradle's build
script (28] has also been developed with the support of this IDE. IntelliJ allows you to define any
filepattern to be interpreted as a Groovy script. In the case of Gradle you can define such a pattern
for bui | d. gradl e and setti ngs. gradl e. This will already help very much. What is missing is
the classpath to the Gradle binaries to offer content assistance for the Gradle classes. You might
add the Gradle jar (which you can find in your distribution) to your project's classpath. It does not
really belong there, but if you do this you have a fantastic IDE support for developing Gradle
scripts. Of course if you use additional libraries for your build scripts they would further pollute your
project classpath.

We hope that in the future *. gr adl e files get special treatment by IntelliJ and you will be able to
define a specific classpath for them.

D.2. Eclipse

There is a Groovy plugin for eclipse. We don't know in what state it is and how it would support
Gradle. In the next edition of this user guide we can hopefully write more about this.

D.3. Using Gradle without IDE support

What we can do for you is to spare you typing things like t hr ow new or g. gradl e. api . t asks.
and just type t hrow new St opExecuti onException() instead. We do this by automatically

adding a set of import statements to the Gradle scripts before Gradle executes them. Listed below
are the imports added to each script.

Page 299 of 301

Figure D.1. gradle-imports

i mport org.gradle.*
i nport org.gradle.uti
i mport org.gradle.api.*

import org.gradle.api.artifacts.*

i mport org.gradle.api.artifacts.dsl.*

i mport org.gradle.api.artifacts. maven. *
i mport org.gradle.api.artifacts. specs.*
i nport org.gradl e. api.execution.*

i mport org.gradle.api.file.*

import org.gradle.api.initialization.*

i mport org.gradle.api.invocation.*

i mport org.gradle.api.java.archives.*

i mport org.gradle.api.logging.*

i mport org.gradle. api.plugins.*

i mport org.gradle.plugins.ide.eclipse.*
i mport org.gradle.plugins.ide.idea.*
import org.gradle.plugins.jetty.*

i mport org.gradle.api.plugins.quality.*
i nport org.gradle. api.specs.*

i mport org.gradle.api.tasks.*

i nport org.gradle.api.tasks. bundling.*

i mport org.gradle.api.tasks.di agnostics.*
i nport org.gradle.api.tasks.conpile.*

i mport org.gradle. api.tasks.javadoc. *

i mport org.gradle.api.tasks.testing.*

i mport org.gradle.api.tasks.util.*

i mport org.gradle. api.tasks.w apper.*

i mport org.gradle. process. *

*

[26] Gradle is built with Gradle

Page 300 of 301

Gradle

D

DAG
See Directed Acyclic Graph.

Directed Acyclic Graph
A directed acyclic graph is a directed graph that contains no cycles. In Gradle each task to
execute represents a node in the graph. A dependsOn relation to another task will add this
other task as a node (if it is not in the graph already) and create a directed edge between
those two nodes. Any dependsOn relation will be validated for cycles. There must be no way
to start at certain node, follow a sequence of edges and end up at the original node.

Domain Specific Language
A domain-specific language is a programming language or specification language dedicated
to a particular problem domain, a particular problem representation technique, and/or a
particular solution technique. The concept isn't new—special-purpose programming
languages and all kinds of modeling/specification languages have always existed, but the
term has become more popular due to the rise of domain-specific modeling.

DSL
See Domain Specific Language.

	Chapter 1. Introduction
	1.1. About this user guide

	Chapter 2. Overview
	2.1. Features
	2.2. Why Groovy?

	Chapter 3. Tutorials
	3.1. Getting Started

	Chapter 4. Installing Gradle
	4.1. Prerequisites
	4.2. Download
	4.3. Unpacking
	4.4. Environment variables
	4.5. Running and testing your installation
	4.6. JVM options

	Chapter 5. Build Script Basics
	5.1. Projects and tasks
	5.2. Hello world
	5.3. A shortcut task definition
	5.4. Build scripts are code
	5.5. Task dependencies
	5.6. Dynamic tasks
	5.7. Manipulating existing tasks
	5.8. Shortcut notations
	5.9. Dynamic task properties
	5.10. Using Ant Tasks
	5.11. Using methods
	5.12. Default tasks
	5.13. Configure by DAG
	5.14. Summary

	Chapter 6. Java Quickstart
	6.1. The Java plugin
	6.2. A basic Java project
	6.3. Multi-project Java build
	6.4. Summary

	Chapter 7. Groovy Quickstart
	7.1. A basic Groovy project
	7.2. Summary

	Chapter 8. Web Application Quickstart
	8.1. Building a WAR file
	8.2. Running your web application
	8.3. Summary

	Chapter 9. Artifact Basics
	9.1. Artifact configurations
	9.2. Repositories
	9.3. External dependencies
	9.4. Artifact publishing
	9.5. API

	Chapter 10. Using the Gradle Command-Line
	10.1. Executing multiple tasks
	10.2. Excluding tasks
	10.3. Task name abbreviation
	10.4. Selecting which build to execute
	10.5. Obtaining information about your build
	10.6. Dry Run
	10.7. Summary

	Chapter 11. Using the Gradle Graphical User Interface
	11.1. Task Tree
	11.2. Favorites
	11.3. Command Line
	11.4. Setup

	Chapter 12. Tutorial - 'This and That'
	12.1. Directory creation
	12.2. Gradle properties and system properties
	12.3. Accessing the web via a proxy
	12.4. Configuring the project using an external build script
	12.5. Configuring arbitrary objects
	12.6. Configuring arbitrary objects using an external script
	12.7. Caching

	Chapter 13. Writing Build Scripts
	13.1. The Gradle build language
	13.2. The Project API
	13.3. The Script API
	13.4. Some Groovy basics

	Chapter 14. More about Tasks
	14.1. Defining tasks
	14.2. Locating tasks
	14.3. Configuring tasks
	14.4. Adding dependencies to a task
	14.5. Adding a description to a task
	14.6. Replacing tasks
	14.7. Skipping tasks
	14.8. Skipping tasks that are up-to-date
	14.9. Task rules
	14.10. Summary

	Chapter 15. Working With Files
	15.1. Locating files
	15.2. File collections
	15.3. File trees
	15.4. Using the contents of an archive as a file tree
	15.5. Specifying a set of input files
	15.6. Copying files
	15.7. Using the Sync task
	15.8. Creating archives

	Chapter 16. Logging
	16.1. Choosing a log level
	16.2. Writing your own log messages
	16.3. Logging from external tools and libraries
	16.4. Changing what Gradle logs

	Chapter 17. Using Ant from Gradle
	17.1. Using Ant tasks and types in your build
	17.2. Importing an Ant build
	17.3. Ant properties and references
	17.4. API

	Chapter 18. Using Plugins
	18.1. Declaring plugins
	18.2. Using the convention object

	Chapter 19. Standard Gradle plugins
	19.1. Language plugins
	19.2. Integration plugins
	19.3. Software development plugins
	19.4. Base plugins
	19.5. Third party plugins

	Chapter 20. The Java Plugin
	20.1. Usage
	20.2. Source sets
	20.3. Tasks
	20.4. Project layout
	20.5. Dependency management
	20.6. Convention properties
	20.7. Working with source sets
	20.8. Javadoc
	20.9. Clean
	20.10. Resources
	20.11. CompileJava
	20.12. Test
	20.13. Jar
	20.14. Uploading

	Chapter 21. The Groovy Plugin
	21.1. Usage
	21.2. Tasks
	21.3. Project layout
	21.4. Dependency management
	21.5. Convention properties
	21.6. Source set properties
	21.7. CompileGroovy

	Chapter 22. The Scala Plugin
	22.1. Usage
	22.2. Tasks
	22.3. Project layout
	22.4. Dependency Management
	22.5. Convention Properties
	22.6. Source set properties
	22.7. Fast Scala Compiler

	Chapter 23. The War Plugin
	23.1. Usage
	23.2. Tasks
	23.3. Project layout
	23.4. Dependency management
	23.5. Convention properties
	23.6. War
	23.7. Customizing

	Chapter 24. The Ear Plugin
	24.1. Usage
	24.2. Tasks
	24.3. Project layout
	24.4. Dependency management
	24.5. Convention properties
	24.6. Ear
	24.7. Customizing
	24.8. Using custom descriptor file

	Chapter 25. The Jetty Plugin
	25.1. Usage
	25.2. Tasks
	25.3. Project layout
	25.4. Dependency management
	25.5. Convention properties

	Chapter 26. The Code Quality Plugin
	26.1. Usage
	26.2. Tasks
	26.3. Project layout
	26.4. Dependency management
	26.5. Convention properties

	Chapter 27. The Sonar Plugin
	27.1. Usage
	27.2. Tasks
	27.3. Limitations

	Chapter 28. The OSGi Plugin
	28.1. Usage
	28.2. Implicitly applied plugins
	28.3. Tasks
	28.4. Dependency management
	28.5. Convention object
	28.6.

	Chapter 29. The Eclipse Plugin
	29.1. Usage
	29.2. Tasks
	29.3. Configuration
	29.4. Customizing the generated files

	Chapter 30. The IDEA Plugin
	30.1. Usage
	30.2. Tasks
	30.3. Configuration
	30.4. Customizing the generated files
	30.5. Further things to consider

	Chapter 31. The Antlr Plugin
	31.1. Usage
	31.2. Tasks
	31.3. Project layout
	31.4. Dependency management
	31.5. Convention properties
	31.6. Source set properties

	Chapter 32. The Project Report Plugin
	32.1. Usage
	32.2. Tasks
	32.3. Project layout
	32.4. Dependency management
	32.5. Convention properties

	Chapter 33. The Announce Plugin
	33.1. Usage
	33.2. Tasks
	33.3. Project layout
	33.4. Dependency management
	33.5. Convention properties

	Chapter 34. The Application Plugin
	34.1. Usage
	34.2. Tasks
	34.3. Convention properties
	34.4. Including other resources in the distribution

	Chapter 35. Dependency Management
	35.1. Introduction
	35.2. Dependency management overview
	35.3. How to declare your dependencies
	35.4. Working with dependencies
	35.5. Repositories
	35.6. Strategies for transitive dependency management

	Chapter 36. Artifact Management
	36.1. Introduction
	36.2. Artifacts and configurations
	36.3. Uploading artifacts
	36.4. More about project libraries

	Chapter 37. The Maven Plugin
	37.1. Usage
	37.2. Tasks
	37.3. Dependency management
	37.4. Convention properties
	37.5. Convention methods
	37.6. Interacting with Maven repositories

	Chapter 38. The Signing Plugin
	38.1. Usage
	38.2. Signatory credentials
	38.3. Specifying what to sign
	38.4. Publishing the signatures
	38.5. Signing POM files

	Chapter 39. The Build Lifecycle
	39.1. Build phases
	39.2. Settings file
	39.3. Multi-project builds
	39.4. Initialization
	39.5. Configuration and execution of a single project build
	39.6. Responding to the lifecycle in the build script

	Chapter 40. Multi-project Builds
	40.1. Cross project configuration
	40.2. Subproject configuration
	40.3. Execution rules for multi-project builds
	40.4. Running tasks by their absolute path
	40.5. Project and task paths
	40.6. Dependencies - Which dependencies?
	40.7. Project lib dependencies
	40.8. Multi-Project Building and Testing
	40.9. Property and method inheritance
	40.10. Summary

	Chapter 41. Writing Custom Task Classes
	41.1. Packaging a task class
	41.2. Writing a simple task class
	41.3. A standalone project

	Chapter 42. Writing Custom Plugins
	42.1. Packaging a plugin
	42.2. Writing a simple plugin
	42.3. Getting input from the build
	42.4. Working with files in custom tasks and plugins
	42.5. A standalone project
	42.6. Maintaining multiple domain objects

	Chapter 43. Organizing Build Logic
	43.1. Inherited properties and methods
	43.2. Injected configuration
	43.3. Build sources in the buildSrc project
	43.4. Running another Gradle build from a build
	43.5. External dependencies for the build script
	43.6. Ant optional dependencies
	43.7. Summary

	Chapter 44. Initialization Scripts
	44.1. Basic usage
	44.2. Writing an init script
	44.3. External dependencies for the init script

	Chapter 45. The Gradle Wrapper
	45.1. Configuration
	45.2. Unix file permissions
	45.3. Environment variable

	Chapter 46. Embedding Gradle
	Appendix A. Gradle Samples
	A.1. Sample customBuildLanguage

	A.2. Sample java/multiproject

	Appendix B. Potential Traps
	B.1. Groovy script variables
	B.2. Configuration and execution phase

	Appendix C. Gradle Command Line
	C.1. Deprecated command-line options
	C.2. Experimental command-line options
	C.3. System properties
	C.4. Environment variables

	Appendix D. Existing IDE Support and how to cope without it
	D.1. IntelliJ
	D.2. Eclipse
	D.3. Using Gradle without IDE support

