
Gradle
A build system

Version 0.7

Hans Dockter

Adam Murdoch

Copyright © 2007-2009 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge

any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or

electronically.

Table of Contents

1. Introduction
1.1. About this user guide

2. Overview
2.1. Features
2.2. Why Groovy?
2.3. Missing features

3. Getting Started
3.1. Prerequisites
3.2. Unpacking
3.3. Environment variables
3.4. Running and testing your installation
3.5. JVM options

4. Build Script Basics
4.1. Hello world
4.2. Build scripts are code
4.3. Task dependencies
4.4. Dynamic tasks
4.5. Manipulating existing tasks
4.6. Shortcut notations
4.7. Dynamic task properties
4.8. Using Ant Tasks
4.9. Using methods
4.10. Default tasks
4.11. Configure by DAG
4.12. Summary

5. Artifact Basics
5.1. Artifact configurations
5.2. Repositories
5.3. External dependencies
5.4. Artifact publishing
5.5. API

6. Java Quickstart
6.1. A basic Java project
6.2. Multi-project Java build
6.3. Summary

7. Groovy Quickstart
7.1. A basic Groovy project
7.2. Summary

8. Web Application Quickstart
8.1. Building a WAR file
8.2. Running your web application
8.3. Summary

9. Using the Gradle Command-Line
9.1. Executing multiple tasks
9.2. Selecting which build to execute
9.3. Obtaining information about your build
9.4. Dry Run

10. Tutorial - 'This and That'
10.1. Skipping tasks
10.2. Directory creation
10.3. Gradle properties and system properties
10.4. Accessing the web via a proxy

10.5. Caching
10.6. Configuring arbitrary objects

11. The Project and Task API
11.1. Project API
11.2. Task API
11.3. Summary

12. More about Tasks
12.1. Defining tasks
12.2. Locating tasks
12.3. Configuring tasks
12.4. Adding dependencies to a task
12.5. Adding a description to a task
12.6. Replacing tasks
12.7. Task rules
12.8. Summary

13. Logging
13.1. Choosing a log level
13.2. External tools and standard output
13.3. Sending your own log messages

14. Using Ant from Gradle
14.1. Using Ant tasks and types in your build
14.2. Importing an Ant build
14.3. Ant properties and references
14.4. API

15. Plugins
15.1. Declaring plugins
15.2. Configuration
15.3. Summary

16. The Java Plugin
16.1. Tasks
16.2. Project layout
16.3. Dependency management
16.4. Convention properties
16.5. Javadoc
16.6. Clean
16.7. Resources
16.8. Compile
16.9. Test
16.10. Jar
16.11. Adding archives
16.12. Uploading
16.13. Eclipse

17. The Groovy Plugin
17.1. Tasks
17.2. Project layout
17.3. Dependency management
17.4. Convention properties
17.5. Compile
17.6. Test

18. The War Plugin
18.1. Tasks
18.2. Project layout
18.3. Dependency management
18.4. Convention properties
18.5. War
18.6. Customizing

18.7. Eclipse WTP

19. The Jetty Plugin
19.1. Tasks
19.2. Project layout
19.3. Dependency management
19.4. Convention properties

20. The Maven Plugin
20.1. Tasks
20.2. Project layout
20.3. Dependency management
20.4. Convention properties

21. The OSGi Plugin
21.1. Tasks
21.2. Project layout
21.3. Dependency management
21.4. Convention properties

22. The Eclipse Plugin
22.1. Tasks
22.2. Project layout
22.3. Dependency management
22.4. Convention properties

23. The Project Report Plugin
23.1. Tasks
23.2. Project layout
23.3. Dependency management
23.4. Convention properties

24. How to write Custom Plugins

25. Dependency Management
25.1. Introduction
25.2. Dependency management overview
25.3. How to declare your dependencies
25.4. Working with dependencies
25.5. Repositories
25.6. Strategies for transitive dependency management

26. Artifact Management
26.1. Introduction
26.2. Artifacts and configurations
26.3. Uploading artifacts
26.4. More about project libraries
26.5. Interacting with Maven repositories

27. The Build Lifecycle
27.1. Build phases
27.2. Settings file
27.3. Multi-project builds
27.4. Initialization
27.5. Configuration and execution of a single project build
27.6. Responding to the lifecycle in the build script

28. Multi-project Builds
28.1. Cross project configuration
28.2. Subproject configuration
28.3. Execution rules for multi-project builds
28.4. Running tasks by their absolute path
28.5. Project and task paths
28.6. Dependencies - Which dependencies?
28.7. Project lib dependencies

28.8. Property and method inheritance
28.9. Summary

29. Organizing Build Logic
29.1. Build sources
29.2. External dependencies for the build script
29.3. Ant optional dependencies
29.4. Summary

30. The Gradle Wrapper
30.1. Configuration
30.2. Unix file permissions
30.3. Environment variable

31. Embedding Gradle

A. Potential Traps
A.1. Groovy script variables
A.2. Configuration and execution phase

B. Gradle Command Line

C. Existing IDE Support and how to cope without it
C.1. IntelliJ
C.2. Eclipse
C.3. Using Gradle without IDE support

List of Examples

4.1. The first build script

4.2. Execution of a build script

4.3. Using Groovy in Gradle's tasks

4.4. Using Groovy in Gradle's tasks

4.5. Declaration of dependencies between tasks

4.6. Lazy dependsOn - the other task does not exist (yet)

4.7. Dynamic creation of a task

4.8. Accessing a task via API - adding a dependency

4.9. Accessing a task via API - adding behaviour

4.10. Accessing task as a property of the build script

4.11. Assigning properties to a task

4.12. Using AntBuilder to execute ant.checksum target

4.13. Using methods to organize your build logic

4.14. Defining a default tasks

4.15. Different outcomes of build depending on chosen tasks

5.1. Definition of a configuration

5.2. Accessing a configuration

5.3. Configuration of a configuration

5.4. Usage of Maven central repository

5.5. Usage of a local directory

5.6. Accessing a repository

5.7. Configuration of a repository

5.8. Definition of an external dependency

5.9. Usage of external dependency of a configuration

6.1. Java plugin

6.2. Adding Maven repository

6.3. Adding dependencies

6.4. Customization of MANIFEST.MF

6.5. Adding system property

6.6. Publishing the JAR file

6.7. Java example - complete build file

6.8. Multi-project build - hierarchical layout

6.9. Multi-project build - settings.gradle file

6.10. Multi-project build - common configuration

6.11. Multi-project build - dependencies between projects

6.12. Multi-project build - distribution file

7.1. Groovy plugin

7.2. Dependency on Groovy 1.6.0

7.3. Groovy example - complete build file

8.1. War plugin

8.2. Running web application with Jetty plugin

9.1. Executing multiple tasks

9.2. Obtaining information about tasks

9.3. Obtaining information about dependencies

10.1. Skipping tasks using default property name

10.2. Skipping tasks using custom property

10.3. Skipping depending tasks

10.4. Skipping tasks with StopExecutionException

10.5. Enabling and disabling tasks

10.6. Directory creation with mkdir

10.7. Directory creation with Directory tasks

10.8. Setting properties with a gradle.properties file

10.9. Accessing the web via a proxy

10.10. Configuring arbitrary objects

11.1. Accessing property of the Project object

11.2. Project properties

12.1. Defining tasks

12.2. Defining tasks - using strings

12.3. Defining tasks with alternative syntax

12.4. Accessing tasks as properties

12.5. Accessing tasks via tasks collection

12.6. Accessing tasks by path

12.7. Creating a copy task

12.8. Configuring a task - various ways

12.9. Configuring a task - fluent interface

12.10. Configuring a task - with closure

12.11. Configuring a task - with configure() method

12.12. Defining a task with closure

12.13. Adding dependency on task from another project

12.14. Adding dependency using task object

12.15. Adding dependency using closure

12.16. Adding a description to a task

12.17. Overwriting a task

12.18. Task rule

12.19. Dependency on rule based tasks

13.1. Sending your own log message

14.1. Using an Ant task

14.2. Passing nested text to an Ant task

14.3. Passing nested elements to an Ant task

14.4. Using an Ant type

14.5. Using a custom Ant task

14.6. Declaring the classpath for a custom Ant task

14.7. Using a custom Ant task and dependency management together

14.8. Importing an Ant build

14.9. Task that depends on Ant target

14.10. Adding behaviour to an Ant target

14.11. Ant target that depends on Gradle task

14.12. Setting an Ant property

14.13. Getting an Ant property

14.14. Setting an Ant reference

14.15. Getting an Ant reference

15.1. Using plugin

15.2. Configuring a plugin

15.3. Plugin convention object

16.1. Creation of ZIP archive

16.2. Configuration of archive task - custom archive name

16.3. Configuration of archive task - appendix & classifier

16.4. Adding content to archive - include & exclude

16.5. Adding content to archive - arbitrary files

16.6. Adding content to archive - zipFileSet

16.7. Creation of TAR archive

16.8. Customization of MANIFEST.MF

16.9. Customization of MANIFEST.MF for a particular archive

17.1. Configuration of Groovy plugin

17.2. Configuration of Groovy plugin

18.1. Customization of war plugin

18.2. Generation of JAR archive in addition to WAR archive

21.1. Configuration of OSGi MANIFEST.MF file

25.1. Module dependencies

25.2. Artifact only notation

25.3. Dependency with classifier

25.4. Client module dependencies - transitive dependencies

25.5. Project dependencies

25.6. File dependencies

25.7. Excluding transitive dependencies

25.8. Optional attributes of dependencies

25.9. Collections and arrays of dependencies

25.10. Dependency configurations

25.11. Dependency configurations for project

25.12. Configuration.copy

25.13. Accessing declared dependencies

25.14. Configuration.files

25.15. Configuration.files with spec

25.16. Configuration.copy

25.17. Configuration.copy vs. Configuration.files

25.18. Adding central Maven repository

25.19. Adding many Maven repositories

25.20. Adding custom Maven repository

25.21. Adding additional Maven repositories for JAR files

25.22. Flat repository resolver

25.23. Definition of a custom repository

26.1. Assignment of an artifact to a configuration

26.2. Configuration of the upload task

26.3. Upload of file to remote Maven repository

26.4. Upload of file via SSH

26.5. Customization of pom

26.6. Customization of Maven installer

26.7. Generation of multiple poms

26.8. Accessing a mapping configuration

27.1. Single project build

27.2. Hierarchical layout

27.3. Flat layout

27.4. Modification of elements of the project tree

27.5. Modification of elements of the project tree

27.6. Adding of test task to each project which has certain property set

27.7. Notifications

27.8. Setting of certain property to all tasks

27.9. Logging of start and end of each task execution

28.1. Multi-project tree - water & bluewhale projects

28.2. Build script of water (parent) project

28.3. Multi-project tree - water, bluewhale & krill projects

28.4. Water project build script

28.5. Defining common behaviour of all projects and subprojects

28.6. Defining specific behaviour for particular project

28.7. Defining specific behaviour for project krill

28.8. Adding custom behaviour to some projects (filtered by project name)

28.9. Adding custom behaviour to some projects (filtered by project properties)

28.10. Running build from subproject

28.11. Evaluation and execution of projects

28.12. Evaluation and execution of projects

28.13. Running tasks by their absolute path

28.14. Dependencies and execution order

28.15. Dependencies and execution order

28.16. Dependencies and execution order

28.17. Declaring dependencies

28.18. Declaring dependencies

28.19. Project dependencies

28.20. Project dependencies

28.21. Configuration time dependencies

28.22. Configuration time dependencies - evaluationDependsOn

28.23. Configuration time dependencies

28.24. Dependencies - real life example - crossproject configuration

28.25. Project dependencies

28.26. Project dependencies

28.27. Fine grained control over dependencies

29.1. Declaring external dependencies for the build script

29.2. A build script with external dependencies

29.3. Ant optional dependencies

30.1. Wrapper task

30.2. Configuration of wrapper task

A.1. Variables scope: local and script wide

A.2. Distinct configuration and execution phase

Page 11 of 168

1
Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology

in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!

Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or pom.xml

and files.ivy.xml

Ant tasks and builds as first class citizens.

 build scripts.Groovy

A rich domain model for describing your build.

In you will find a detailed overview of Gradle. Otherwise, the are waiting, haveChapter 2, Overview tutorials

fun :)

1.1. About this user guide
This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't

documented as completely as they need to be. Some of the content presented won't be entirely clear or will

assume that you know more about Gradle than you do. We need your help to improve this user guide. You

can find out more about contributing to the documentation at the Gradle .web site

You can find more examples, and some additions to this user guide, on the . You can also contributewiki

your own examples and extra content there.

http://www.gradle.org/contributing.html
http://docs.codehaus.org/display/GRADLE/User+guide

Page 12 of 168

2
Overview

2.1. Features
Here is a list of some of Gradle's features.

Language for Dependency Based Programming

This is the core of Gradle. Most build tools do offer such a thing. You can create tasks, create

dependencies between them and those tasks get executed only once and in the right order. Yet

compared to Ant Gradle's task offer a rich API and can be any kind of object. Gradle's tasks[]1

support multi-project builds. There is much more to say about tasks later on.

Flexible Build By Convention
Gradle offers you build-by-convention of its core layer. It is the same idea as implemented byon top

Maven. But Gradle's build-by-convention approach is highly configurable and flexible. And you don't

have to use it, if you need utmost flexibility. You can enable/disable it on a per project basis in a

multi-project build.

Ant Tasks

Ant tasks are first class citizens. Using Ant tasks from Gradle is as convenient and more powerful

than using Ant tasks from a file.build.xml

Configure By DAG

Gradle has a distinct configuration and execution phase. Thus we can offer you special hooks. You

can add configuration to your build, based on the complete execution graph of tasks, before any task

is executed.

Easy Ivy

Our dependency management is based on Apache Ivy, the most advanced and powerful dependency

management in the Java world. We have Ivy integrated in our build-by-convention framework. It is

ready to go out-of-the-box. Ivy is mostly used via its Ant tasks but it also provides an API. Gradle

integrates deeply with Ivy via this API. Gradle has its own dependency DSL on top of Ivy. This DSL

introduces a couple of features not provided by Ivy itself.

Client Modules

We think dependency management is important to any project. provide this, withoutClient Modules

the need of remote repositories and or files. For example you can just put yourivy.xml pom.xml

jars into svn and yet enjoy complete transitive dependency management. Gradle also support fully Ivy

or Maven repository infrastructures based on or files and remote repositories.ivy.xml pom.xml

Page 13 of 168

Cross Project Configuration

Enjoy how easy and yet how extremely powerful the handling of multi-project builds can be. Gradle

introduces to make this possible.Configuration Injection

Distinct Dependency Hierarchies

We allow you to model the project relationships in a multi-project build as they really are for your

problem domain. Gradle follows your layout not vice versa.

Partial Builds

With Maven multi-project builds only work if executed from the root project and thus requiring a

complete build. If you build from a subproject, only the subproject is built, not the projects the

subproject depends on. Gradle offers partial builds. The subproject is built plus the projects it depends

on. This is very convenient for larger builds.

Internal Groovy DSL
Gradle's build scripts are written in Groovy, not XML. This offers many advantages to XML: Rich

interaction with existing libraries, ease of use, more power and a slower learning curve are some of

them.

The Gradle Wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.

For example continuous integration servers or machines of users which want to build your open

source project.

Gradle scales very well. It significantly increases your productivity, from rather simple single project builds up

to huge enterprise multi-project builds.

Gradle is build by Gradle. From a build perspective Gradle is a simple project. But achieving the high degree

of automation we have, would have been very hard (and expensive) to achieve with Ant or Maven.

2.2. Why Groovy?
We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous in

case of . There are a couple of dynamic languages out there. Why Groovy? The answer lies inbuild scripts

the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus

are Java projects. In such projects obviously the team members know Java. One problem we see with Ant[]2

 and Maven is, that it involves a lot of knowledge only available to the build master. Such builds are very[]3

hard to comprehend, let alone to modify by a person not deeply involved with those tools. We think a build

should be as transparent as possible to team members.all

You might argue why not using Java then as the language for build scripts. We think this is a valid question.

It would have the highest transparency for your team and the lowest learning curve. But due to limitations of

Java such a build language would not be as nice, expressive and powerful as it could be. Languages like[]4

Python, Groovy or Ruby do a much better job here. We have chosen Groovy as it offers by far the highest

transparency for Java people. Its base syntax is the same as Java's as well as its type system, its package

structure other things. Groovy builds a lot on top of that. But on a common ground with Java.

For Java teams which share also Python or Ruby knowledge or are happy to learn it the above arguments

don't apply. In the near future Gradle wants to give you a choice between different languages for your build

scripts. For Jython or JRuby this should be easy to implement. If members of those communities are

Page 14 of 168

interested in joining this effort, this is very much appreciated.

2.3. Missing features
Here a list of features you might expect but are not available yet:

Creating IDE project and classpath files for IntelliJ and NetBeans. Gradle supports IDE project file

generation for Eclipse.

Integration with code coverage tools, such as Emma or Cobertura, and static analysis tools, such as

Checkstyle, in our build-by-convention framework. Right now you have to integrate them yourself (for

example using the Ant tasks for those tools).

[] 1 We mean Ant's targets here.

[] 2 Gradle also supports Groovy projects. Gradle will support Scala projects in a future release.

[] 3 If the advanced features are used (e.g. mixins, macrodefs, ...)

[] 4 At you find an interesting article comparing Ant, XML, Javahttp://www.defmacro.org/ramblings/lisp.html

and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

http://www.defmacro.org/ramblings/lisp.html

Page 15 of 168

3
Getting Started

3.1. Prerequisites
Gradle requires a Java JDK to be installed. Gradle ships with its own Groovy library, therefore no Groovy

needs to be installed. Any existing Groovy installation is ignored by Gradle. The standard Gradle distribution

requires a JDK 1.5 or higher. We also provide a distinct JDK 1.4 compatible distribution.

Gradle uses whichever JDK it finds in your path (to check, use). Alternatively, you can setjava -version

the environment variable to point to the install directory of the desired JDK.JAVA_HOME

3.2. Unpacking
The Gradle distribution comes packaged as a zip. The distribution contains:

The Gradle binaries.

The user guide (HTML and PDF).

The API documentation (Javadoc and Groovydoc).

Extensive samples, including the examples referenced in the user guide, along with some complete

and more complex builds you can use the starting point for your own build.

The binary sources (If you want to build Gradle you need to download the source distribution or

checkout the sources from the source repository).

For Un*x users

You need a GNU compatible tool to unzip Gradle, if you want the file permissions to be properly set.

We mention this as some zip front ends for Mac OS X don't restore the file permissions properly.

3.3. Environment variables
For running Gradle, add to your environment variable. Usually, this is sufficient to/binGRADLE_HOME PATH

run Gradle. Optionally, you may also want to set the environment variable to point to the rootGRADLE_HOME

directory of your Gradle installation.

Page 16 of 168

3.4. Running and testing your installation
You run Gradle via the command. To check if Gradle is properly installed just type and yougradle gradle -v

should get an output like:

--
Gradle 0.7
--

Gradle buildtime: Saturday, July 18, 2009 10:10:44 PM CEST
Groovy: 1.6.3
Ant: Apache Ant version 1.7.0 compiled on December 13 2006
Ivy: 2.1.0-rc2
Java: 1.5.0_19
JVM: 1.5.0_19-137
JVM Vendor: Apple Inc.
OS Name: Mac OS X

3.5. JVM options
JVM options for running Gradle can be set via environment variables. You can use or GRADLE_OPTS

. Those variables can be used together. is by convention an environment variableJAVA_OPTS JAVA_OPTS

shared by many Java applications. A typical use case would be to set the HTTP proxy in andJAVA_OPTS

the memory options in . Those variables can also be set at the beginning of the or GRADLE_OPTS gradle

 script.gradlew

Page 17 of 168

What does -q do?

Most of the examples in this

user guide are run with the -q

command-line option. This

suppresses Gradle's log

messages, so that only the

output of the tasks is shown.

You don't need to use this

option if you don't want. See

 for moreChapter 13, Logging

details about the command-line

options which affect Gradle's

output.

4
Build Script Basics

You run a build using the command. When run, looks for a file called in thegradle gradle build.gradle

current directory. We call this file a , although strictly speaking it is a build[]5 build.gradle build script

configuration script, as we will see later. In Gradle the build script defines a project. The name of the

directory containing the build script is used as the name of the project.

4.1. Hello world
In Gradle the most basic building block is the . The tasks for your build are defined in the build script. Totask

try this out, create the following build script named .build.gradle

Example 4.1. The first build script

build.gradle

task hello << {
 println 'Hello world!'
}

In a command-line shell, enter into the containing directory and execute the build script by running gradle

:-q hello

Example 4.2. Execution of a build script

Output of gradle -q hello

> gradle -q hello
Hello world!

What's going on here? This build file defines a single task, called

, and adds an action to it. When you run ,hello gradle hello

Gradle executes the task, which in turn executes thehello

action you've provided. The action is simply a closure containing

some Groovy code to execute.

If you think this looks similar to Ant's targets, well, you are right.

Gradle tasks are the equivalent to Ant targets. But as you will

see, they are much more powerful. We have used a different

Page 18 of 168

terminology than Ant as we think the word is moretask

expressive than the word . Unfortunately this introduces a terminology clash with Ant, as Ant calls itstarget

commands, such as or , tasks. So when we talk about tasks, we mean Gradle tasks,javac copy always

which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant commands), we explicitly say ant

task.

4.2. Build scripts are code
Gradle's build scripts expose to you the full power of Groovy. As an appetizer, have a look at this:

Example 4.3. Using Groovy in Gradle's tasks

build.gradle

task upper << {
 String someString = 'mY_nAmE'
 println "Original: " + someString
 println "Upper case: " + someString.toUpperCase()
}

Output of gradle -q upper

> gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

or

Example 4.4. Using Groovy in Gradle's tasks

build.gradle

task count << {
 4.times { print "$it " }
}

Output of gradle -q count

> gradle -q count
0 1 2 3

4.3. Task dependencies
As you probably have guessed, you can declare dependencies between your tasks.

Page 19 of 168

Example 4.5. Declaration of dependencies between tasks

build.gradle

task hello << {
 println 'Hello world!'
}
task intro(dependsOn: hello) << {
 println "I'm Gradle"
}

Output of gradle -q intro

> gradle -q intro
Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.

Example 4.6. Lazy dependsOn - the other task does not exist (yet)

build.gradle

task taskX(dependsOn: 'taskY') << {
 println 'taskX'
}
task taskY << {
 println 'taskY'
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

The dependency of to is declared before is defined. This is very important fortaskX taskY taskY

multi-project builds. Task dependencies are discussed in more detail in Section 12.4, “Adding dependencies

.to a task”

Please notice, that you can't use a shortcut notation (see) when referring toSection 4.6, “Shortcut notations”

task, which is not defined yet.

4.4. Dynamic tasks
The power of Groovy can be used for more than defining what a task does. For example, you can also use it

to dynamically create tasks.

Page 20 of 168

Example 4.7. Dynamic creation of a task

build.gradle

4.times { counter ->
 task "task_$counter" << {
 println "I'm task number $counter"
 }
}

Output of gradle -q task_1

> gradle -q task_1
I'm task number 1

4.5. Manipulating existing tasks
Once tasks are created they can be accessed via an . This is different to Ant. For example you canAPI

create additional dependencies.

Example 4.8. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
 task "task_$counter" << {
 println "I'm task number $counter"
 }
}
task_0.dependsOn task_2, task_3

Output of gradle -q task_0

> gradle -q task_0
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Page 21 of 168

Example 4.9. Accessing a task via API - adding behaviour

build.gradle

task hello << {
 println 'Hello Earth'
}
hello.doFirst {
 println 'Hello Venus'
}
hello.doLast {
 println 'Hello Mars'
}
hello << {
 println 'Hello Jupiter'
}

Output of gradle -q hello

> gradle -q hello
Hello Venus
Hello Earth
Hello Mars
Hello Jupiter

The calls and can be executed multiple times. They add an action to the beginning or thedoFirst doLast

end of the task's actions list. When the task executes, the actions in the action list are executed in order. The

 operator is simply an alias for .<< doLast

4.6. Shortcut notations
As you might have noticed in the previous examples, there is a convenient notation for accessing an existing

task. Each task is available as a property of the build script:

Example 4.10. Accessing task as a property of the build script

build.gradle

task hello << {
 println 'Hello world!'
}
hello.doLast {
 println "Greetings from the $hello.name task."
}

Output of gradle -q hello

> gradle -q hello
Hello world!
Greetings from the hello task.

This enables very readable code, especially when using the out of the box tasks provided by the plugins

(e.g.).compile

Page 22 of 168

4.7. Dynamic task properties
You can assign arbitrary properties to any task.new

Example 4.11. Assigning properties to a task

build.gradle

task myTask
myTask.myProperty = 'myCustomPropValue'

task showProps << {
 println myTask.myProperty
}

Output of gradle -q showProps

> gradle -q showProps
myCustomPropValue

4.8. Using Ant Tasks
Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks simply by

relying on Groovy. Groovy is shipped with the fantastic . Using Ant tasks from Gradle is asAntBuilder

convenient and more powerful than using Ant tasks from a file. Let's look at an example:build.xml

Example 4.12. Using AntBuilder to execute ant.checksum target

build.gradle

task checksum << {
 def files = file('../antChecksumFiles').listFiles().sort()
 files.each { File file ->
 ant.checksum(file: file, property: file.name)
 println "$file.name Checksum: ${ant.properties[file.name]}"
 }
}

Output of gradle -q checksum

> gradle -q checksum
agile_manifesto.html Checksum: 2dd24e01676046d8dedc2009a1a8f563
agile_principles.html Checksum: 659d204c8c7ccb5d633de0b0d26cd104
dylan_thomas.txt Checksum: 91040ca1cefcbfdc8016b1b3e51f23d3

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 14, Using Ant

.from Gradle

4.9. Using methods
Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.

Page 23 of 168

Example 4.13. Using methods to organize your build logic

build.gradle

task checksum << {
 fileList('../antChecksumFiles').each { File file ->
 ant.checksum(file: file, property: file.name)
 println "$file.name Checksum: ${ant.properties[file.name]}"
 }
}

task length << {
 fileList('../antChecksumFiles').each { File file ->
 ant.length(file: file, property: file.name)
 println "$file.name Length: ${ant.properties[file.name]}"
 }
}

File[] fileList(String dir) {
 file(dir).listFiles().sort()
}

Output of gradle -q checksum

> gradle -q checksum
agile_manifesto.html Checksum: 2dd24e01676046d8dedc2009a1a8f563
agile_principles.html Checksum: 659d204c8c7ccb5d633de0b0d26cd104
dylan_thomas.txt Checksum: 91040ca1cefcbfdc8016b1b3e51f23d3

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build

logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted

a whole chapter to this. See .Chapter 29, Organizing Build Logic

4.10. Default tasks
Gradle allows you to define one or more default tasks for your build.

Page 24 of 168

Example 4.14. Defining a default tasks

build.gradle

defaultTasks 'clean', 'run'

task clean << {
 println 'Default Cleaning!'
}

task run << {
 println 'Default Running!'
}

task other << {
 println "I'm not a default task!"
}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running . In a multi-project build every subproject can have its owngradle clean run

specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project

are used (if defined).

4.11. Configure by DAG
As we describe in full detail later (See) Gradle has a configuration phaseChapter 27, The Build Lifecycle

and an execution phase. After the configuration phase Gradle knows all tasks that should be executed.

Gradle offers you a hook to make use of this information. A use-case for this would be to check if the release

task is part of the tasks to be executed. Depending on this you can assign different values to some variables.

In the following example, execution of and tasks results in different value of distribution release

 variable.version

Page 25 of 168

Example 4.15. Different outcomes of build depending on chosen tasks

build.gradle

build.taskGraph.whenReady {taskGraph ->
 if (taskGraph.hasTask(':release')) {
 version = '1.0'
 } else {
 version = '1.0-SNAPSHOT'
 }
}

task distribution << {
 println "We build the zip with version=$version"
}
task release(dependsOn: 'distribution') << {
 println 'We release now'
}

Output of gradle -q distribution

> gradle -q distribution
We build the zip with version=1.0-SNAPSHOT

Output of gradle -q release

> gradle -q release
We build the zip with version=1.0
We release now

The important thing is, that the fact that the release task has been chosen, has an effect the releasebefore

task gets executed. Nor has the release task to be the task (i.e. the task passed to the primary gradle

command).

4.12. Summary
This is not the end of the story for tasks. So far we have worked with simple tasks. Tasks will be revisited in

 and when we look at the Java Plugin in .Chapter 12, More about Tasks Chapter 16, The Java Plugin

[] 5 There are command line switches to change this behavior. See)Appendix B, Gradle Command Line

Page 26 of 168

5
Artifact Basics

This chapter is currently under construction.

For all the details of artifact handling see .Chapter 26, Artifact Management

This chapter introduces some of the basics of artifact handling in Gradle.

5.1. Artifact configurations
Artifacts are grouped into . A configuration is simply a set of files with a name. You can useconfigurations

them to declare the external dependencies your project has, or to declare the artifacts which your project

publishes.

To define a configuration:

Example 5.1. Definition of a configuration

build.gradle

configurations {
 compile
}

To access a configuration:

Example 5.2. Accessing a configuration

build.gradle

println configurations.compile.name
println configurations['compile'].name

To configure a configuration:

Page 27 of 168

Example 5.3. Configuration of a configuration

build.gradle

configurations {
 compile {
 description = 'compile classpath'
 transitive = true
 }
 runtime {
 extendsFrom compile
 }
}
configurations.compile {
 description = 'compile classpath'
}

5.2. Repositories
Artifacts are stored in .repositories

To use maven central repository:

Example 5.4. Usage of Maven central repository

build.gradle

repositories {
 mavenCentral()
}

To use a local directory:

Example 5.5. Usage of a local directory

build.gradle

repositories {
 flatDir name: 'localRepository', dirs: 'lib'
}

You can also use any Ivy resolver. You can have multiple repositories.

To access a repository:

Example 5.6. Accessing a repository

build.gradle

println repositories.localRepository.name
 println repositories['localRepository'].name

To configure a repository:

Page 28 of 168

Example 5.7. Configuration of a repository

build.gradle

repositories {
 localRepository {
 addArtifactPattern(file('lib').absolutePath + '/[name]/[revision]/[name]-[revision].[ext]')
 }
}
repositories.localRepository {
 addArtifactPattern(file('lib').absolutePath + '/[name]/[revision]/[name]-[revision].[ext]')
}

5.3. External dependencies
To define an external dependency, you add a dependency to a configuration:

Example 5.8. Definition of an external dependency

build.gradle

configurations {
 compile
}

dependencies {
 compile group: 'commons-collections', name: 'commons-collections', version: '3.2'
}

 and are optionalgroup version

TBD - configuring an external dependency

To use the external dependencies of a configuration:

Example 5.9. Usage of external dependency of a configuration

build.gradle

task listJars << {
 configurations.compile.each { File file -> println file.name }
}

Output of gradle -q listJars

> gradle -q listJars
commons-collections-3.2.jar

5.4. Artifact publishing
TBD

Page 29 of 168

5.5. API
Configurations are contained in a . Each configuration implements the ConfigurationContainer

. Configuration

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html

Page 30 of 168

What tasks are available?

You can use to listgradle -t

the tasks of a project. This will

let you see the tasks that the

Java plugin has added to your

project.

6
Java Quickstart

To build a Java project, you use the . This plugin adds some tasks to your project, along withJava Plugin

some configuration properties, which will compile and test your Java source code, and bundle it into a JAR

file. We have in-depth coverage with many examples about the Java plugin, dependency management and

multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to build a Java

project.

6.1. A basic Java project
Let's look at a simple example. To use the Java plugin, add the following to your build file:

Example 6.1. Java plugin

build.gradle

usePlugin 'java'

 The code for this example can be found at Note: samples/java/quickstart

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a

number of tasks to your project.

Executing will compile, test and jar your code.gradle libs

Gradle looks for your production source code under

 and your test source code under src/main/java

. In addition, any files under src/test/java

 will be included in the JAR file assrc/main/resources

resources, and any files under will besrc/test/resources

included in the classpath used to run the tests. All output files will

end up under the directory, with the JAR file ending up inbuild

the directory.build/libs

6.1.1. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in

the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a

. A repository can be used for fetching the dependencies of a project, or for publishing the artifactsrepository

of a project, or both. For this example, we will use the public Maven repository:

Page 31 of 168

What properties are

available?

You can use to listgradle -r

the properties of a project. This

will allow you to see the

properties added by the Java

plugin, and their default values.

Example 6.2. Adding Maven repository

build.gradle

repositories {
 mavenCentral()
}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time

dependency on commons collections, and that our test classes have a compile-time dependency on junit:

Example 6.3. Adding dependencies

build.gradle

dependencies {
 compile group: 'commons-collections', name: 'commons-collections', version: '3.2'
 testCompile group: 'junit', name: 'junit', version: '4.+'
}

You can find out more in .Chapter 25, Dependency Management

6.1.2. Customising the project

The Java plugin adds a number of properties to your project. These properties have default values which are

usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our

sample. Here we will specify the version number for our Java project, along with the Java version our source

is written in. We also add some attributes to the JAR manifest.

Example 6.4. Customization of MANIFEST.MF

build.gradle

sourceCompatibility = 1.5
version = '1.0'
manifest.mainAttributes(
 'Implementation-Title': 'Gradle Quickstart',
 'Implementation-Version': version
)

The tasks which the Java plugin adds are regular tasks, exactly

the same as if they were declared in the build file. This means

you can use any of the mechanisms shown in earlier chapters to

customise these tasks. For example, you can set the properties of

a task, add behaviour to a task, change the dependencies of a

task, or replace a task entirely. In our sample, we will configure

the task, which is of type , to add a system propertytest Test

when the tests are executed:

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/testing/Test.html

Page 32 of 168

Example 6.5. Adding system property

build.gradle

test {
 options.systemProperties['property'] = 'value'
}

6.1.3. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish

the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will

publish to a local directory. You can also publish to a remote location, or multiple location.

Example 6.6. Publishing the JAR file

build.gradle

uploadArchives {
 repositories {
 flatDir(dirs: file('repos'))
 }
}

To publish the JAR file, run .gradle uploadArchives

6.1.4. Creating Eclipse project

To import your project into Eclipse, simply run . More on eclipse task can be found in gradle eclipse

.Section 16.13, “Eclipse”

6.1.5. Summary

Here's the complete build file for our sample:

Page 33 of 168

Example 6.7. Java example - complete build file

build.gradle

usePlugin 'java'

sourceCompatibility = 1.5
version = '1.0'
manifest.mainAttributes(
 'Implementation-Title': 'Gradle Quickstart',
 'Implementation-Version': version
)

repositories {
 mavenCentral()
}

dependencies {
 compile group: 'commons-collections', name: 'commons-collections', version: '3.2'
 testCompile group: 'junit', name: 'junit', version: '4.+'
}

test {
 options.systemProperties['property'] = 'value'
}

uploadArchives {
 repositories {
 flatDir(dirs: file('repos'))
 }
}

6.2. Multi-project Java build
Now let's look at a typical multi-project build. Below is the layout for the project:

Example 6.8. Multi-project build - hierarchical layout

Build layout

multiproject/
 api/
 services/
 webservice/
 shared/

 The code for this example can be found at Note: samples/java/multiproject

Here we have three projects. Project produces a JAR file which is shipped to the client to provide themapi

a Java client for your XML webservice. Project is a webapp which returns XML. Project webservice

 contains code used both by and .shared api webservice

6.2.1. Defining a multi-project build

To define a multi-project build, you need to create a . The settings file lives in the root directory ofsettings file

the source tree, and specifies which projects to include in the build. It must be called .settings.gradle

For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Page 34 of 168

Example 6.9. Multi-project build - settings.gradle file

settings.gradle

include "shared", "api", "services:webservice"

You can find out more about the settings file in .Chapter 28, Multi-project Builds

6.2.2. Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we

will define this common configuration in the root project, using a technique called .configuration injection

Here, the root project is like a container and the method iterates over the elements of thissubprojects

container - the projects in this instance - and injects the specified configuration. This way we can easily

define the manifest content for all archives, and some common dependencies:

Example 6.10. Multi-project build - common configuration

build.gradle

subprojects {
 usePlugin 'java'
 usePlugin 'eclipse'

 repositories {
 mavenCentral()
 }

 dependencies {
 testCompile 'junit:junit:4.4'
 }

 group = 'org.gradle'
 version = '1.0'
 manifest.mainAttributes(provider: 'gradle')
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration

properties we have seen in the previous section are available in each subproject. So, you can compile, test,

and JAR all the projects by running from the root project directory.gradle libs

6.2.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one

project is used to compile another project. In the build file we will add a dependency on the JARapi

produced by the project. Due to this dependency, Gradle will ensure that project alwaysshared shared

gets built before project .api

Example 6.11. Multi-project build - dependencies between projects

api/build.gradle

dependencies {
 compile project(':shared')
}

Page 35 of 168

See for how to disable this functionality.Section 28.7.1, “Disable the build of dependency projects.”

6.2.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Example 6.12. Multi-project build - distribution file

api/build.gradle

task dist(type: Zip) {
 dependsOn configurations.runtime.buildDependencies
 files configurations.runtime
 fileSet dir: 'src/dist'
}

6.3. Summary
In this chapter, you have seen how to do some of the things you commonly need to build a Java based

project. This chapter is not exhaustive, and there are many other things you can do with Java projects in

Gradle. These are dealt with in later chapters. Also, a lot of the behaviour you have seen in this chapter is

configurable. For example, you can change where Gradle looks Java source files, or add extra tasks, or you

can change what any task actually does. Again, you will see how this works in later chapters.

You can find out more about the Java plugin in , and you can find more sampleChapter 16, The Java Plugin

Java projects in the directory in the Gradle distribution.samples/java

Page 36 of 168

7
Groovy Quickstart

To build a Groovy project, you use the . This plugin extends the Java plugin to add GroovyGroovy Plugin

compilation capabilties to your project. Your project can contain Groovy source code, Java source code, or a

mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have already

seen in .Chapter 6, Java Quickstart

7.1. A basic Groovy project
Let's look at an example. To use the Groovy plugin, add the following to your build file:

Example 7.1. Groovy plugin

build.gradle

usePlugin 'groovy'

 The code for this example can be found at Note: samples/groovy/quickstart

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin

extends the task to look for source files in directory , and the compile src/main/groovy compileTests

task to look for test source files in directory . The compile tasks use joint compilation forsrc/test/groovy

these directories, which means they can contain a mixture of java and groovy source files.

To use the groovy compilation tasks, you must also declare the Groovy version to use and where to find the

Groovy libraries. You do this by adding a dependency to the configuration. The groovy compile

configuration inherits this dependency, so the groovy libraries will be included in classpath when compiling

Groovy and Java source. For our sample, we will use Groovy 1.6.0 from the public Maven repository:

Example 7.2. Dependency on Groovy 1.6.0

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 groovy group: 'org.codehaus.groovy', name: 'groovy-all', version: '1.6.0'
}

Page 37 of 168

Here is our complete build file:

Example 7.3. Groovy example - complete build file

build.gradle

usePlugin 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 groovy group: 'org.codehaus.groovy', name: 'groovy-all', version: '1.6.0'
 testCompile group: 'junit', name: 'junit', version: '4.4'
}

Running will compile, test and JAR your project.gradle libs

7.2. Summary
This chapter describes a very simple Groovy project. Usually, a real project will require more than this.

Because a Groovy project a Java project, whatever you can do with a Java project, you can also do with ais

Groovy project.

You can find out more about the Groovy plugin in , and you can find moreChapter 17, The Groovy Plugin

sample Groovy projects in the directory in the Gradle distribution.samples/groovy

Page 38 of 168

Groovy web applications

You can combine multiple

plugins in a single project, so

you can use the War and

Groovy plugins together to build

a Groovy based web

application. The appropriate

groovy libraries will be added to

the WAR file for you.

8
Web Application Quickstart

This chapter is a work in progress.

This chapter introduces some of the Gradle's support for web applications. Gradle provides two plugins for

web application developement: the War plugin and the Jetty plugin. The War plugin extends the Java plugin

to build a WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web

application to an embedded Jetty web container.

8.1. Building a WAR file
To build a WAR file, you apply the War plugin to your project:

Example 8.1. War plugin

build.gradle

usePlugin 'war'

 The code for this example can be found at Note: samples/webApplication/quickstart

This also applies the Java plugin to your project. Running will compile, test and WAR yourgradle libs

project. Gradle will look for the source files to include in the WAR file in . Your compiledsrc/main/webapp

classes, and their runtime dependencies are also included in the WAR file.

8.2. Running your web application
To run your web application, you apply the Jetty plugin to your

project:

Example 8.2. Running web application with Jetty plugin

build.gradle

usePlugin 'jetty'

This also applies the War plugin to your project. Running gradle

Page 39 of 168

 will run your web application in an embedded Jetty web container. Running jettyRun gradle

 will build and test the WAR file, and then run it in an embedded web container.jettyRunWar

TODO: which url, configure port, uses source files in place and can edit your files and reload.

8.3. Summary
You can find out more about the War plugin in and the Jetty plugin in Chapter 18, The War Plugin

. You can find more sample Java projects in the Chapter 19, The Jetty Plugin samples/webApplication

directory in the Gradle distribution.

Page 40 of 168

9
Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the command,gradle

which you have already seen in action in previous chapters.

9.1. Executing multiple tasks
You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For

example, the command will execute the and tasks. Gradle willgradle compile test compile test

execute the tasks in the order that they are listed on the command-line, and will also execute the

dependencies for each task. Each task is executed once only, regardless of why it is included in the build:

whether it was specified on the command-line, or it a dependency of another task, or both. Let's look at an

example.

Below three tasks are defined. Both and depend on task. Execution of libs test compile gradle -q

 command for this build script results in task being executed only once.libs test compile

Example 9.1. Executing multiple tasks

build.gradle

task compile << {
 println 'compiling source'
}

task test(dependsOn: compile) << {
 println 'running tests'
}

task libs(dependsOn: compile) << {
 println 'building libs'
}

Output of gradle -q libs test

> gradle -q libs test
compiling source
building libs
running tests

Because each task is executed once only, executing is exactly the same as executing gradle libs libs

.gradle libs

Page 41 of 168

9.2. Selecting which build to execute
When you run the command, it looks for a build file in the current directory. You can use the gradle -b

option to select another build file. For example:

> gradle -b subproject/build.gradle

Alternatively, you can use the option to specify the project directory to use:-p

> gradle -p subproject

9.3. Obtaining information about your build
Gradle provides several command-line options which show particular details of your build. This can be useful

for understanding the structure and dependencies of your build, and for debugging problems.

Running gives you a list of the tasks which make up the build, broken down by project.gradle --tasks

This report shows the default tasks, if any, of each project, and the description and dependencies of each

task. Below is an example of this report:

Example 9.2. Obtaining information about tasks

Output of gradle -q --tasks

> gradle -q --tasks
--
Root Project
--
Default Tasks: dists

:clean - Deletes the build directory (build)
:dists
 -> :api:libs, :webapp:libs

--
Project :api
--
:api:libs
rule - build<ConfigurationName>: builds the artifacts of the given configuration

--
Project :webapp
--
:webapp:libs
rule - build<ConfigurationName>: builds the artifacts of the given configuration

Running gives you a list of the dependencies of the build, broken down bygradle --dependencies

project. This report shows the configurations of each project. For each configuration, the direct and transitive

dependencies of that configuration are shown. Below is an example of this report:

Page 42 of 168

Example 9.3. Obtaining information about dependencies

Output of gradle -q --dependencies

> gradle -q --dependencies
--
Root Project
--
No configurations

--
Project :api
--
compile
|-----junit:junit:4.4:default

--
Project :webapp
--
compile
|-----commons-io:commons-io:1.2:default

Running gives you a list of the properties of each project in the build.gradle --properties

You can also use the to add a number of reporting tasks to your project.project report plugin

9.4. Dry Run
Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified

on the command line, but you don't want the tasks to be executed. You can use the for this. For example -m

 shows you all tasks to be executed as part of the and gradle -m clean compile clean compile

tasks. This is complementary to the , which shows you all available tasks for execution.-t

You can find out more about the command's usage in gradle Appendix B, Gradle Command Line

Page 43 of 168

10
Tutorial - 'This and That'

10.1. Skipping tasks
Gradle offers multiple ways to skip the execution of a task.

You can set system property named or pass such property as a parameter to the skip. taskname gradle

command using option (see).-D Section 10.3, “Gradle properties and system properties”

Example 10.1. Skipping tasks using default property name

build.gradle

task autoskip << {
 println 'This should not be printed if the skip.autoskip system property is set.'
}

Output of gradle -Dskip.autoskip autoskip

> gradle -Dskip.autoskip autoskip
:autoskip SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

You can also choose another another property that can be used to skip a task.

Page 44 of 168

Example 10.2. Skipping tasks using custom property

build.gradle

task skipMe << {
 println 'This should not be printed if the mySkipProperty system property is set to true.'
}
skipMe.skipProperties << 'mySkipProperty'

Output of gradle -DmySkipProperty skipMe

> gradle -DmySkipProperty skipMe
:skipMe SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

You can use this to add one or more to any task.skip properties

In both cases if the corresponding system property is set to any value except false (case does not matter),[]6

the actions of the task don't get executed.

10.1.1. Skipping depending tasks

By default tasks that depends on skipped task get executed. If you want to skip them, you have to declare

this explicitly via the skip properties.

Example 10.3. Skipping depending tasks

build.gradle

task autoskip << {
 println 'This should not be printed if the skip.autoskip system property is set.'
}
task depends(dependsOn: autoskip) << {
 println "This should not be printed if the skip.autoskip system property is set."
}
depends.skipProperties << 'skip.autoskip'

Output of gradle -Dskip.autoskip depends

> gradle -Dskip.autoskip depends
:autoskip SKIPPED
:depends SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

10.1.2. Using StopExecutionException

If the rules for skipping a task can't be expressed with a simple property, you can use the

. If this exception is thrown by an action, the further execution of this action as StopExecutionException

well as the execution of any following action of this task is skipped. The build continues with executing the

next task.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/StopExecutionException.html

Page 45 of 168

Example 10.4. Skipping tasks with StopExecutionException

build.gradle

task compile << {
 println 'We are doing the compile.'
}

compile.doFirst {
 // Here you would put arbitrary conditions in real life. But we use this as an integration test, so we want defined behavior.
 if (true) { throw new StopExecutionException() }
}
task myTask(dependsOn: 'compile') << {
 println 'I am not affected'
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add execution ofconditional

the built-in actions of such a task.

You might be wondering why there is neither an import for the nor do weStopExecutionException

access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script.

These imports are customizable (see).Appendix C, Existing IDE Support and how to cope without it

10.1.3. Enabling and disabling tasks

Every task has also an flag which defaults to . Setting it to prevents the execution ofenabled true false

any of the task's actions.

Example 10.5. Enabling and disabling tasks

build.gradle

task disableMe << {
 println 'This should not be printed if the task is disabled.'
}
disableMe.enabled = false

Output of gradle disableMe

> gradle disableMe
:disableMe SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

10.2. Directory creation
There is a common situation, that multiple tasks depend on the existence of a directory. Of course you can

deal with this by adding a to the beginning of those tasks. But this is kind of bloated. There is a bettermkdir

solution (works only if the tasks that need the directory have a relationship):dependsOn

Page 46 of 168

Example 10.6. Directory creation with mkdir

build.gradle

classesDir = new File('build/classes')
task resources << {
 classesDir.mkdirs()
 // do something
}
task compile(dependsOn: 'resources') << {
 if (classesDir.isDirectory()) {
 println 'The class directory exists. I can operate'
 }
 // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory exists. I can operate

But Gradle offers you also to deal with this.Directory Tasks

Example 10.7. Directory creation with Directory tasks

build.gradle

classes = dir('build/classes')
task resources(dependsOn: classes) << {
 // do something
}
task otherResources(dependsOn: classes) << {
 if (classes.dir.isDirectory()) {
 println 'The class directory exists. I can operate'
 }
 // do something
}

Output of gradle -q otherResources

> gradle -q otherResources
The class directory exists. I can operate

A is a simple task whose name is a relative path to the project dir . During the executionDirectory Task []7

phase the directory corresponding to this path gets created if it does not exist yet. Another interesting thing

to note in this example, is that you can also pass tasks objects to the dependsOn declaration of a task.

10.3. Gradle properties and system properties
Gradle offers a variety of ways to add properties to your build. With the command line option you can-D

pass a system property to the JVM which runs Gradle. The option of the command has the same-D gradle

effect as the option of the command.-D java

You can also directly add properties to your project objects using properties files. You can place a

 file in the Gradle user home directory (defaults to) or in yourgradle.properties /.gradleUSER_HOME

project directory. For multi-project builds you can place files in any subprojectgradle.properties

Page 47 of 168

directory. The properties of the can be accessed via the project object. Thegradle.properties

properties file in the user's home directory has precedence over property files in the project directories.

You can also add properties directly to your project object via the command line option. For more exotic-P

use cases you can even pass properties to the project object via system and environment properties.directly

For example if you run a build on a continuous integration server where you have no admin rights for the

. Your build script needs properties which values should not be seen by others. Therefore you can'tmachine

use the option. In this case you can add an environment property in the project administration section-P

(invisible to normal users). If the environment property follows the pattern []8 ORG_GRADLE_PROJECT_

, is added to your project object. If in the future CI servers=somevaluepropertyName propertyName

support Gradle directly, they might start Gradle via its main method. Therefore we already support the same

mechanism for system properties. The only difference is the pattern, which is org.gradle.project.

. propertyName

With the files you can also set system properties. If a property in such a file has thegradle.properties

prefix the property and its value are added to the system properties, without the prefix.systemProp.

Example 10.8. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
systemPropertiesProp=shouldBeOverWrittenBySystemProp
envPropertiesProp=shouldBeOverWrittenByEnvProp
systemProp.system=systemValue

build.gradle

task printProps << {
 println commandLineProjectProp
 println gradlePropertiesProp
 println systemProjectProp
 println envProjectProp
 println System.properties['system']
}

Output of gradle -q -PcommandLineProjectProp=commandLineProjectPropValue

-Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

> gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue
gradlePropertiesValue
systemPropertyValue
envPropertyValue
systemValue

10.3.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a variable.

In case this property does not exists, an exception is thrown and the build fails. If your build script relies on

optional properties the user might set for example in a gradle.properties file, you need to check for existence

before you can access them. You can do this by using the method hasProperty('propertyName')

which returns or .true false

Page 48 of 168

10.4. Accessing the web via a proxy
Setting a proxy for web access (for example for downloading dependencies) is easy. Gradle does not need

to provide special functionality for this. The JVM can be instructed to go via proxy by setting certain system

properties. You could set these system properties directly in your build script with

. An arguably nicer way is shown in System.properties['proxy.proxyUser'] = 'userid'

. Your gradle.properties file could look like this:Section 10.3, “Gradle properties and system properties”

Example 10.9. Accessing the web via a proxy

gradle.properties

systemProp.http.proxyHost=http://www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password

We could not find a good overview for all possible proxy settings. The best we can offer are the constants in

a file from the ant project. Here a to the svn view. If anyone knows a better overview please let us knowlink

via the mailing list.

10.5. Caching
To improve the responsiveness Gradle caches the compiled build script by default. The first time you run a

build for a project, Gradle creates a directory in which it puts the compiled build script. The next.gradle

time you run this build, Gradle uses the compiled build script, if the timestamp of the compiled script is newer

than the timestamp of the actual build script. Otherwise the build script gets compiled and the new version is

stored in the cache. If you run Gradle with the option, any existing cache is ignored and the build script is-x

compiled and executed on the fly. If you run Gradle with the option, the build script is always compiled-r

and stored in the cache. That way you can always rebuild the cache if for example the timestamps for some

reasons don't reflect that the build script needs to be recompiled.

10.6. Configuring arbitrary objects
You can configure arbitrary objects in the following very readable way.

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977

Page 49 of 168

Example 10.10. Configuring arbitrary objects

build.gradle

task configure << {
 pos = configure(new java.text.FieldPosition(10)) {
 beginIndex = 1
 endIndex = 5
 }
 println pos.beginIndex
 println pos.endIndex
}

Output of gradle -q configure

> gradle -q configure
1
5

[] 6 The statement sets the property to empty string, thus you don't need to type more to skip a task.-Dprop

[] 7 The notation is a convenience method for dir('/somepath') tasks.add('somepath', type:

Directory)

[] 8 or are for example CI servers which offer this functionality.Teamcity Bamboo

Page 50 of 168

11
The Project and Task API

11.1. Project API
In the tutorial in we used, for example, the method. Where does thisChapter 4, Build Script Basics task()

method come from? We said earlier that the build script defines a project in Gradle. For Gradle, this means

that it creates an instance of and associates this object with the build script. As the build Project Project

script executes, it configures this object.Project

Any method you call in your build script, which in the build script, is delegated to the is not defined

 object.Project

Any property you access in your build script, which in the build script, is delegated tois not defined

the object.Project

Let's try this out and try to access the property of the object.name Project

Example 11.1. Accessing property of the Project object

build.gradle

task check << {
 println name
 println project.name
}

Output of gradle -q check

> gradle -q check
projectApi
projectApi

Both statements print out the same property. The first uses auto-delegation to the println Project

object, for properties not defined in the build script. The other statement uses the propertyproject

available to any build script, which returns the associated object. Only if you define a property or aProject

method which has the same name as a member of the object, you need to use the Project project

property.

Have a look at the API to find out more about project properties and methods. Project

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html

Page 51 of 168

11.1.1. Standard project properties

The object provides some standard properties, which are available in your build script. TheProject

following table lists a few of the commonly used ones.

Table 11.1. Project Properties

Name Type Default Value

project Project The instanceProject

name String The name of the directory containing the build script.

path String The absolute path of the project.

buildFile File The build script.

projectDir File The directory containing the build script.

buildDirName String build

buildDir File /buildprojectDir

group Object unspecified

version Object unspecified

ant AntBuilder An instanceAntBuilder

Below is a sample build which demonstrates some of these properties.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html

Page 52 of 168

Example 11.2. Project properties

Build layout

projectCoreProperties/
 build.gradle
 subProject/
 build.gradle

build.gradle

task check << {
 allprojects {
 println "project path $path"
 println " project name = $name"
 println " project dir = '${toPath(projectDir)}'"
 println " build file = '${toPath(buildFile)}'"
 println " build dir = '${toPath(buildDir)}'"
 }
}

def toPath(File file) {
 rootProject.relativePath(file).path.replaceAll(java.util.regex.Pattern.quote(File.separator), '/')
}

Output of gradle -q check

> gradle -q check
project path :
 project name = projectCoreProperties
 project dir = ''
 build file = 'build.gradle'
 build dir = 'build'
project path :subProject
 project name = subProject
 project dir = 'subProject'
 build file = 'subProject/build.gradle'
 build dir = 'subProject/build'

11.2. Task API
Many of the methods of the instance return task objects. We have already seen some ways thatProject

you can use task objects in . Look here to learn more about .Chapter 4, Build Script Basics Task

11.3. Summary
The project and the task API constitute the core layer of Gradle and provide all the possible interaction

options with this layer. This core-layer constitutes a language for dependency based programming. []9 []10

There are many other projects providing such a language. There is Ant for Java, Rake and Rant for Ruby,

SCons for Python, the good old Make and many more. We think that one thing that makes Gradle[]11

special compared to the other tools, is its strong support for applying dependency based programming on

 builds. We also think that just Gradle's core layer (together with its integration of the Ant tasks),multi-project

provides a more convenient build system than Ant's core layer.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html

Page 53 of 168

[] 9 There is more to come for this layer in the other chapters, e.g. support for multi-project builds (see

).Chapter 28, Multi-project Builds

[] 1 0 M a r t i n F o w l e r h a s w r i t t e n a b o u t t h i s :

http://martinfowler.com/articles/rake.html#DependencyBasedProgramming

[] 11 Interestingly, Maven2 is the only major build system which does not use dependency based

programming.

http://martinfowler.com/articles/rake.html#DependencyBasedProgramming

Page 54 of 168

12
More about Tasks

In the introductory tutorial () you have learned how to create simple tasks. YouChapter 4, Build Script Basics

have also learned how to add additional behavior to these tasks later on. And you have learned how to

create dependencies between tasks. This was all about simple tasks. But Gradle takes the concept of tasks

further. Gradle supports , that is, tasks which have their own properties and methods. This isenhanced tasks

really different to what you are used to with Ant targets. Such enhanced tasks are either provided by you or

are provided by Gradle.

12.1. Defining tasks
We have already seen how to define tasks using a keyword style in . There areChapter 4, Build Script Basics

a few variations on this style, which you may need to use in certain situations. For example, the keyword

style does not work in expressions.

Example 12.1. Defining tasks

build.gradle

task(hello) << {
 println "hello"
}

task(copy, type: Copy) {
 from(file('srcDir'))
 into(buildDir)
}

You can also use strings for the task names:

Example 12.2. Defining tasks - using strings

build.gradle

task('hello') <<
{
 println "hello"
}

task('copy', type: Copy) {
 from(file('srcDir'))
 into(buildDir)
}

Page 55 of 168

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 12.3. Defining tasks with alternative syntax

build.gradle

tasks.add(name: 'hello') << {
 println "hello"
}

tasks.add(name: 'copy', type: Copy) {
 from(file('srcDir'))
 into(buildDir)
}

Here we add tasks to the collection. Have a look at for more variations of the tasks TaskContainer

 method.add()

12.2. Locating tasks
You often need to locate the tasks that you have defined in the build file, for example, to configure them or

use them for dependencies. There are a number of ways you can do this. Firstly, each task is available as a

property of the project, using the task name as the property name:

Example 12.4. Accessing tasks as properties

build.gradle

task hello

println hello.name
println project.hello.name

Tasks are also available through the collection.tasks

Example 12.5. Accessing tasks via tasks collection

build.gradle

task hello

println tasks.hello.name
println tasks['hello'].name

You can access tasks from any project using the task's path using the method. Youtasks.getByPath()

can call the method with a task name, or a relative path, or an absolute path.getByPath()

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/TaskContainer.html

Page 56 of 168

Example 12.6. Accessing tasks by path

build.gradle

project(':projectA') {
 task hello
}

task hello

println tasks.getByPath('hello').path
println tasks.getByPath(':hello').path
println tasks.getByPath('projectA:hello').path
println tasks.getByPath(':projectA:hello').path

Output of gradle -q hello

> gradle -q hello
:hello
:hello
:projectA:hello
:projectA:hello

Have a look at for more options for locating tasks. TaskContainer

12.3. Configuring tasks
As an example, let's look at the task provided by Gradle. To create a task for your build, you canCopy Copy

declare in your build script: []12

Example 12.7. Creating a copy task

build.gradle

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see). The Copy

following examples show several different ways to achieve the same configuration.

Example 12.8. Configuring a task - various ways

build.gradle

Copy myCopy = task(myCopy, type: Copy)
myCopy.from 'resources'
myCopy.into 'target'
myCopy.include('**/*.txt', '**/*.xml', '**/*.properties')

This is similar to the way we would normally configure objects in Java. You have to repeat the context (

) in the configuration statement every time. This is a redundancy and not very nice to read.myCopy

There is a more convenient way of doing this.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html

Page 57 of 168

Example 12.9. Configuring a task - fluent interface

build.gradle

task(myCopy, type: Copy)
 .from('resources')
 .into('target')
 .include('**/*.txt', '**/*.xml', '**/*.properties')

You might know this approach from the Hibernates Criteria Query API or JMock. Of course the API of a task

has to support this. The , and methods all return an object that may be used to chain tofrom to include

additional configuration methods. Gradle's build-in tasks usually support this configuration style.

But there is yet another way of configuring a task. It also preserves the context and it is arguably the most

readable. It is usually our favorite.

Example 12.10. Configuring a task - with closure

build.gradle

task myCopy(type: Copy)

myCopy {
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

This works for task. Line 3 of the example is just a shortcut for the method. It isany tasks.getByName()

important to note that if you pass a closure to the method, this closure is applied to getByName() configure

the task.

There is a slightly different ways of doing this.

Example 12.11. Configuring a task - with configure() method

build.gradle

task myCopy(type: Copy)

myCopy.configure {
 from('source')
 into('target')
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

Every task has a method, which you can pass a closure for configuring the task. Gradle usesconfigure()

this style for configuring objects in many places, not just for tasks.

You can also use a configuration closure when you define a task.

Page 58 of 168

Example 12.12. Defining a task with closure

build.gradle

task copy(type: Copy) {
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

12.4. Adding dependencies to a task
There are several ways you can define the dependencies of a task. In youSection 4.3, “Task dependencies”

were introduced to defining dependencies using task names. Task names can refer to tasks in the same

project as the task, or to tasks in other projects. To refer to a task in another project, you prefix the name of

the task with the path of the project it belongs to. Below is an example which adds a dependency from

 to :projectA:taskX projectB:taskY

Example 12.13. Adding dependency on task from another project

build.gradle

project('projectA') {
 task taskX(dependsOn: ':projectB:taskY') << {
 println 'taskX'
 }
}

project('projectB') {
 task taskY << {
 println 'taskY'
 }
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a object, as shown in this example:Task

Page 59 of 168

Example 12.14. Adding dependency using task object

build.gradle

task taskX << {
 println 'taskX'
}

task taskY << {
 println 'taskY'
}

taskX.dependsOn taskY

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

passed the task whose dependencies are being calculated. The closure should return a single orTask

collection of objects, which are then treated as dependencies of the task. The following example addsTask

a dependency from to all the tasks in the project whose name starts with :taskX lib

Example 12.15. Adding dependency using closure

build.gradle

task taskX << {
 println 'taskX'
}

taskX.dependsOn {
 tasks.findAll { task -> task.name.startsWith('lib') }
}

task lib1 << {
 println 'lib1'
}

task lib2 << {
 println 'lib2'
}

task notALib << {
 println 'notALib'
}

Output of gradle -q taskX

> gradle -q taskX
lib1
lib2
taskX

For more information about task dependencies, see the API. Task

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html

Page 60 of 168

12.5. Adding a description to a task
You can add a description to your task. This description is for example displayed when executing gradle

.-t

Example 12.16. Adding a description to a task

build.gradle

task copy(type: Copy) {
 description = 'Copies the resource directory to the target directory.'
 from 'resources'
 into 'target'
 include('**/*.txt', '**/*.xml', '**/*.properties')
}

12.6. Replacing tasks
Sometimes you want to replace a task. For example if you want to exchange a task added by the Java

Plugin with a custom task of a different type. You can achieve this with:

Example 12.17. Overwriting a task

build.gradle

task copy(type: Copy)

task copy(overwrite: true) << {
 println('I am the new one.')
}

Output of gradle -q copy

> gradle -q copy
I am the new one.

Here we replace a task of type with a simple task. When creating the simple task, you have to set the Copy

 property to true. Otherwise Gradle throws an exception, saying that a task with such a nameoverwrite

already exists.

12.7. Task rules
Sometimes you want to have a task which behavior depends on a large or infinite number value range of

parameters. A very nice and expressive way to provide such tasks are task rules:

Page 61 of 168

Example 12.18. Task rule

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->
 if (taskName.startsWith("ping")) {
 task(taskName) << {
 println "Pinging: " + (taskName - 'ping')
 }
 }
}

Output of gradle -q pingServer1

> gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule. This description is shown when doing for example

.gradle -t

Rules not just work for calling tasks from the command line. You can also create dependsOn relations on

rule based tasks:

Example 12.19. Dependency on rule based tasks

build.gradle

tasks.addRule("Pattern: ping<ID>") { String taskName ->
 if (taskName.startsWith("ping")) {
 task(taskName) << {
 println "Pinging: " + (taskName - 'ping')
 }
 }
}

task groupPing {
 dependsOn pingServer1, pingServer2
}

Output of gradle -q groupPing

> gradle -q groupPing
Pinging: Server1
Pinging: Server2

12.8. Summary
If you are coming from Ant, such an enhanced Gradle task as looks like a mixture between an AntCopy

target and an Ant task. And this is actually the case. The separation that Ant does between tasks and targets

is not done by Gradle. The simple Gradle tasks are like Ant's targets and the enhanced Gradle tasks also

include the Ant task aspects. All of Gradle's tasks share a common API and you can create dependencies

between them. Such a task might be nicer to configure than an Ant task. It makes full use of the type system,

is more expressive and easier to maintain.

Page 62 of 168

[] 12 If you use the Java Plugin, this task is automatically created and added to your project.

Page 63 of 168

13
Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by

this. On the other hand you need the relevant information for figuring out if things have gone wrong. Gradle

defines 6 log levels, as shown in . There are two Gradle-specific log levels, inTable 13.1, “Log levels”

addition to the ones you might normally see. Those levels are and . The latter is theQUIET LIFECYCLE

default, and is used to report build progress.

Table 13.1. Log levels

Level Used for

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

13.1. Choosing a log level
You can use the command line switches shown in to chooseTable 13.2, “Log level command-line options”

different log levels. In you find the command line switchesTable 13.3, “Stacktrace command-line options”

which affect stacktrace logging.

Table 13.2. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

-q QUIET and higher

-i INFO and higher

-d DEBUG and higher (that is, all log messages)

Page 64 of 168

Table 13.3. Stacktrace command-line options

Option Meaning

No

stacktrace

options

No stacktraces are printed to the console in case of a build error (e.g. a compile error).

Only in case of internal exceptions will stacktraces be printed. If the loglevel option is-d

chosen, truncated stacktraces are always printed.

-s

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full

stacktraces are extremely verbose (Due to the underlying dynamic invocation

mechanisms. Yet they usually do not contain relevant information for what has gone wrong

in code.)your

-f The full stacktraces are printed out.

13.2. External tools and standard output
Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle injects an adapter into the

Ant and Ivy logging systems to redirect their logging output into the Gradle logging system. There is a 1:1

mapping from the Ant/Ivy log levels to the Gradle log levels, except the Ant/Ivy level, which isTRACE

mapped to Gradle . This means the default Gradle log level does not show any Ant/Ivy output unlessDEBUG

it is an error or a warning.

There are many tools out there which still use standard output for logging. Gradle redirects by default

standard out to the level and standard err to the level. This behavior is configurable. GradleQUIET ERROR

provides a couple of switches for this. To change the log level, standard out is redirected to, when your build

script gets evaluated, the project object offers a method called . Project.captureStandardOutput()

To change the log level for standard out during task execution, tasks offer a method also with the name

. Tasks and projects also offer a method Task.captureStandardOutput()

 which causes the standard out to be send to the default standard out.disableStandardOutputCapture

If you need more fine grained control on how standard out is redirected you can use the class

. StandardOutputLogging

13.3. Sending your own log messages
Gradle provides a property to a build script, which is an instance of a slf4j logger. Here is the codelogger

of the logging integration test, which shows you how to use the logger, as well as working with standard out

redirection.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/logging/StandardOutputLogging.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/logging/StandardOutputLogging.html

Page 65 of 168

Example 13.1. Sending your own log message

build.gradle

logger.info(Logging.QUIET, prefix + "quietLog")
logger.info(Logging.LIFECYCLE, prefix + "lifecycleLog")
logger.info(prefix + "infoLog")
logger.debug(prefix + "debugLog")
logger.warn(prefix + "warnLog")
logger.error(prefix + "errorLog")
println(prefix + 'quietOut')
captureStandardOutput(LogLevel.INFO)
println(prefix + 'infoOut')

task logLifecycle << {
 println(prefix + 'lifecycleTaskOut')
}
logLifecycle.captureStandardOutput(LogLevel.LIFECYCLE)

task logInfo << {
 println(prefix + 'infoTaskOut')
}
logInfo.captureStandardOutput(LogLevel.INFO)

task log(dependsOn: [logInfo, logLifecycle]) << {
 println(prefix + 'quietTaskOut')
}

Strictly speaking, and are not log levels, but they are markers. But logically Gradle treatsQUIET LIFECYCLE

them as log levels. In a future version of Gradle we want to provide a logger which provides additional log

methods and .quiet lifecycle

You can also hook into Gradle's logging system from within other classes (classes from the buildSrc

directory for example). Simply use a slf4j logger.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class MyClass {
 private static Logger logger = LoggerFactory.getLogger(MyClass.class);
 ...

You can use this logger the same way as you use the provided logger in the build script.

Page 66 of 168

14
Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your

Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build

script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task scripting

tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the

, the handling of the targets, special constructs like macrodefs, and so on. In other words,build.xml

everything except the Ant tasks and types. Gradle understands this language, and allows you to import your

Ant directly into a Gradle project. You can then use the targets of your Ant build as if they werebuild.xml

Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like , or . For this layer Gradlejavac copy jar

provides integration simply by relying on Groovy, and the fantastic .AntBuilder

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.

Your build script may contain statements like: . "ant clean compile".execute() []13

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example, you

could start by importing your existing Ant build. Then you could move your dependency declarations from the

Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with

some of Gradle's plugins. This process can be done in parts over time, and you can have a working Gradle

build during the entire process.

14.1. Using Ant tasks and types in your build
In your build script, a property called is provided by Gradle. This is a reference to an ant AntBuilder

instance. This is used to access Ant tasks, types and properties from your build script. ThereAntBuilder

is a very simple mapping from Ant's format to Groovy, which is explained below.build.xml

You execute an Ant task by calling a method on the instance. You use the task name as theAntBuilder

method name. For example, you execute the Ant task by calling the method. Theecho ant.echo()

attributes of the Ant task are passed as Map parameters to the method. Below is an example which

executes the task. Notice that we can also mix Groovy code and the Ant task markup. This can beecho

extremely powerful.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/AntBuilder.html

Page 67 of 168

Example 14.1. Using an Ant task

build.gradle

task hello << {
 String greeting = 'hello from Ant'
 ant.echo(message: greeting)
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we

pass the message for the task as nested text:echo

Example 14.2. Passing nested text to an Ant task

build.gradle

task hello << {
 ant.echo('hello from Ant')
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as

tasks, by calling a method with the same name as the element we want to define.

Example 14.3. Passing nested elements to an Ant task

build.gradle

task zip << {
 ant.zip(destfile: 'archive.zip') {
 fileset(dir: 'src') {
 include(name: '**.xml')
 exclude(name: '**.java')
 }
 }
}

You can access Ant types in the same way that you access tasks, using the name of the type as the method

Page 68 of 168

name. The method call returns the Ant data type, which you can then use directly in your build script. In the

following example, we create an Ant object, then iterate over the contents of it.path

Example 14.4. Using an Ant type

build.gradle

task list << {
 def path = ant.path {
 fileset(dir: 'libs', includes: '*.jar')
 }
 path.list().each {
 println it
 }
}

More information about can be found in 'Groovy in Action' 8.4 or at the AntBuilder Groovy Wiki

14.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you use the Ant task, just as you would in a typedef

 file. You can then refer to the custom Ant task as you would a built-in Ant task.build.xml

Example 14.5. Using a custom Ant task

build.gradle

task check << {
 ant.taskdef(resource: 'checkstyletask.properties') {
 classpath {
 fileset(dir: 'libs', include: '*.jar')
 }
 }
 ant.checkstyle(config: 'checkstyle.xml') {
 fileset(dir: 'src')
 }
}

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To

do this, you need to define a custom configuration for the classpath, then add some dependencies to the

configuration. This is described in more detail in .Section 25.3, “How to declare your dependencies”

Example 14.6. Declaring the classpath for a custom Ant task

build.gradle

configurations {
 checkstyle
}

dependencies {
 checkstyle group: 'checkstyle', name: 'checkstyle', version: '5.0'
}

To use the classpath configuration, use the property of the custom configuration.asPath

http://groovy.codehaus.org/Using+Ant+from+Groovy

Page 69 of 168

Example 14.7. Using a custom Ant task and dependency management together

build.gradle

task check << {
 ant.taskdef(resource: 'checkstyletask.properties', classpath: configurations.checkstyle.asPath)
 ant.checkstyle(config: 'checkstyle.xml') {
 fileset(dir: 'src')
 }
}

14.2. Importing an Ant build
You can use the method to import an Ant build into your Gradle project. When youant.importBuild()

import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute

the Ant targets in exactly the same way as Gradle tasks.

Example 14.8. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>
 <target name="hello">
 <echo>Hello, from Ant</echo>
 </target>
</project>

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You can add a task which depends on an Ant target:

Page 70 of 168

Example 14.9. Task that depends on Ant target

build.gradle

ant.importBuild 'build.xml'

task intro(dependsOn: hello) << {
 println 'Hello, from Gradle'
}

Output of gradle intro

> gradle intro
:hello
[ant:echo] Hello, from Ant
:intro
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

Or, you can add behaviour to an Ant target:

Example 14.10. Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello << {
 println 'Hello, from Gradle'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

It is also possible for an Ant target to depend on a Gradle task:

Page 71 of 168

Example 14.11. Ant target that depends on Gradle task

build.gradle

ant.importBuild 'build.xml'

task intro << {
 println 'Hello, from Gradle'
}

build.xml

<project>
 <target name="hello" depends="intro">
 <echo>Hello, from Ant</echo>
 </target>
</project>

Output of gradle hello

> gradle hello
:intro
Hello, from Gradle
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

14.3. Ant properties and references
There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set

the property directly on the instance. The Ant properties are also available as a Map which youAntBuilder

can change. You can also use the Ant task. Below are some examples of how to do this.property

Example 14.12. Setting an Ant property

build.gradle

ant.buildDir = buildDir
ant.properties.buildDir = buildDir
ant.properties['buildDir'] = buildDir
ant.property(name: 'buildDir', location: buildDir)

build.xml

<echo>buildDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these

properties. You can get the property directly from the instance. The Ant properties are alsoAntBuilder

available as a Map. Below are some examples.

Page 72 of 168

Example 14.13. Getting an Ant property

build.xml

<property name="antProp" value="a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 14.14. Setting an Ant reference

build.gradle

ant.path(id: 'classpath', location: 'libs')
ant.references.classpath = ant.path(location: 'libs')
ant.references['classpath'] = ant.path(location: 'libs')

build.xml

<path refid="classpath"/>

There are several ways to get an Ant reference:

Example 14.15. Getting an Ant reference

build.xml

<path id="antPath" location="libs"/>

build.gradle

println ant.references.antPath
println ant.references['antPath']

14.4. API
The Ant integration is provided by . AntBuilder

[] 13 In Groovy you can execute Strings. To learn more about executing external processes with Groovy have

a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/AntBuilder.html

Page 73 of 168

15
Plugins

Now we look at Gradle provides build-by-convention and out of the box functionality. These features arehow

decoupled from the core of Gradle, and are provided via plugins. Although the plugins are decoupled, we

would like to point out that the Gradle core plugins are NEVER updated or changed for a particular Gradle

distribution. If there is a bug in the compile functionality of Gradle, we will release a new version of Gradle.

There is no change of behavior for the lifetime of a given distribution of Gradle.

15.1. Declaring plugins
If you want to use the plugin for building a Java project, simply type

usePlugin('java')

at the beginning of your script. That's all. From a technological point of view plugins use just the same

operations as you can use from your build scripts. That is they use the Project and Task API (see

). The Gradle plugins use this API for:Chapter 11, The Project and Task API

Adding tasks to your build (e.g. compile, test)

Creating dependencies between those tasks to let them execute in the appropriate order.

Adding a so called to your project configuration.convention object

Let's check this out:

Example 15.1. Using plugin

build.gradle

usePlugin('java')

task check << {
 println(compile.destinationDir.name)
}

Output of gradle -q check

> gradle -q check
classes

Page 74 of 168

The Java Plugin adds a task to the project object which can be accessed by a build script.compile

The usePlugin method either takes a string or a class as an argument. You can write []14

usePlugin(org.gradle.api.plugins.JavaPlugin)

Any class, which implements the Plugin interface, can be used as a plugin. Just pass the class as an

argument. You don't need to configure anything else for this. If you want to access a custom plugin via a

string identifier, you must inform Gradle about the mapping. You can do this in the file

 in the top level directory of Gradle. It looks like this for the current release:plugin.properties

Figure 15.1. plugin.properties

java=org.gradle.api.plugins.JavaPlugin
eclipse=org.gradle.api.plugins.EclipsePlugin
groovy=org.gradle.api.plugins.GroovyPlugin
war=org.gradle.api.plugins.WarPlugin
osgi=org.gradle.api.plugins.osgi.OsgiPlugin
jetty=org.gradle.api.plugins.jetty.JettyPlugin
maven=org.gradle.api.plugins.MavenPlugin
project-reports=org.gradle.api.plugins.ProjectReportsPlugin

If you want to use your own plugins, you must make sure that they are accessible via the build script

classpath (see for more information). To learn more about how to writeChapter 29, Organizing Build Logic

custom plugins, see .Chapter 24, How to write Custom Plugins

15.2. Configuration
If you use the for example, there are a compile and a processResources task for yourJava Plugin

production code (the same is true for your test code). The default location for the output of those tasks is the

directory . What if you want to change this? Let's try:build/classes

Example 15.2. Configuring a plugin

build.gradle

usePlugin('java')

task check << {
 processResources.destinationDir = new File(buildDir, 'output')
 println(processResources.destinationDir.name)
 println(compile.destinationDir.name)
}

Output of gradle -q check

> gradle -q check
output
classes

Setting the of the processResources task had only an effect on the processResourcesdestinationDir

task. Maybe this was what you wanted. But what if you want to change the output directory for all tasks? It

would be unfortunate if you had to do this for each task separately.

Page 75 of 168

Gradles tasks are usually . A plugin can add a convention object to your build. It can alsoconvention aware

map certain values of this convention object to task properties.

Example 15.3. Plugin convention object

build.gradle

usePlugin('java')

task check << {
 classesDirName = 'output'
 println(processResources.destinationDir.name)
 println(compile.destinationDir.name)
 println(convention.classesDirName)
}

Output of gradle -q check

> gradle -q check
output
output
output

The has added a convention object with a property. The properties of aJava Plugin classesDirName

convention object can be accessed like project properties. As shown in the example, you can also access

the convention object explicitly.

By setting a task attribute explicitly (as we have done in the first example) you overwrite the convention

value for this particular task.

Not all of the tasks attributes are mapped to convention object values. It is the decision of the plugin to

decide what are the shared properties and then bundle them in a convention object and map them to the

tasks.

15.2.1. More about convention objects

Every project object has a convention object which is a container for convention objects contributed by the

plugins declared for your project. If you simply access or set a property or access a method in your build

script, the project object first looks if this is a property of itself. If not, it delegates the request to its

convention object. The convention object checks if any of the plugin convention objects can fulfill the request

(first wins and the order is not defined). The plugin convention objects also introduce a namespace.

usePlugin('java')
println classesDir
println convention.classesDir
println convention.plugins.java.classesDir

All three statements print out the same property. The more specific statements are useful if there are

ambiguities.

Page 76 of 168

15.2.2. Declaring plugins multiple times

A plugin is only called once for a given project, even if you have multiple statements. AnusePlugin()

additional call after the first call has no effect but doesn't hurt either. This can be important if you use plugins

which extend other plugins. For example calls also the Java Plugin. We say theusePlugin('groovy')

Groovy plugin extends the Java plugin. But you might as well write:

usePlugin('java')
usePlugin('groovy')

If you use cross-project configuration in multi-project builds this is a useful feature.

15.3. Summary
Plugins provide tasks, which are glued together via dependsOn relations and a convention object.

[] 14 Thanks to Gradle's default imports (see)Appendix C, Existing IDE Support and how to cope without it

you can also write in this case.usePlugin(JavaPlugin)

Page 77 of 168

16
The Java Plugin

The Java Plugin adds Java compilation, testing and bundling capabilities to a project. It serves as the basis

for most of the other Gradle plugins.

16.1. Tasks
The Java plugin adds the tasks shown in to a project. These tasksTable 16.1, “Java plugin - tasks”

constitute a lifecycle for Java builds.

Table 16.1. Java plugin - tasks

Task name Depends on Type

clean - Clean

processResources - Copy

compile - Compile

processTestResources - Copy

compileTests compile Compile

test
, , , compile compileTests processResources

processTestResources
Test

javadoc - Javadoc

jar , , compile processResources test Jar

libs All and tasks in the project.Jar War Task

dists and all and tasks in the project.libs Zip Tar Task

build

ConfigurationName

The tasks which produce the artifacts in configuration

.ConfigurationName
Task

upload

ConfigurationName

The tasks which uploads the artifacts in configuration

.ConfigurationName
Upload

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Clean.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/testing/Test.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Jar.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Upload.html

Page 78 of 168

16.2. Project layout
The Java plugin assumes the project layout shown in . ThisTable 16.2, “Java plugin - default project layout”

is configurable using the convention properties listed in the next section.

Table 16.2. Java plugin - default project layout

Directory Meaning

src/main/java Application/Library Java source

src/main/resources Application/Library resources

src/test/java Test Java source

src/test/resources Test resources

16.3. Dependency management
The Java plugin adds a number of dependency configurations to your project, as shown in Table 16.3, “Java

. It assigns those configurations to tasks such as and .plugin - dependency configurations” compile test

To learn more about configurations see and Section 25.3.1, “Configurations” Section 26.2, “Artifacts and

configurations”

Table 16.3. Java plugin - dependency configurations

Name Extends Used by tasks Meaning

compile - compile Compile time dependencies

runtime compile - Runtime dependencies

testCompile compile compileTests Additional dependencies for compiling tests.

testRuntime
runtime,

testCompile
test Additional dependencies for running tests only.

archives - uploadArchives Artifacts (e.g. jars) produced by this project.

default
runtime,

archives
-

Artifacts produced dependencies requiredand

by this project.

Page 79 of 168

16.4. Convention properties
The Java plugin adds the convention properties shown in andTable 16.4, “Java plugin - directory properties”

. Gradle's conventions contain a convention for the directoryTable 16.6, “Java plugin - other properties” []15

hierarchy as well as conventions for the element names of the hierarchy. For example the aresrcDirs

relative to the . Therefore is a read-only property. If you want to change the name of thesrcRoot srcDirs

source dirs you need to do this via the property. But the paths you specify here are tosrcDirNames relative

the . This has the advantage to make bulk changes easy. If you change from to srcRoot srcRoot src

, this automatically applies to all directory properties which are relative to . As this alsosource srcRoot

introduces an inflexibility, we have additional floating dirs, which are not bound to any hierarchy (see

). For example code generation tool could make useTable 16.5, “Java plugin - floating directory properties”

of this, by adding a source dir which is located in the build folder.

Table 16.4. Java plugin - directory properties

Directory Name

Property

Directory File

Property
Default Name Default File

srcRootName srcRoot src /srcprojectDir

srcDirNames srcDirs []main/java [] /main/javasrcRoot

resourceDirNames resourceDirs

[

main/resources

]

[srcRoot

]/main/resources

testSrcDirNames testSrcDirs []test/java [] /test/javasrcRoot

testResourceDirNames testResourceDirs test/resources
[srcRoot

]/test/resources

classesDirName classesDir classes /classesbuildDir

testClassesDirName testClassesDir test-classes /test-classesbuildDir

testResultsDirName testResultsDir test-results /test-resultsbuildDir

testReportDirName testReportDir tests /testreportsDir

libsDirName libsDir libs /libsbuildDir

distsDirName distsDir dists /distsbuildDir

docsDirName docsDir docs /docsbuildDir

javadocDirName javadocDir javadoc /javadocbuildDir

reportsDirName reportsDir reports /reportsbuildDir

Page 80 of 168

Table 16.5. Java plugin - floating directory properties

Property Type Default Value

floatingSrcDirs List empty

floatingResourceDirs List empty

floatingTestSrcDirs List empty

floatingTestResourceDirs List empty

Table 16.6. Java plugin - other properties

Property Type Default Value

sourceCompatibility
. Can also set using a String or a JavaVersion

Number, eg or .'1.5' 1.5
1.5

targetCompatibility
. Can also set using a String or JavaVersion

Number, eg or .'1.5' 1.5
sourceCompatibility

archivesBaseName String projectName

manifest GradleManifest empty

metaInf List empty

16.5. Javadoc
The task has no default association with any other task. It has no prerequisites on the actions ofjavadoc

other tasks, as it operates on the source. We support the core javadoc options and the options of the

standard doclet described in the of the Javadoc executable.reference documentation

For some of the Javadoc options we provide defaults these defaults are only used when they are not set

explicitly. Except for the sourcepath and classpath option for these options you can in addition to setting your

custom values also make it so that the defaults get appended to these paths with the

(alwaysAppendDefaultSourcepath and alwaysAppendDefaultClasspath toggles).

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/GradleManifest.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide

Page 81 of 168

Table 16.7. Javadoc options

Javadoc

option
Default value When is the default used

destination

directory
[javadocDir]

When the destination directory is not set

explicitly

sourcepath
The java or groovy source

directories

When the sourcepath is empty or when you set

the alwaysAppendDefaultSourcepath to true

classpath

The dependencies from the

compile configuration + the

classesDir

When the classpath is empty or when you set

the alwaysAppendDefaultClasspath to true

windowTitle project name + version When the window title is not set explicitly

subPackages
All first level sub directories in the

srcDirs

When the following options are all empty:

packageNames, sourceNames and

subPackages

For a complete list of supported Javadoc options consult the API documentation of the following classes:

and . CoreJavadocOptions StandardJavadocDocletOptions

Table 16.8. Java plugin - Javadoc properties

Task Property Convention Property

srcDirs srcDirs

classesDir classesDir

destinationDir [javadocDir]

16.6. Clean
The task simply removes the directory denoted by its property. This property is mapped to the clean dir

 property of the project. In future releases there will be more control of what gets deleted. If youbuildDir

need more control now, you can use the .Ant delete task

16.7. Resources
Gradle uses the task for resource handling. It has two instances, and Copy processResources

.processTestResources

Table 16.9. Java plugin - processResource properties

Task Instance Task Property Convention Property

processResources sourceDirs resourceDirs

processResources destinationDir classesDir

processTestResources sourceDirs testResourceDirs

processTestResources destinationDir testClassesDir

http://www.gradle.org/0.7/docs/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

Page 82 of 168

The task offers include and exclude directives as well as filters. Have a look at processResources Copy

to learn about the details.

16.8. Compile
The task has two instances, and .Compile compile compileTests

Table 16.10. Java plugin - compile properties

Task Instance Task Property Convention Property

compile srcDirs srcDirs

compile destinationDir classesDir

compile sourceCompatibility sourceCompatibility

compile targetCompatibility targetCompatibility

compileTests srcDirs testSrcDirs

compileTests destinationDir testClassesDir

compileTests sourceCompatibility sourceCompatibility

compileTests targetCompatibility targetCompatibility

Have a look at to learn about the details. The compile task delegates to Ant's javac task to do the Compile

compile. You can set most of the properties of the Ant javac task.

16.9. Test
The task executes the unit tests which have been compiled by the task.test compileTests

Table 16.11. Java plugin - test properties

Task Property Convention Property

testClassesDir testClassesDir

testResultsDir testResultsDir

unmanagedClasspath [classesDir]

Have a look at for its complete API. Right now the test results are always in XML-format. The task has Test

a property to control the behavior when tests are failing. Test executesstopAtFailuresOrErrors always

all tests. It stops the build afterwards if is true and there are failing tests orstopAtFailuresOrErrors

tests that have thrown an uncaught exception.

Per default the tests are run in a forked JVM and the fork is done per test. You can modify this behavior by

setting forking to false or set the forkmode to once.

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it

scans all files. You can set custom includes / excludes, only those classes will be scanned. Depending.class

on the Test framework used (JUnit / TestNG) the test class detection uses different criteria.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/testing/Test.html

Page 83 of 168

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the

class is considered to be a JUnit test class. Extend TestCase or GroovyTestCase, Class annotated with

RunWith or contain a method annotated with Test (inherited test methods are detected).

When using TestNG, we scan for methods annotated with Test (inherited test methods are detected).

Since 0.6.1 we scan up the inheritance tree into jar files on the test classpath.

In case you don't want to use the test class detection, you can disable it by setting scanForTestClasses to

false. This will make the test task only use the includes / excludes to find test classes. If

 is disabled and no include or exclude patterns are specified, the respective defaultsscanForTestClasses

are used. For include this is and the for exclude it is "**/*Tests.class", "**/*Test.class"

."**/Abstract*.class"

Both JUnit and TestNG are supported through their Ant tasks.

16.10. Jar
The task creates a JAR file containing the class files and resources of the project. The JAR file isjar

declared as an artifact in the dependency configuration. This means that the JAR is available inarchives

the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part

of the dependency descriptor. To learn more about how to work with archives and artifact configurations see

.Chapter 26, Artifact Management

16.11. Adding archives
If you come from Maven you can have only one library JAR per project. With Gradle you can have as many

as you want. You can also add WAR, ZIP and TAR archives to your project. They are all added the same

way, so let's look at how you add a ZIP file.

Example 16.1. Creation of ZIP archive

build.gradle

usePlugin 'java'
version = 1.0

task myZip(type: Zip) {
 fileSet(dir: 'somedir')
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
zipProject-1.0.zip

This adds a Zip archive task with the name which produces ZIP file . It ismyZip zipProject-1.0.zip

important to distinguish between the name of the archive task and the name of the archive generated by the

Page 84 of 168

archive task. The name of the generated archive file is by default the name of the project with the project

version appended. The default name for archives can be changed with the projectarchivesBaseName

property. The name of the archive can also be changed at any time later on.

There are a number of properties which you can set on an archive task. You can, for example, change the

name of the archive:

Example 16.2. Configuration of archive task - custom archive name

build.gradle

usePlugin 'java'
version = 1.0

task myZip(type: Zip) {
 fileSet(dir: 'somedir')
 baseName = 'customName'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
customName-1.0.zip

You can further customize the archive names:

Example 16.3. Configuration of archive task - appendix & classifier

build.gradle

usePlugin 'java'
archivesBaseName = 'gradle'
version = 1.0

task myZip(type: Zip) {
 appendix = 'wrapper'
 classifier = 'src'
 fileSet(dir: 'somedir')
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
gradle-wrapper-1.0-src.zip

Often you will want to publish an archive, so that it is usable from another project. This process is described

in Chapter 26, Artifact Management

16.11.1. Archive tasks

An archive task is a task which produces an archive at execution time. The following archive tasks are

available:

Page 85 of 168

Table 16.12. Archive tasks

Type Accepted file container Extends

Zip fileSet, fileCollection, zipFileSet AbstractArchiveTask

Tar fileSet, fileCollection, zipFileSet, tarFileSet Zip

Jar fileSet, fileCollection, zipFileSet Zip

War fileSet, fileCollection, zipFileSet Jar

The following file containers are available:

Table 16.13. File container for archives

Type Meaning

FileSet A set of files defined by a common baseDir and include/exclude patterns.

ZipFileSet Extends FileSet with additional properties known from Ant's zipfileset task.

TarFileSet Extends ZipFileSet with additional properties known from Ant's tarfileset task.

FileCollection

An arbitrary collection of files to include in the archive. In contrast to a FileSet

they don't need to have a common basedir. There are a number of ways of

creating a . For example, the objects of aFileCollection Configuration

project implement . You can also obtain a FileCollection FileCollection

using the method.Project.files()

AntDirective An arbitrary Ant resource declaration.

To learn about all the details have a look at the javadoc of the archive task class or the file container class

itself.

16.11.1.1. Common properties

The name of the generated archive is assembled from the task properties , , ,baseName appendix version

 and into . Theclassifier extension - - - . baseName appendix version classifier extension []16

assembled name is accessible via the property. The property denotes the name of thearchiveName name

task, not the generated archive. An archive task has also a property. If this property is set, the customName

 property returns its value instead of assembling a name out of the properties mentionedarchiveName

above.

Archives have a property to specify where the generated archive should be placed. It hasdestinationDir

also an property, which returns a File object with the absolute path of the generated archive.archivePath

16.11.1.2. Adding content

To add content to an archive you must add file container to an archive (see Table 16.13, “File container for

). You can add as many file containers as you like. They behave pretty much the same as the Antarchives”

resources with similar names.

http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Zip.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Tar.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Jar.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/War.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/FileSet.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/ZipFileSet.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/TarFileSet.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/FileCollection.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/FileCollection.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/AntDirective.html

Page 86 of 168

Example 16.4. Adding content to archive - include & exclude

build.gradle

task zipWithFileSet(type: Zip) {
 fileSet(dir: 'contentDir') {
 include('**/*.txt')
 exclude('**/*.gif')
 }
}

You can add arbitrary files to an archive:

Example 16.5. Adding content to archive - arbitrary files

build.gradle

task zipWithFiles(type: Zip) {
 files('path_to_file1', 'path_to_file2')
}

Other examples:

Example 16.6. Adding content to archive - zipFileSet

build.gradle

task zipWithZipFileSet(type: Zip) {
 zipFileSet(dir: 'contentDir') {
 include('**/*.txt')
 exclude('**/*.gif')
 prefix = 'myprefix'
 }
}

Example 16.7. Creation of TAR archive

build.gradle

task tarWithFileSet(type: Tar) {
 tarFileSet(dir: 'contentDir') {
 include('**/*.txt')
 exclude('**/*.gif')
 uid = 'myuid'
 }
}

There is also the option to add an arbitrary Ant expression describing an Ant resource.

myZipTask.antDirective {
 zipgroupfileset(dir: new File(rootDir, 'lib'))
}

This is for rather exotic use cases. Usually you should be fine with the file container provided by Gradle.

Page 87 of 168

16.11.1.3. Merging

If you want to merge the content of other archives into the archive to be generated Gradle offers you two

methods. One is :merge

myZipTask.merge('path1/otherArchive1.zip', 'path2/otherArchive.tar.gz')

This merges the whole content of the archive passed to the merge method into the generated archive. If you

need more control which content of the archive should be merged and to what path, you can pass a closure

to the merge method:

myZipTask.merge('path1/otherArchive1.zip', 'path2/otherArchive.tar.gz') {
 include('**/*.txt')
 exclude('**/*.gif')
 prefix = 'myprefix'
}

Under the hood Gradle scans the extension of the archives to be merged. According to the extension, it

creates a or . The closure is applied to this newly created file container. There isZipFileSet TarFileSet

another method for merging called .mergeGroup

myZipTask.mergeGroup('path_to_dir_with_archives') {
 include('**/*.zip')
 exclude('**/*.tar.gz')
}

With this method you can assign a set of archives to be merged. Those archives have to be located under

the directory you pass as an argument. You can define filters what archives should be included. They are

always included fully and you can't specify a path. If you need this features, you must use the merge

method.

16.11.1.4. Manifest

The convention object of the Java Plugin has a property pointing to an instance of manifest

. With this object you can define the content of the file GradleManifest GradleManifest MANIFEST.MF

for all the jar or a war archives in your project.

Example 16.8. Customization of MANIFEST.MF

build.gradle

manifest.mainAttributes("Implementation-Title": "Gradle", "Implementation-Version": version)

You can also define sections of a manifest file.

If a particular archive needs unique entries in its manifest you have to create your own GradleManifest

instance for it.

http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/GradleManifest.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/GradleManifest.html

Page 88 of 168

Example 16.9. Customization of MANIFEST.MF for a particular archive

build.gradle

manifest.mainAttributes("Implementation-Title": "Gradle", "Implementation-Version": version)
myZipTask.manifest = new GradleManifest(manifest.createManifest())
myZipTask.manifest.mainAttributes(mykey: "myvalue")

Passing the common manifest object to the constructor of add the common manifestGradleManifest

values to the task specific manifest instance.

16.11.1.5. MetaInf

The convention object of the Java Plugin has a property pointing to a list of objects. WithmetaInf FileSet

these file sets you can define which files should be in the directory of a JAR or a WAR archive.META-INF

metaInf << new FileSet(someDir)

16.12. Uploading
How to upload your archives is described in .Chapter 26, Artifact Management

16.13. Eclipse
Gradle comes with a number of tasks for generating eclipse files for your projects.

16.13.1. Eclipse classpath

has a default instance with the name . It generates a file. EclipseClasspath eclipseCp .classpath

Table 16.14. Java plugin - Eclipse properties

Task Property Convention Property

srcDirs srcDirs + resourcesDirs

testSrcDirs testSrcDirs + testResourcesDirs

outputDirectory classesDir

testOutputDirectory testClassesDir

classpathLibs the resolve result for testRuntime

16.13.2. Eclipse project

has a default instance with the name . It generates a file. EclipseProject eclipseProject .project

Table 16.15. Java plugin - Eclipse project properties

Task Property Convention Property

name project.name

projectType ProjectType.JAVA

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/ide/eclipse/EclipseClasspath.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/ide/eclipse/EclipseProject.html

Page 89 of 168

The java plugin also provides a task called which generates both of the eclipse tasks mentionedeclipse

above. If you are using the war plugin, also leads to the execution of the task.eclipse eclipseWtp

[] 15 The property is a property of the project object. It defaults to .buildDir build

[] 16 If any of these properties is empty the trailing is not added to the name.-

Page 90 of 168

17
The Groovy Plugin

The Groovy Plugin extends the Java Plugin. It can deal with pure Java projects, with mixed Java and[]17

Groovy projects, and with pure Groovy projects.

17.1. Tasks
The Groovy plugin does not add any tasks. It modifies some of the tasks of the Java Plugin.

17.2. Project layout
The Groovy plugin assumes the project layout shown in . All theTable 17.1, “Groovy plugin - project layout”

Groovy s ource directories can contain Groovy Java code. The Java source directories may only containand

Java source code (and can of course be empty). []18

Table 17.1. Groovy plugin - project layout

Directory Meaning

src/main/groovy Application/Library Groovy/Java source

src/test/groovy Test Groovy/Java source

17.3. Dependency management
The Groovy plugin adds a dependency configuration called .groovy

Gradle is written in Groovy and allows you to write your build scripts in Groovy. But this is an internal aspect

of Gradle which is strictly separated from building Groovy projects. You are free to choose the Groovy

version your project should be build with. This Groovy version is not just used for compiling your code and

running your tests. The compiler and the the tool are also taken from the Groovygroovyc groovydoc

version you provide. As usual, with freedom comes responsibility ;). You are not just free to choose a Groovy

version, you have to provide one. Gradle expects that the groovy libraries are assigned to the groovy

dependency configuration. Here is an example using the public Maven repository:

Page 91 of 168

Example 17.1. Configuration of Groovy plugin

build.gradle

repositories {
 mavenCentral()
}

dependencies {
 groovy group: 'org.codehaus.groovy', name: 'groovy-all', version: '1.6.0'
}

And here is an example using the Groovy JARs checked into the directory of the source tree:lib

Example 17.2. Configuration of Groovy plugin

build.gradle

repositories {
 flatDir(dirs: file('lib'))
}

dependencies {
 groovy module(':groovy-all:1.6.0') {
 dependency(':commons-cli:1.0')
 module(':ant:1.7.0') {
 dependencies(':ant-junit:1.7.0:jar', ':ant-launcher:1.7.0')
 }
 }
}

17.4. Convention properties
The Groovy plugin adds the convention properties shown in Table 17.2, “Groovy plugin - directory

 and .properties” Table 17.3, “Groovy Plugin - floating directory properties”

Table 17.2. Groovy plugin - directory properties

Dir Name Dir File Default Value Name Default Value File

groovySrcDirNames groovySrcDirs []main/groovy [] /main/groovysrcRoot

groovyTestSrcDirNames groovyTestSrcDirs test/groovy [] /test/groovysrcRoot

groovydocDirName groovydocDir groovydoc /groovydocdocsDir

Table 17.3. Groovy Plugin - floating directory properties

Property Type Default Value

floatingGroovySrcDirs List empty

floatingGroovyTestSrcDirs List empty

Page 92 of 168

17.5. Compile
The task has two instances, and . The task type extends the GroovyCompile compile compileTests

 task (see)Compile Section 16.8, “Compile”

Table 17.4. Groovy Convention Object - source directory properties

Task Instance Task Property Convention Property

compile groovySourceDirs groovySrcDirs

compileTests groovySourceDirs groovyTestSrcDirs

Have a look at to learn about the details. The compile task delegates to the Ant Groovyc GroovyCompile

task to do the compile. Via the compile task you can set most of the properties of Ants Groovyc task.

17.6. Test
In contrast to the Java plugin the fork mode is set to once by default, because of the significant startup time

of Groovy. The Java plugin uses per test as fork mode (see).Section 16.9, “Test”

[] 17 We don't recommend this, as the Groovy plugin uses the Ant task to compile the sources. ForGroovyc

pure Java projects you might rather stick with pure . In particular as you would have to supply ajavac

groovy jar for doing this.

[] 18 We are using the same conventions as introduced by Russel Winders Gant tool (

).http://gant.codehaus.org

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/GroovyCompile.html
http://gant.codehaus.org

Page 93 of 168

18
The War Plugin

The war plugin extends the Java Plugin. It disables the default jar archive generation of the Java Plugin and

adds a default war archive task.

18.1. Tasks
TBD

18.2. Project layout
Table 18.1. War plugin - project layout

Directory Meaning

src/main/webapp Web application sources

18.3. Dependency management
The War plugin adds two dependency configurations: and . ThoseprovidedCompile providedRuntime

configurations have the same scope as the respective and configurations, except thatcompile runtime

they are not added to the WAR archive. It is important to note that those configurations workprovided

transitively. Let's say you add to any of the providedcommons-httpclient:commons-httpclient:3.0

configurations. This dependency has a dependency on . This means neither commons-codec httpclient

nor is added to your WAR, even if were an explicit dependency of your commons-codec commons-codec

 configuration. If you don't want this transitive behavior, simply declare your compile provided

dependencies like .commons-httpclient:commons-httpclient:3.0@jar

18.4. Convention properties
Table 18.2. War plugin - directory properties

Directory Name Property Directory File Property Default Name Default File

webAppDirName webAppDir main/webapp /main/webappsrcRoot

Page 94 of 168

18.5. War
The default behavior of the War task is to copy the content of to the root of the archive.src/main/webapp

Your folder may of course contain a sub-directory, which again may contain a webapp WEB-INF web.xml

file. Your compiled classes are compiled to . All the dependencies of the WEB-INF/classes runtime []19

configuration are copied to .WEB-INF/lib

Have also a look at . War

18.6. Customizing
Here is an example with the most important customization options:

http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/War.html

Page 95 of 168

Example 18.1. Customization of war plugin

build.gradle

import org.apache.commons.httpclient.HttpClient
import org.apache.commons.httpclient.methods.GetMethod

group = 'gradle'
version = '1.0'
usePlugin('war')
usePlugin('jetty')

configurations {
 moreLibs
}

repositories {
 flatDir(dirs: "$rootDir/lib")
 mavenCentral()
}

dependencies {
 compile ":compile:1.0"
 providedCompile ":providedCompile:1.0@jar", "javax.servlet:servlet-api:2.5"
 runtime ":runtime:1.0"
 providedRuntime ":providedRuntime:1.0@jar"
 testCompile "junit:junit:3.8.2"
 moreLibs ":otherLib:1.0"
}

war {
 fileSet(dir: file('src/rootContent')) // adds a file-set to the root of the archive
 webInf(dir: file('src/additionalWebInf')) // adds a file-set to the WEB-INF dir.
 additionalLibs(dir: file('additionalLibs')) // adds a file-set to the WEB-INF/lib dir.
 libConfigurations('moreLibs') // adds a configuration to the WEB-INF/lib dir.
 webXml = file('src/someWeb.xml') // copies a file to WEB-INF/web.xml
}

jar.enabled = true

[jettyRun, jettyRunWar]*.daemon = true
stopKey = 'foo'
stopPort = 9451
httpPort = 8163

task runTest(dependsOn: jettyRun) << {
 callServlet()
}

task runWarTest(dependsOn: jettyRunWar) << {
 callServlet()
}

private void callServlet() {
 HttpClient client = new HttpClient()
 GetMethod method = new GetMethod("http://localhost:$httpPort/customised/hello")
 client.executeMethod(method)
 new File(buildDir, "servlet-out.txt").write(method.getResponseBodyAsString())
 jettyStop.execute()
}

Of course one can configure the different file-sets with a closure to define excludes and includes.

If you want to enable the generation of the default jar archive additional to the war archive just type:

Page 96 of 168

Example 18.2. Generation of JAR archive in addition to WAR archive

build.gradle

jar.enabled = true

18.7. Eclipse WTP
has a default instance with the name . It generates a EclipseWtp eclipseWtp

 file..settings/org.eclipse.wst.common.component

[] 19 The configuration extends the configuration.runtime compile

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/ide/eclipse/EclipseWtp.html

Page 97 of 168

19
The Jetty Plugin

This chapter is currently under construction.

The Jetty Plugin extends the War Plugin, and adds tasks which you can use to deploy your web application

to an embedded Jetty server.

19.1. Tasks
The Jetty plugin defines the following tasks:

Table 19.1. Jetty plugin - tasks

Task name Depends on Type

jettyRun compileTests JettyRun

jettyRunWar war JettyRunWar

jettyStop - JettyStop

19.2. Project layout
TBD

19.3. Dependency management
The Jetty plugin does not define any dependency configurations.

19.4. Convention properties
The Jetty plugin defines the following convention properties:

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/jetty/JettyRun.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/jetty/JettyRunWar.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/jetty/JettyStop.html

Page 98 of 168

Table 19.2. Jetty plugin - properties

Property Type Default Value

httpPort Integer 8080

stopPort Integer null

stopKey String null

Page 99 of 168

20
The Maven Plugin

This chapter is a work in progress

20.1. Tasks
TBD

20.2. Project layout
TBD

20.3. Dependency management
TBD

20.4. Convention properties
TBD

Page 100 of 168

21
The OSGi Plugin

The Gradle OSGi plugin enables the generation of an OSGi manifest. This OSGi manifest is automatically

added to all the JAR files produced by the project. This plugin makes heavy use of Peter Kriens .BND tool

21.1. Tasks
TBD

21.2. Project layout
TBD

21.3. Dependency management
TBD

21.4. Convention properties
The OSGi plugin adds an property to every task. This property points to an instance of osgi jar osgi

. Via the OsgiManifest object you can control the generation of the OSGi Manifest of the OsgiManifest

respective jar. The OSGi plugin assign default values to the OsgiManifest object.

Table 21.1. OSGi properties

Task Property Convention Property

classesDir project.classesDir

version project.version

name project.archivesBaseName

symbolicName transformation of the name and the group to produce a valid OSGi symbolic name

classpath project.dependencies.resolve('runtime')

The classes in the classes dir are analyzed regarding there package dependencies and the packages they

expose. Based on this the and the values of the OSGi Manifest areImport-Package Export-Package

http://www.aqute.biz/Code/Bnd
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html

Page 101 of 168

calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify

version information for the value. Beside the explicit properties of the Import-Package OsgiManifest

object you can add instructions.

Example 21.1. Configuration of OSGi MANIFEST.MF file

build.gradle

configure(jar.osgi) {
 name = 'overwrittenSpecialOsgiName'
 instruction 'Private-Package',
 'org.mycomp.package1',
 'org.mycomp.package2'
 instruction 'Bundle-Vendor', 'MyCompany'
 instruction 'Bundle-Description', 'Platform2: Metrics 2 Measures Framework'
 instruction 'Bundle-DocURL', 'http://www.mycompany.com'
}

The first argument of the instruction call is the key of the property. The other arguments form the value. They

are joined by Gradle with the separator. To learn more about the available instructions have a look at the ,

.BND tool

http://www.aqute.biz/Code/Bnd

Page 102 of 168

22
The Eclipse Plugin

This chapter is a work in progress

22.1. Tasks
TBD

22.2. Project layout
TBD

22.3. Dependency management
TBD

22.4. Convention properties
TBD

Page 103 of 168

23
The Project Report Plugin

The Project report plugin is currently a work in progress, and at this stage doesn't do particularly much.

We plan to add much more to these reports in the next release of Gradle.

The Project report plugin adds some tasks to your project which generate reports containing useful

information about your build.

23.1. Tasks
The project report plugin defines the following tasks:

Table 23.1. Project report plugin - tasks

Task name Depends on Type

dependencyReport - DependencyReportTask

propertyReport - PropertyReportTask

taskReport - TaskReportTask

projectReport
, , dependencyReport propertyReport

taskReport
Task

23.2. Project layout
The project report plugin does not require any particular project layout.

23.3. Dependency management
The project report plugin does not define any dependency configurations.

23.4. Convention properties
The project report defines the following convention properties:

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/DependencyReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/DependencyReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/PropertyReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/TaskReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html

Page 104 of 168

Table 23.2. Project report plugin - directory properties

Directory Name Property Directory File Property Default Name Default File

reportsDirName reportsDir reports /reportsbuildDir

projectReportDirName projectReportDir project /projectreportsDir

Page 105 of 168

24
How to write Custom Plugins

t.b.d.

Page 106 of 168

25
Dependency Management

25.1. Introduction
This chapter gives an overview of issues related with dependency management and presents how Gradle

can be used to overcome them.

Gradle offers a very good support for dependency management. If you are familiar with Maven or Ivy

approach you will be delighted to learn that:

All the concepts that you already know and like are still there and are fully supported by Gradle. The

current dependency management solutions all require to work with XML descriptor files and are

usually based on remote repositories for downloading the dependencies. Gradle fully supports this

approach.

Gradle works with your existent dependency management infrastructure, be it Maven or Ivy.perfectly

All the repositories you have set up with your custom pom or ivy files can be used as they are. No

changes necessary.

Additionally, Gradle offers a simpler approach, which might be better suited for some projects.

25.2. Dependency management overview
We think dependency management is very important for almost any project. Yet the kind of dependency

management you need depends on the complexity and the environment of your project. Is your project a

distribution or a library? Is it part of an enterprise environment, where it is integrated into other projects

builds or not? But all types of projects share the following requirements:

The version of the jar must be easy to recognize. Sometimes the version is in the Manifest file of the

jar, often not. And even if, it is rather painful to always look into the Manifest file to learn about the

version. Therefore we think that you should only use jars which have their version as part of their file

name.

It hopes to be clear what are the first level dependencies and what are the transitive ones. There are

different ways to achieve this. We will look at this later.

Conflicting versions of the same jar should be detected and either resolved or cause an exception.

Page 107 of 168

25.2.1. Versioning the jar name

Why do we think this is necessary? Without a dependency management as described above, your are likely

to burn your fingers sooner or later. If it is unclear which version of a jar your are using, this can introduce

subtle bugs which are very hard to find. For example there might be a project which uses Hibernate 3.0.4.

There are some problems with Hibernate so a developer installs version 3.0.5 of Hibernate on her machine.

This did not solve the problem but she forgot to roll back Hibernate to 3.0.4. Weeks later there is an

exception on the integration machine which can't be reproduced on the developer machine. Without a

version in the jar name this problem might take a long time to debug. Version in the jar names increases the

expressiveness of your project and makes it easier to maintain.

25.2.2. Transitive dependency management

Why is transitive dependency management so important? If you don't know which dependencies are first

level dependencies and which ones are transitive you will soon lose control over your build. Even Gradle has

already 20+ jars. An enterprise project using Spring, Hibernate, etc. easily ends up with 100+ jars. There is

no way to memorize where all these jars come from. If you want to get rid of a first level dependency you

can't be sure which other jars you should remove. Because a dependency of a first level dependency might

also be a first level dependency itself. Or it might be a transitive dependency of another of your first level

dependencies. Many first level dependencies are runtime dependencies and the transitive dependencies are

of course all runtime dependencies. So the compiler won't help you much here. The end of the story is, as

we have seen very often, no one dares to remove any jar any longer. The project classpath is a complete

mess and if a classpath problem arises, hell on earth invites you for a ride. In one of my former projects, I

found some ldap related jar in the classpath, whose sheer presence, as I found out after much research,

accelerated LDAP access. So removing this jar would not have led to any errors at compile or runtime.

Gradle offers you different ways to express what are first level and what are transitive dependencies. Gradle

allows you for example to store your jars in CVS or SVN without XML descriptor files and still use transitive

dependency management. Gradle also validates your dependency hierarchy against the reality of your code

by using only the first level dependencies for compiling.

25.2.3. Version conflicts

In your dependency description you tell Gradle which version of a dependency is needed by another

dependency. This frequently leads to conflicts. Different dependencies rely on different versions of another

dependency. The JVM unfortunately does not offer yet any easy way, to have different versions of the same

jar in the classpath (see). What Gradle offers you is aSection 25.2.4, “Dependency management and Java”

resolution strategy, by default the newest version is used. To deal with problems due to version conflicts,

reports with dependency graphs are also very helpful. Such reports are another feature of dependency

management.

25.2.4. Dependency management and Java

Traditionally, Java has offered no support at all for dealing with libraries and versions. There are no standard

ways to say that depends on a . This has led to proprietary solutions. Thefoo-1.0.jar bar-2.0.jar

most popular ones are Maven and Ivy. Maven is a complete build system whereas Ivy focuses solely on

dependency management.

Both approaches rely on descriptor XML files, which contains information about the dependencies of a

particular jar. Both also use repositories where the actual jars are placed together with their descriptor files.

And both offer resolution for conflicting jar versions in one form or the other. Yet we think the differences of

Page 108 of 168

both approaches are significant in terms of flexibility and maintainability. Beside this, Ivy fully supports the

Maven dependency handling. So with Ivy you have access to both worlds. We like Ivy very much. Gradle

uses it under the hood for its dependency management. Ivy is most often used via Ant and XML descriptors.

But it also has an API. We integrate deeply with Ivy via its API. This enables us to build new concepts on top

of Ivy which Ivy does not offer itself.

Right now there is a lot of movement in the field of dependency handling. There is OSGi and there is

JSR-294. OSGi is available already, JSR-294 is supposed to be shipped with Java 7. These[]20

technologies deal, amongst many other things, also with a painful problem which is neither solved by Maven

nor by Ivy. This is enabling different versions of the same jar to be used at runtime.

25.3. How to declare your dependencies
People who know Ivy have come across most of the concepts we are going to introduce now. But Gradle

does not use any XML for declaring the dependencies (e.g. no file). It has its own notation which isivy.xml

part of the Gradle build file.

25.3.1. Configurations

Dependencies are grouped in configurations. Configurations have a name, a number of other properties, and

they can extend each other. For examples see: . If you use the JavaSection 5.1, “Artifact configurations”

plugin, Gradle adds a number of pre-defined configurations to your build. The plugin also assigns

configurations to tasks. See for details. Of course you can addSection 16.3, “Dependency management”

your add custom configurations on top of that. There are many use cases for custom configurations. This is

very handy for example for adding dependencies not needed for building or testing your software (e.g.

additional JDBC drivers to be shipped with your distribution). The configurations are managed by a

 object. The closure you pass to the configurations object is applied against its API. Toconfigurations

learn more about this API have a look at the javadoc: . ConfigurationHandler

25.3.2. Module dependencies

Module dependencies are the most common dependencies. They correspond to a dependency in an

external repository.

Example 25.1. Module dependencies

build.gradle

dependencies {
 runtime group: 'org.springframework', name: 'spring-core', version: '2.5'
 runtime 'org.springframework:spring-core:2.5', 'org.springframework:spring-aop:2.5'
 runtime(
 [group: 'org.springframework', name: 'spring-core', version: '2.5'],
 [group: 'org.springframework', name: 'spring-aop', version: '2.5']
)
 runtime('org.hibernate:hibernate:3.0.5') {
 transitive = true
 }
 runtime group: 'org.hibernate', name: 'hibernate', version: '3.0.5', transitive: true
 runtime(group: 'org.hibernate', name: 'hibernate', version: '3.0.5') {
 transitive = true
 }
}

Gradle provides different notations for module dependencies. There is a string notation and a map notation.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/dsl/ConfigurationHandler.html

Page 109 of 168

A module dependency has an API which allows for further configuration. Have a look at

to learn all about the API. This API provides properties and configuration ExternalModuleDependency

methods. Via the string notation you can define a subset the properties. With the map notation you can

define all properties. To have access to the complete API, either with the map or with the string notation, you

can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a corresponding module descriptor file (or pom.xml

) in the repositories. If such a module descriptor file exists, it is parsed and the artifacts of thisivy.xml

module (e.g.) as well as its dependencies (e.g. cglib) are downloaded. If no suchhibernate-3.0.5.jar

module descriptor file exists, Gradle looks for a file called to retrieve. In Maven ahibernate-3.0.5.jar

module can only have one and only one artifact. In Gradle and Ivy a module can have multiple artifacts.

Each artifact can have a different set of dependencies.

25.3.2.1. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of

the module. But sometimes, even if the repository contains module descriptors, you want to download only

the artifact jar, without the dependencies. And sometimes you want to download a zip from a repository,[]21

that does not have module descriptors. Gradle provides an notation for those use cases - simplyartifact only

prefix the extension that you want to be downloaded with sign:'@'

Example 25.2. Artifact only notation

build.gradle

dependencies {
 runtime "org.groovy:groovy:1.5.6@jar"
 runtime group: 'org.groovy', name: 'groovy', version: '1.5.6', ext: 'jar'
}

An artifact only notation creates a module dependency which downloads only the artifact file with the

specified extension. Existing module descriptors are ignored.

25.3.2.2. Classifiers

The Maven dependency management has the notion of classifiers. Gradle supports this. To retrieve[]22

classified dependencies from a maven repository you can write:

Example 25.3. Dependency with classifier

build.gradle

compile "org.gradle.test.classifiers:service:1.0:jdk15@jar"
 otherConf group: 'org.gradle.test.classifiers', name: 'service', version: '1.0', classifier: 'jdk14'

As you can see in the example, classifiers can be used together with setting an explicit extension (artifact

only notation).

25.3.3. Client module dependencies

Client module dependencies enable you to declare dependencies directly in your build script. Theytransitive

are a replacement for a module descriptor XML file in an external repository.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

Page 110 of 168

Example 25.4. Client module dependencies - transitive dependencies

build.gradle

dependencies {
 runtime module("org.codehaus.groovy:groovy-all:1.5.6") {
 dependency("commons-cli:commons-cli:1.0") {
 transitive = false
 }
 module(group: 'org.apache.ant', name: 'ant', version: '1.7.0') {
 dependencies "org.apache.ant:ant-launcher:1.7.0@jar", "org.apache.ant:ant-junit:1.7.0"
 }
 }
}

This declares a dependency of your project on Groovy. Groovy itself has dependencies. But Gradle does not

look for an XML descriptor to figure them out but gets the information from the build file. The dependencies

of a client module can be normal module dependencies or artifact dependencies or another client module.

Have also a look at the javadoc: ClientModule

In the current release client modules have one limitation. Let's say your project is a library and you want this

library to be uploaded to your company's Maven or Ivy repository. Gradle uploads the jars of your project to

the company repository together with the XML descriptor file of the dependencies. If you use client modules

the dependency declaration in the XML descriptor file is not correct. We will improve this in a future release

of Gradle.

25.3.4. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the

same multi-project build. For the latter you can declare .Project Dependencies

Example 25.5. Project dependencies

build.gradle

dependencies {
 compile project(':shared')
}

For more information see the javadoc for ProjectDependency

Multi-project builds are discussed in .Chapter 28, Multi-project Builds

25.3.5. File dependencies

File dependencies allow you to directly add a set of files to a configuration. This can be useful if you cannot,

or do not want to, place certain files in a repository.

Example 25.6. File dependencies

build.gradle

dependencies {
 runtime files('libs/a.jar', 'libs/b.jar')
 runtime new FileSet(dir: 'libs', includes: ['*.jar'])
}

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Page 111 of 168

File dependencies are not included in the published dependency descriptor for your project.

25.3.6. Excluding transitive dependencies

You can exclude a dependency either by configuration or by dependency:transitive

Example 25.7. Excluding transitive dependencies

build.gradle

configurations {
 compile.exclude module: 'commons'
 all*.exclude group: 'org.gradle.test.excludes', module: 'reports'
}

dependencies {
 compile("org.gradle.test.excludes:api:1.0") {
 exclude module: 'shared'
 }
}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered for

all dependencies when resolving this configuration or any inheriting configuration. If you want to exclude a

transitive dependency from all your configurations you can use the Groovy spread-dot operator to express

this in a concise way, as shown in the example. When defining an exclude, you can specify either only the

organization or only the module name or both. Have also a look at the javadoc of and Dependency

. Configuration

25.3.7. Optional attributes

All attributes for a dependency are optional, except the name. It depends on the repository type, which

information is need for actually finding the dependencies in the repository. See .Section 25.5, “Repositories”

If you work for example with Maven repositories, you need to define the group, name and version. If you

work with filesystem repositories you might only need the name or the name and the version.

Example 25.8. Optional attributes of dependencies

build.gradle

dependencies {
 runtime ":junit:4.4", ":testng"
 runtime name: 'testng'
}

You can also assign collections or arrays of dependency notations to a configuration:

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html

Page 112 of 168

Example 25.9. Collections and arrays of dependencies

build.gradle

List groovy = ["org.codehaus.groovy:groovy-all:1.5.4@jar",
 "commons-cli:commons-cli:1.0@jar",
 "org.apache.ant:ant:1.7.0@jar"]
List hibernate = ['org.hibernate:hibernate:3.0.5@jar', 'somegroup:someorg:1.0@jar']
dependencies {
 runtime groovy, hibernate
}

25.3.8. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different configurations).

If you don't specify anything explicitly, Gradle uses the default configuration of the dependency. For

dependencies from a Maven repository, the default configuration is the only available one anyway. If you

work with Ivy repositories and want to declare a non-default configuration for your dependency you have to

use the map notation and declare:

Example 25.10. Dependency configurations

build.gradle

dependencies {
 runtime group: 'org.somegroup', name: 'somedependency', version: '1.0', configuration: 'someConfiguration'
}

To do the same for project dependencies you need to declare:

Example 25.11. Dependency configurations for project

build.gradle

dependencies {
 compile project(path: ':api', configuration: 'spi')
}

25.3.9. Dependency reports

You can generate dependency reports from the command line (see Section 9.3, “Obtaining information

). With the help of the Project report plugin (see)about your build” Chapter 23, The Project Report Plugin

such a report can be created by your build.

25.4. Working with dependencies
For the examples below we have the following dependencies setup:

Page 113 of 168

Example 25.12. Configuration.copy

build.gradle

configurations {
 sealife
 alllife.extendsFrom sealife
}

dependencies {
 sealife "sea.mammals:orca:1.0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
 alllife "air.birds:albatros:1.0"
}

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

You can use the configuration to access the declared dependencies or a subset of those:

Example 25.13. Accessing declared dependencies

build.gradle

task dependencies << {
 configurations.alllife.dependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.allDependencies.each { dep -> println dep.name }
 println()
 configurations.alllife.allDependencies.findAll { dep -> dep.name != 'orca' }.each { dep -> println dep.name }
}

Output of gradle -q dependencies

> gradle -q dependencies
albatros

albatros
orca
shark
tuna

albatros
shark
tuna

 returns only the dependencies belonging explicitly to the configuration. dependencies allDependencies

includes the dependencies from extended configurations.

To get the library files of the configuration dependencies you can do:

Page 114 of 168

Example 25.14. Configuration.files

build.gradle

task allFiles << {
 configurations.sealife.files.each { file ->
 println file.name
 }
}

Output of gradle -q allFiles

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
seal-2.0.jar
tuna-1.0.jar
herring-1.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single

dependency).

Example 25.15. Configuration.files with spec

build.gradle

task files << {
 configurations.sealife.files { dep -> dep.name == 'orca' }.each { file ->
 println file.name
 }
}

Output of gradle -q files

> gradle -q files
orca-1.0.jar
seal-2.0.jar

The method always retrieves all artifacts of the configuration. It then filtersConfiguration.files whole

the retrieved files by specified dpendencies. As you can see in the example, transitive dependencies are

included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the

orginal configuration should be copied. The copying methods come in two flavors. The method copiescopy

only the dependencies belonging explicitly to the configuration. The methode copies all thecopyRecursive

dependencies, including the dependencies from extended configurations.

Page 115 of 168

Example 25.16. Configuration.copy

build.gradle

task copy << {
 configurations.alllife.copyRecursive { dep -> dep.name != 'orca' }.allDependencies.each { dep ->
 println dep.name
 }
 println()
 configurations.alllife.copy().allDependencies.each { dep ->
 println dep.name
 }
}

Output of gradle -q copy

> gradle -q copy
albatros
shark
tuna

albatros

It is important to note that the returned files of the copied configuration are often but not always the same

than the returned files of the dependency subset of the original configuration. In case of version conflicts

between dependencies of the subset and dependencies not belonging to the subset the resolve result might

be different.

Example 25.17. Configuration.copy vs. Configuration.files

build.gradle

task copyVsFiles << {
 configurations.sealife.copyRecursive { dep -> dep.name == 'orca' }.each { file ->
 println file.name
 }
 println()
 configurations.sealife.files { dep -> dep.name == 'orca' }.each { file ->
 println file.name
 }
}

Output of gradle -q copyVsFiles

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal-2.0.jar

In the example above, has a dependency on whereas has a dependency on orca seal-1.0 shark

. The original configuration has therefore a version conflict which is resolved to the newer seal-2.0

 version. The method therefore returns as a transitive dependency of .seal-2.0 files seal-2.0 orca

The copied configuration only has as a dependency and therefore there is no version conflict and orca

 is returned as a transitive dependency.seal-1.0

Page 116 of 168

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies

will cause an exception. You can always copy a resolved configuration. The copied configuration is in the

unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the javadoc: . Configuration

25.5. Repositories

25.5.1. Introduction

The Gradle repository management, based on Apache Ivy, gives you have a lot of freedom regarding the

repository layout and the retrieval policies. Additionally Gradle provides a couple of convenience method to

add preconfigured repositories.

25.5.2. Maven repositories

To add the central Maven2 repository () simply type:http://repo1.maven.org/maven2

Example 25.18. Adding central Maven repository

build.gradle

repositories {
 mavenCentral()
}

Now Gradle looks for your dependencies in this repository.

Quite often certain jars are not in the official Maven repository for licensing reasons (e.g. JTA), but its poms

are.

Example 25.19. Adding many Maven repositories

build.gradle

repositories {
 mavenCentral name: 'single-jar-repo', urls: "http://repo.mycompany.com/jars"
 mavenCentral name: 'multi-jar-repos', urls: ["http://repo.mycompany.com/jars1", "http://repo.mycompany.com/jars2"]
}

Gradle looks first in the central Maven repository for the pom and the jar. If the jar can't be found there, its

looks for it in the other repositories.

For adding a custom Maven repository you can say:

Example 25.20. Adding custom Maven repository

build.gradle

repositories {
 mavenRepo urls: "http://repo.mycompany.com/maven2"
}

To declare additional repositories to look for jars (like above in the example for the central Maven

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html
http://repo1.maven.org/maven2

Page 117 of 168

repository), you can say:

Example 25.21. Adding additional Maven repositories for JAR files

build.gradle

repositories {
 mavenRepo urls: ["http://repo2.mycompany.com/maven2", "http://repo.mycompany.com/jars"]
}

The first URL is used to look for poms and jars. The subsequent URLs are used to look for jars.

25.5.3. Flat directory resolver

If you want to use a (flat) filesytem directory as a repository, simply type:

Example 25.22. Flat repository resolver

build.gradle

repositories {
 flatDir name: 'localRepository', dirs: 'lib'
 flatDir dirs: ['lib1', 'lib2']
}

This adds repositories which look into one or more directories for finding dependencies. If you only work with

flat directory resolvers you don't need to set all attributes of a dependency. See Section 25.3.7, “Optional

attributes”

25.5.4. More about preconfigured repositories

The methods above for creating preconfigured repositories share some common behavior. For all of them,

defining a name for the repository is optional. If no name is defined a default name is calculated, depending

on the type of the repository. You might want to assign a name, if you want to access the declared

repository. For example if you want to use it also for uploading your project artifacts. An explicit name might

also be helpful when studying the debug output.

The values passed as arguments to the repository methods can be of any type, not just String. The value

that is actually used, is the result of the argument object.toString

25.5.5. Cache

When Gradle downloads dependencies from remote repositories it stores them in a local cache located at

. When Gradle downloads dependencies from one of its predefined localUSER_HOME/.gradle/cache

resolvers (e.g. Flat Directory resolver), the cache is not used as an intermediate storage for dependency

artifacts. The cache is always used for caching module descriptors.

25.5.6. More about Ivy resolvers

Gradle, thanks to Ivy under its hood, is extremely flexible regarding repositories:

There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh,

...)

Each repository can have its own layout.

Page 118 of 168

Let's say, you declare a dependency on the library. Now how does Gradle find it injunit:junit:3.8.2

the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,

where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here

are some examples: []23

// Maven2 layout (if a repository is marked as Maven2 compatible, the organization (group) is split into subfolders according to the dots.)
someroot/[organisation]/[module]/[revision]/[module]-[revision].[ext]

// Typical layout for an ivy repository (the organization is not split into subfolder)
someroot/[organisation]/[module]/[revision]/[type]s/[artifact].[ext]

// Simple layout (the organization is not used, no nested folders.)
someroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Example 25.23. Definition of a custom repository

build.gradle

repositories {
 add(new org.apache.ivy.plugins.resolver.FileSystemResolver()) {
 name = 'repo'
 addIvyPattern "$projectDir/repo/[organisation]/[module]-ivy-[revision].xml"
 addArtifactPattern "$projectDir/repo/[organisation]/[module]-[revision](-[classifier]).[ext]"
 descriptor = 'optional'
 checkmodified = true
 }
}

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found . With Gradlehere

you just don't configure them via XML but directly via their API.

25.6. Strategies for transitive dependency management
Many projects rely on the . This is not without problems.Maven2 repository

The IBibilio repository can be down or has a very long response time.

The 's of many projects have wrong information (as one example, the pom of pom.xml

 declares JUnit as a runtime dependency).commons-httpclient-3.0

For many projects there is not one right set of dependencies (as more or less imposed by the pom

format).

If your project relies on the IBibilio repository you are likely to need an additional custom repository,

because:

You might need dependencies that are not uploaded to IBibilio yet.

You want to deal properly with wrong metadata in a IBibilio .pom.xml

You don't want to expose people who want to build your project, to the downtimes or sometimes very

long response times of IBibilio.

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://repo1.maven.org/maven2

Page 119 of 168

It is not a big deal to set-up a custom repository. But it can be tedious, to keep it up to date. For a new[]24

version, you have always to create the new XML descriptor and the directories. And your custom repository

is another infrastructure element which might have downtimes and needs to be updated. To enable historical

builds, you need to keep all the past libraries and you need a backup. It is another layer of indirection.

Another source of information you have to lookup. All this is not really a big deal but in its sum it has an

impact. Repository Manager like Artifactory or Nexus make this easier. But for example open source projects

don't usually have a host for those products.

This is a reason why some projects prefer to store their libraries in their version control system. This

approach is fully supported by Gradle. The libraries can be stored in a flat directory without any XML module

descriptor files. Yet Gradle offers complete transitive dependency management. You can use either client

module dependencies to express the dependency relations, or artifact dependencies in case a first level

dependency has no transitive dependencies. People can check out such a project from svn and have

everything necessary to build it.

If you are working with a distributed version control system like Git you probably don't want to use the

version control system to store libraries as people check out the whole history. But even here the flexibility of

Gradle can make your life easier. For example you can use a shared flat directory without XML descriptors

and yet you can have full transitive dependency management as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the andpom.xml

maintaining custom XML descriptors, offer an alternative. But you can of course still useClient Modules

Maven2 repo and your custom repository as a repository for and still enjoy dependencyjars only transitive

management. Or you can only provide client modules for pom's with bad metadata. For the jars and the

correct pom's you still use the remote repository.

25.6.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies XML descriptor files. You can do this withwithout

Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with other

build tools.

The trick is to use only artifact dependencies and group them in lists. That way you have somehow

expressed, what are your first level dependencies and what are transitive dependencies (see Section 25.3.7,

). But the draw-back is, that for the Gradle dependency management all dependencies“Optional attributes”

are considered first level dependencies. The dependency reports don't show your real dependency graph

and the task uses all dependencies, not just the first level dependencies. All in all, your build iscompile

less maintainable and reliable than it could be when using client modules. And you don't gain anything.

[] 20 JSR 294: Improved Modularity Support in the JavaTM Programming Language,

http://jcp.org/en/jsr/detail?id=294

[] 21 Gradle supports partial multiproject builds (see).Chapter 28, Multi-project Builds

[] 2 2

http://www.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships.html

[] 23 At you can learn more about ivy patterns.http://ant.apache.org/ivy/history/latest-milestone/concept.html

[] 24 If you want to shield your project from the downtimes of IBibilio things get more complicated. You

http://jcp.org/en/jsr/detail?id=294
http://www.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

Page 120 of 168

probably want to set-up a repository proxy for this. In an enterprise environment this is rather common. For

an open source project it looks like overkill.

Page 121 of 168

26
Artifact Management

26.1. Introduction
This chapter is about how you declare what are the artifacts of your project and how to work with them (e.g.

upload them). We define the artifacts of the projects as the files the project want to provide to the outside

world. This can be a library or a distribution or any other file. Usually artifacts are archives, but not

necessarily. In the Maven world a project can provide only one artifact. With Gradle a project can provide as

many artifacts as needed.

26.2. Artifacts and configurations
Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both, artifacts

and dependencies, at the same time. To assign an artifact to a configuration, you can write:

Example 26.1. Assignment of an artifact to a configuration

build.gradle

task myJar(type: Jar)

artifacts {
 archives myJar
}

What do you gain by assigning an artifact to a configuration? For each configuration (also for the custom

ones added by you) Gradle provides the tasks and upload[ConfigurationName]

. Executing those tasks will build or upload the artifacts belonging to thebuild[ConfigurationName] []25

respective configuration.

Table shows the configurations added by the JavaTable 16.3, “Java plugin - dependency configurations”

plugin. Two of the configurations are relevant for the usage with artifacts. The configuration is thearchives

standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this

configuration. We will talk more about the configuration in default Section 26.4, “More about project

. As with dependencies, you can declare as many custom configurations as you like and assignlibraries”

artifacts to them.

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

Page 122 of 168

26.3. Uploading artifacts
We have said that there is a specific upload task for each configuration. But before you can do an upload,

you have to configure the upload task and define where to upload. The repositories you have defined as

described in are not automatically used for uploading. In fact some of thoseSection 25.5, “Repositories”

repositories are not even capable of uploading, there are just capable of reading from a repository. Here is

an example how you can configure the upload task of a configuration:

Example 26.2. Configuration of the upload task

build.gradle

repositories {
 flatDir(name: 'fileRepo', dirs: "$projectDir/repo")
}

uploadArchives {
 uploadDescriptor = false
 repositories {
 add project.repositories.fileRepo
 add(new org.apache.ivy.plugins.resolver.SshResolver()) {
 name = 'sshRepo'
 user = 'username'
 userPassword = 'pw'
 host = "http://repo.mycompany.com"
 }
 }
}

As you can see, you can either use a reference to an exisiting repository or create a new repository. As

described in , you can use all the Ivy resolvers suitable for theSection 25.5.6, “More about Ivy resolvers”

purpose of uploading.

26.4. More about project libraries
If your project is supposed to be used as a library, you need to define what are the artifacts of this library and

what are the dependencies of this artifacts. The Java plugin adds a configuration for this purpose.default

This configuration extends both the and the configuration, with the implicit assumptionarchives runtime

that the dependencies are the dependencies of the configuration. Of course this is fullyruntime archives

customizable. You can add your own custom configuration or let the the existing configurations extends from

other configurations. You might have different group of artifacts which have a different set of dependencies.

This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare on which configuration of the

dependency to depend on. A Gradle dependency offers the property to declare this. If thisconfiguration

is not specified, the configuration is used (see).default Section 25.3.8, “Dependency configurations”

Using your project as a library can either happen from within a multi-project build or by retrieving your project

from a repository. In the latter case, an ivy.xml descriptor in the repository is supposed to contain all the

neccesary information. If you work with Maven repositories you don't have the flexibility as described above.

For how to publish to a Maven repository, see the section Section 26.5, “Interacting with Maven repositories”

.

Page 123 of 168

26.5. Interacting with Maven repositories

26.5.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This

includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's deployment

is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a pom. Fortunately Gradle can

generate this pom for you using the dependency information it has.

26.5.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote

Maven repository.

Example 26.3. Upload of file to remote Maven repository

build.gradle

usePlugin 'maven'

uploadArchives {
 repositories.mavenDeployer {
 repository(url: "file://localhost/tmp/myRepo/")
 }
}

That is all. Calling the task will generate the pom and deploys the artifact and the pom touploadArchives

the specified repository.

There is some more work to do if you need support for other protocols than . In this case the nativefile

Maven code we delegate to needs additional libraries. Which libraries depend on the protocol you need. The

available protocols and the corresponding libraries are listed in Table 26.1, “Protocol jars for Maven

 (those libraries have again transitive dependencies which have transitive dependencies). deployment” []26

For example to use the ssh protocol you can do:

Page 124 of 168

Example 26.4. Upload of file via SSH

build.gradle

configurations {
 deployerJars
}

repositories {
 mavenCentral()
}

dependencies {
 deployerJars "org.apache.maven.wagon:wagon-ssh:1.0-beta-2"
}

uploadArchives {
 repositories.mavenDeployer {
 name = 'sshDeployer' // optional
 configuration = configurations.deployerJars
 repository(url: "scp://repos.mycompany.com/releases") {
 authentication(userName: "me", password: "myPassword")
 }
 }
}

There are many configuration options for the Maven deployer. The configuration is done via a Groovy

builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to

the bean elements. To add another bean elements to its parent, you use a closure. In the example above

 and are such bean elements. repository authentication Table 26.2, “Configuration elements of the

 lists the available bean elements and a link to the javadoc of the corresponding class. InMavenDeployer”

the javadoc you can see the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is

defined, releases and snapshots are both deployed to the element. Otherwise snapshots arerepository

deployed to the element.snapshotRepository

Table 26.1. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:1.0-beta-2

ssh org.apache.maven.wagon:wagon-ssh:1.0-beta-2

ssh-external org.apache.maven.wagon:wagon-ssh-external:1.0-beta-2

scp org.apache.maven.wagon:wagon-scp:1.0-beta-2

ftp org.apache.maven.wagon:wagon-ftp:1.0-beta-2

webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2

file -

Page 125 of 168

Table 26.2. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDeployer

repository org.apache.maven.artifact.ant.RemoteRepository

authentication org.apache.maven.artifact.ant.Authentication

releases org.apache.maven.artifact.ant.RepositoryPolicy

snapshots org.apache.maven.artifact.ant.RepositoryPolicy

proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

26.5.3. Installing to the local repository

The Maven plugin add an task to your project. This task depends on all the archives task of the install

 configuration. It installs those archives to your local Maven repository. If the default location forarchives

the local repository is redefined in a Maven , this is considered by this task.settings.xml

26.5.4. Maven Pom generation

The Maven Poms are automatically generated by Gradle. You can find the generated poms in the directory

. In many scenarios it just works and you don't have to do anything. But there are<buildDir>/poms

situations were you want or have to customize the pom generation.

26.5.4.1. Changing non-dependency elements of the pom

You might want the artifact deployed to the maven repository to have a different version or name than the

artifact generated by Gradle. To customize these you can do:

Example 26.5. Customization of pom

build.gradle

uploadArchives {
 repositories.mavenDeployer {
 repository(url: "file://localhost/tmp/myRepo/")
 pom.version = '1.0Maven'
 pom.artifactId = 'myMavenName'
 }
}

To learn about all the customizable attributes of a pom have a look here: . If you have more than MavenPom

one artifact to publish, things work differently. See .Section 26.5.4.2, “Multiple artifacts per project”

To customize the settings for the maven Installer (see), youSection 26.5.3, “Installing to the local repository”

can do:

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Authentication.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Proxy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

Page 126 of 168

Example 26.6. Customization of Maven installer

build.gradle

configure(install.repositories.mavenInstaller) {
 pom.version = '1.0Maven'
 pom.artifactId = 'myName'
}

26.5.4.2. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven pom. We

think there are many situations where it makes sense to have more than one artifact per project. In such a

case you need to generate multiple poms. In such a case you have to explicitly declare each artifact you

want to publish to a Maven repository. The MavenDeployer and the MavenInstaller both provide an API for

this:

Example 26.7. Generation of multiple poms

build.gradle

uploadArchives {
 repositories.mavenDeployer {
 repository(url: "file://localhost/tmp/myRepo/")
 addFilter('api') { artifact, file ->
 artifact.name == 'api'
 }
 addFilter('service') { artifact, file ->
 artifact.name == 'service'
 }
 pom('api').version = 'mySpecialMavenVersion'
 }
}

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for

which Gradle artifact it accepts. Each filter has a pom associated with it which you can configure. To learn

more about this have a look at and its associated classes. GroovyPomFilterContainer

26.5.4.3. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and

War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this

section. The mapping works like the following. You can map a configuration to one and only one scope.

Different configurations can be mapped to one or different scopes. One can assign also a priority to a

particular configuration-to-scope mapping. Have a look at to learn more. Conf2ScopeMappingContainer

To access the mapping configuration you can say:

Example 26.8. Accessing a mapping configuration

build.gradle

task mappings << {
 println conf2ScopeMappings.mappings
}

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/GroovyPomFilterContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Page 127 of 168

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the

Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to

Ivy). Right now excludes-per-configuration are not converted to the Maven Pom.

26.5.4.4. Planned future features

We plan support for excludes-per-configuration. We also plan support for the new Ivy element,override

which corresponds to the element of a Maven pom. Last but not least we want todependencyManagement

make the customization more powerful, by enabling to add custom dependency elements to the pom and

remove/modify auto-generated ones.

[] 25 To be exact, the Base plugin provides those tasks. The BasePlugin is automatically applied, if you use

the Java plugin.

[] 26 It is planned for a future release to provide out-of-the-box support for this

Page 128 of 168

27
The Build Lifecycle

We said earlier, that the core of Gradle is a language for dependency based programming. In Gradle terms

this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks

are executed in the order of their dependencies, and that each task is executed only once. Those tasks form

a . There are build tools that build up such a dependency graph as they execute theirDirected Acyclic Graph

tasks. Gradle builds the complete dependency graph any task is executed. This lies at the heart ofbefore

Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration

.scripts

27.1. Build phases
A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines

which projects are going to take part in the build, and creates a instance for each of these Project

projects.

Configuration
The build scripts of projects which are part of the build are executed. This configures the projectall

objects.

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to

be executed. The subset is determined by the task name arguments passed to the commandgradle

and the current directory. Gradle then executes each of the selected tasks.

27.2. Settings file
Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a

naming convention. The default name for this file is . Later in this chapter we explain,settings.gradle

how Gradle looks for a settings file.

The settings file gets executed during the initialization phase. A multiproject build must have a

 file in the root project of the multiproject hierarchy. It is required because in the settingssettings.gradle

file it is defined, which projects are taking part in the multi-project build (see).Chapter 28, Multi-project Builds

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html

Page 129 of 168

For a single-project build, a settings file is optional. You might need it for example, to add libraries to your

build script classpath (see). Let's first do some introspection with a singleChapter 29, Organizing Build Logic

project build:

Example 27.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

task configured {
 println 'This is also executed during the configuration phase.'
}

task test << {
 println 'This is executed during the execution phase.'
}

Output of gradle test

> gradle test
This is executed during the initialization phase.
This is executed during the configuration phase.
This is also executed during the configuration phase.
:test
This is executed during the execution phase.

BUILD SUCCESSFUL

Total time: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property

access and method calls within the settings file is delegated to a settings object. Have a look at . Settings

27.3. Multi-project builds
A multi-project build is a build where you build more than one project during a single execution of Gradle.

You have to declare the projects taking part in the multiproject build in the settings file. There is much more

to say about multi-project builds in the chapter dedicated to this topic (see).Chapter 28, Multi-project Builds

27.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represent a

project. A project has a virtual and a physical path. The virtual path denotes the position of the project in the

multi-project build tree. The project tree is created in the file. By default it is assumedsettings.gradle

that the location of the settings file is also the location of the root project. But you can redefine the location of

the root project in the settings file.

27.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical

layouts get special support.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/initialization/Settings.html

Page 130 of 168

27.3.2.1. Hierarchical layouts

Example 27.2. Hierarchical layout

settings.gradle

include 'project1', 'project2', 'project2:child1'

The method takes as an argument a relative virtual path to the root project. This relative virtualinclude

path is assumed to be equals to the relative physical path of the subproject to the root project. You only need

to specify the leafs of the tree. Each parent path of the leaf project is assumed to be another subproject

which obeys to the physical path assumption described above.

27.3.2.2. Flat layouts

Example 27.3. Flat layout

settings.gradle

includeFlat 'project3', 'project4'

The method takes directory names as an argument. Those directories need to exist at theincludeFlat

same level as the root project directory. The location of those directories are considered as child projects of

the root project in the virtual multi-project tree.

27.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called . You can modifyproject descriptors

these descriptors in the settings file at any time. To access a descriptor you can do:

Example 27.4. Modification of elements of the project tree

settings.gradle

println rootProject.name
println project(':projectA').name

Using this descriptor you can change the name, project directory and build file of a project.

Example 27.5. Modification of elements of the project tree

settings.gradle

rootProject.name = 'main'
project(':projectA').projectDir = new File(settingsDir, '../my-project-a')
project(':projectA').buildFileName = 'projectA.gradle'

Have a look at for more details. ProjectDescriptor

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

Page 131 of 168

27.4. Initialization
How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from

the directory where the settings file is, things are easy. But Gradle also allows you to execute the build from

within any subproject taking part in the build. If you execute Gradle from within a project that has no []27

 file, Gradle does the following:settings.gradle

It searches for a in a directory called which has the same nesting levelsettings.gradle master

as the current dir.

If no is found, it searches the parent directories for the existence of a settings.gradle

 file.settings.gradle

If no file is found, the build is executed as a single project build.settings.gradle

If a file is found, Gradle checks if the current project is part of the multiprojectsettings.gradle

hierarchy defined in the found file. If not, the build is executed as a single projectsettings.gradle

build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Somehow Gradle has to find out, whether the project you are into, is a

subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent

projects are build. But Gradle needs to create the build configuration for the whole multiproject build (see

). Via the command line option, you can tell Gradle not to look in theChapter 28, Multi-project Builds -u

parent hierarchy for a file. The current project is then always build as a single projectsettings.gradle

build. If the current project contains a file, the option has no meaning. Such a buildsettings.gradle -u

is always executed as:

a single project build, if the file does not define a multiproject hierarchysettings.gradle

a multiproject build, if the file does define a multiproject hierarchy.settings.gradle

The auto search for a settings file does only work for multi-project builds with a physical hierarchical or flat

layout. For a flat layout you must additionally obey to the naming convention described above. Gradle

supports arbitrary physical layouts for a multiproject build. But for such arbitrary layouts you need to execute

the build from the directory where the settings file is located. For how to run partial builds from the root see

. In our next release we want to enable partial buildsSection 28.4, “Running tasks by their absolute path”

from subprojects by specifying the location of the settings file as a command line parameter. Gradle creates

Project objects for every project taking part in the build. For a single project build this is only one project. For

a multi-project build these are the projects specified in Settings object (plus the root project). Each project

object has by default a name equals to the name of its top level folder. Every project except the root project

has a parent project and might have child projects.

27.5. Configuration and execution of a single project build
For a single project build, the workflow of the phases are pretty simple. The build script isafter initialization

executed against the project object that was created during the initialization phase. Then Gradle looks for

tasks with names equal to those passed as command line arguments. If these task names exist, they are

executed as a separate build in the order you have passed them. The configuration and execution for

multi-project builds is discussed in .Chapter 28, Multi-project Builds

Page 132 of 168

27.6. Responding to the lifecycle in the build script
Your build script can receive notifications as the build progresses through its lifecyle. These notifications

generally take 2 forms: You can either implement a particular listener interface, or you can provide a closure

to execute when the notification is fired. The examples below use closures. For details on how to use the

listener interfaces, refer to the API documentation.

27.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do

things like performing additional configuration once all the definitions in a build script have been applied, or

for some custom logging or profiling.

Below is an example which adds a task to each project with the property set to true.test hasTests

Example 27.6. Adding of test task to each project which has certain property set

build.gradle

allprojects {
 afterEvaluate { project ->
 if (project.hasTests) {
 println "Adding test task to $project"
 project.task('test') << {
 println "Running tests for $project"
 }
 }
 }
}

projectA.gradle

hasTests = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':projectA'
Running tests for project ':projectA'

This example uses method to add a closure which is executed after theProject.afterEvaluate()

project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some

custom logging of project evaluation. Notice that the notification is received regardless ofafterProject

whether the project evaluates successfully or fails with an exception.

Page 133 of 168

Example 27.7. Notifications

build.gradle

build.afterProject {project, exception ->
 if (exception) {
 println "Evaluation of $project FAILED"
 } else {
 println "Evaluation of $project succeeded"
 }
}

Output of gradle -q test

> gradle -q test
Evaluation of root project 'buildProjectEvaluateEvents' succeeded
Evaluation of project ':projectA' succeeded
Evaluation of project ':projectB' FAILED

You can also add a to the to receive these events. ProjectEvaluationListener Build

27.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some

default values or add behaviour before the task is made available in the build file.

The following example sets the property of each task as it is created.srcDir

Example 27.8. Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->
 task.srcDir = 'src/main/java'
}

task a

println "source dir is $a.srcDir"

Output of gradle -q a

> gradle -q a
source dir is src/main/java

You can also add a to a to receive these events. TaskAction TaskContainer

27.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have

seen this already in .Section 4.11, “Configure by DAG”

You can also add a to the to receive these TaskExecutionGraphListener TaskExecutionGraph

events.

27.6.4. Task execution

You can receive a notification immediately before and after any task is executed.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/invocation/Build.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/TaskAction.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 134 of 168

The following example logs the start and end of each task execution. Notice that the notificationafterTask

is received regardless of whether the task completes successfully or fails with an exception.

Example 27.9. Logging of start and end of each task execution

build.gradle

task ok

task broken(dependsOn: ok) << {
 throw new RuntimeException('broken')
}

build.taskGraph.beforeTask { task ->
 println "executing $task ..."
}

build.taskGraph.afterTask { task, exception ->
 if (exception) {
 println "FAILED"
 }
 else {
 println "done"
 }
}

Output of gradle -q broken

> gradle -q broken
executing task ':ok' ...
done
executing task ':broken' ...
FAILED

You can also use a to the to receive these events. TaskExecutionListener TaskExecutionGraph

[] 27 Gradle supports partial multiproject builds (see).Chapter 28, Multi-project Builds

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Page 135 of 168

28
Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the

most intellectually challenging.

28.1. Cross project configuration
Let's start with a very simple multi-project build. After all Gradle is a general purpose build tool at its core, so

the projects don't have to be java projects. Our first examples are about marine life.

28.1.1. Defining common behavior

We have the following project tree. This is a multi-project build with a root project and a subproject water

.bluewhale

Example 28.1. Multi-project tree - water & bluewhale projects

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/firstExample/water

settings.gradle

include 'bluewhale'

And where is the build script for the project? In Gradle build scripts are optional. Obviously for abluewhale

single project build, a project without a build script doesn't make much sense. For multiproject builds the

situation is different. Let's look at the build script for the project and execute it:water

Page 136 of 168

Example 28.2. Build script of water (parent) project

build.gradle

Closure cl = { task -> println "I'm $task.project.name" }
task hello << cl
project(':bluewhale') {
 task hello << cl
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale

Gradle allows you to access any project of the multi-project build from any build script. The Project API

provides a method called , which takes a path as an argument and returns the Project object forproject()

this path. The capability to configure a project build from any build script we call .cross project configuration

Gradle implements this via .configuration injection

We are not that happy with the build script of the project. It is inconvenient to add the task explicitlywater

for every project. We can do better. Let's first add another project called to our multi-project build.krill

Example 28.3. Multi-project tree - water, bluewhale & krill projects

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 krill/

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/addKrill/water

settings.gradle

include 'bluewhale', 'krill'

Now we rewrite the build script and boil it down to a single line.water

Page 137 of 168

Example 28.4. Water project build script

build.gradle

allprojects {
 task hello << { task -> println "I'm $task.project.name" }
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
I'm krill

Is this cool or is this cool? And how does this work? The Project API provides a property allprojects

which returns a list with the current project and all its subprojects underneath it. If you call allprojects

with a closure, the statements of the closure are delegated to the projects associated with .allprojects

You could also do an iteration via , but that would be more verbose.allprojects.each

Other build systems use inheritance as the primary means for defining common behavior. We also offer

inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of

defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject

builds.

28.2. Subproject configuration
The Project API also provides a property for accessing the subprojects only.

28.2.1. Defining common behavior

Example 28.5. Defining common behaviour of all projects and subprojects

build.gradle

allprojects {
 task hello << {task -> println "I'm $task.project.name" }
}
subprojects {
 hello << {println "- I depend on water"}
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
I'm krill
- I depend on water

28.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior

in the build script of the project where we want to apply this specific behavior. But as we have already seen,

we don't have to do it this way. We could add project specific behavior for the project like this:bluewhale

Page 138 of 168

Example 28.6. Defining specific behaviour for particular project

build.gradle

allprojects {
 task hello << {task -> println "I'm $task.project.name" }
}
subprojects {
 hello << {println "- I depend on water"}
}
project(':bluewhale').hello << {
 println "I'm the largest animal that has ever lived on this planet."
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's

refactor and also add some project specific behavior to the project.krill

Page 139 of 168

Example 28.7. Defining specific behaviour for project krill

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/spreadSpecifics/water

settings.gradle

include 'bluewhale', 'krill'

bluewhale/build.gradle

hello.doLast { println "- I'm the largest animal that has ever lived on this planet." }

krill/build.gradle

hello.doLast {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

build.gradle

allprojects {
 task hello << {task -> println "I'm $task.project.name" }
}
subprojects {
 hello << {println "- I depend on water"}
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.

28.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called andtropicalFish

add more behavior to the build via the build script of the project.water

Page 140 of 168

28.2.3.1. Filtering by name

Example 28.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle
 tropicalFish/

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/addTropical/water

settings.gradle

include 'bluewhale', 'krill', 'tropicalFish'

build.gradle

allprojects {
 task hello << {task -> println "I'm $task.project.name" }
}
subprojects {
 hello << {println "- I depend on water"}
}
configure(subprojects.findAll {it.name != 'tropicalFish'}) {
 hello << {println '- I love to spend time in the arctic waters.'}
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I love to spend time in the arctic waters.
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- I love to spend time in the arctic waters.
- The weight of my species in summer is twice as heavy as all human beings.
I'm tropicalFish
- I depend on water

The method takes a list as an argument and applies the configuration to the projects in thisconfigure()

list.

28.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using dynamic project properties is another.

Example 28.9. Adding custom behaviour to some projects (filtered by project properties)

Page 141 of 168

Build layout

water/
 build.gradle
 settings.gradle
 bluewhale/
 build.gradle
 krill/
 build.gradle
 tropicalFish/
 build.gradle

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/tropicalWithProperties/water

settings.gradle

include 'bluewhale', 'krill', 'tropicalFish'

bluewhale/build.gradle

arctic = true
hello.doLast { println "- I'm the largest animal that has ever lived on this planet." }

krill/build.gradle

arctic = true
hello.doLast {
 println "- The weight of my species in summer is twice as heavy as all human beings."
}

tropicalFish/build.gradle

arctic = false

build.gradle

allprojects {
 task hello << {task -> println "I'm $task.project.name" }
}
subprojects {
 hello {
 doLast {println "- I depend on water"}
 afterEvaluate { Project project ->
 if (project.arctic) { doLast {
 println '- I love to spend time in the arctic waters.' }
 }
 }
 }
}

Output of gradle -q hello

Page 142 of 168

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

In the build file of the project we use an notification. This means that the closurewater afterEvaluate

we are passing gets evaluated the build scripts of the subproject are evaluated. As the property after

 is set in those build scripts, we have to do it this way. You will find more on this topic in arctic

Section 28.6, “Dependencies - Which dependencies?”

28.3. Execution rules for multi-project builds
When we have executed the task from the root project dir things behaved in an intuitive way. All the hello

 tasks of the different projects were executed. Let's switch to the dir and see whathello bluewhale

happens if we execute Gradle from there.

Example 28.10. Running build from subproject

Output of gradle -q hello

> gradle -q hello
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.

The basic rule behind Gradle's behavior is simple. Gradle looks down the hierarchy, starting with the current

, for tasks with the name an executes them. One thing is very important to note. Gradle dir hello always

evaluates project of the multi-project build and creates all existing task objects. Then, according to theevery

task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of

Gradle's cross project configuration project has to be evaluated before task gets executed. We willevery any

have a closer look at this in the next section. Let's now have our last marine example. Let's add a task to

 and .bluewhale krill

Page 143 of 168

Example 28.11. Evaluation and execution of projects

bluewhale/build.gradle

arctic = true
hello << { println "- I'm the largest animal that has ever lived on this planet." }

task distanceToIceberg << {
 println '20 nautical miles'
}

krill/build.gradle

arctic = true
hello << { println "- The weight of my species in summer is twice as heavy as all human beings." }

task distanceToIceberg << {
 println '5 nautical miles'
}

Output of gradle -q distanceToIceberg

> gradle -q distanceToIceberg
20 nautical miles
5 nautical miles

Here the output without the option:-q

Example 28.12. Evaluation and execution of projects

Output of gradle distanceToIceberg

> gradle distanceToIceberg
:bluewhale:distanceToIceberg
20 nautical miles
:krill:distanceToIceberg
5 nautical miles

BUILD SUCCESSFUL

Total time: 1 secs

The build is executed from the project. Neither nor have a task with thewater water tropicalFish

name . Gradle does not care. The simple rule mentioned already above is: ExecutedistanceToIceberg

all tasks down the hierarchy which have this name. Only complain if there is such task!no

28.4. Running tasks by their absolute path
As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from

there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle

also offers to execute tasks by their absolute path (see also):Section 28.5, “Project and task paths”

Page 144 of 168

Example 28.13. Running tasks by their absolute path

Output of gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello
I'm water
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

The build is executed from the project. We execute the tasks of the , the tropicalFish hello water

 and the project. The first two tasks are specified by there absolute path, the last taskkrill tropicalFish

is executed on the name matching mechanism described above.

28.5. Project and task paths
A project path has the following pattern: It starts always with a colon, which denotes the root project. The

root project is the only project in a path that is not specified by its name. The path corresponds:bluewhale

to the file system path in the case of the example above.water/project

The path of a task is simply its project path plus the task name. For example . Within a:bluewhale:hello

project you can address a task of the same project just by its name. This is interpreted as a relative path.

Originally Gradle has used the character as a natural path separator. With the introduction of directory'/'

tasks (see) this was no longer possible, as the name of the directory taskSection 10.2, “Directory creation”

contains the character.'/'

28.6. Dependencies - Which dependencies?
The examples from the last section were special, as the projects had no . They hadExecution Dependencies

only . Here is an example where this is different:Configuration Dependencies

Page 145 of 168

28.6.1. Execution dependencies

28.6.1.1. Dependencies and execution order

Example 28.14. Dependencies and execution order

Build layout

messages/
 settings.gradle
 consumer/
 build.gradle
 producer/
 build.gradle

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/dependencies/firstMessages/messages

settings.gradle

include 'consumer', 'producer'

consumer/build.gradle

task action << {
 println "Consuming message: " + System.getProperty('org.gradle.message')
}

producer/build.gradle

task action << {
 println "Producing message:"
 System.setProperty('org.gradle.message', 'Watch the order of execution.')
}

Output of gradle -q action

> gradle -q action
Consuming message: null
Producing message:

This did not work out. If nothing else is defined, Gradle executes the task in alphanumeric order. Therefore

 is executed before . Let's try to solve this with a hack and:consumer:action :producer:action

rename the producer project to .aProducer

Page 146 of 168

Example 28.15. Dependencies and execution order

Build layout

messages/
 settings.gradle
 aProducer/
 build.gradle
 consumer/
 build.gradle

settings.gradle

include 'consumer', 'aProducer'

aProducer/build.gradle

task action << {
 println "Producing message:"
 System.setProperty('org.gradle.message', 'Watch the order of execution.')
}

consumer/build.gradle

task action << {
 println "Consuming message: " + System.getProperty('org.gradle.message')
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

Now we take the air out of this hack. We simply switch to the dir and execute the build.consumer

Example 28.16. Dependencies and execution order

Output of gradle -q action

> gradle -q action
Consuming message: null

For Gradle the two tasks are just not related. If you execute the build from the projectaction messages

Gradle executes them both because they have the same name and they are down the hierarchy. In the last

example only one was down the hierarchy and therefore it was the only task that got executed. Weaction

need something better than this hack.

Page 147 of 168

28.6.1.2. Declaring dependencies

Example 28.17. Declaring dependencies

Build layout

messages/
 settings.gradle
 consumer/
 build.gradle
 producer/
 build.gradle

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/dependencies/messagesWithDependencies/messages

settings.gradle

include 'consumer', 'producer'

consumer/build.gradle

dependsOn(':producer')

task action << {
 println "Consuming message: " + System.getProperty('org.gradle.message')
}

producer/build.gradle

task action << {
 println "Producing message:"
 System.setProperty('org.gradle.message', 'Watch the order of execution.')
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

Running this from the directory gives:consumer

Example 28.18. Declaring dependencies

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

We have now declared that the project has an on the project.consumer execution dependency producer

For Gradle declaring between is syntactic sugar. Under the hood Gradleexecution dependencies projects

creates task dependencies out of them. You can also create cross project tasks dependencies manually by

using the absolute path of the tasks.

Page 148 of 168

28.6.1.3. The nature of project dependencies

Let's change the naming of our tasks and execute the build.

Example 28.19. Project dependencies

consumer/build.gradle

dependsOn(':producer')

task consume << {
 println "Consuming message: " + System.getProperty('org.gradle.message')
}

producer/build.gradle

task produce << {
 println "Producing message:"
 System.setProperty('org.gradle.message', 'Watch the order of execution.')
}

Output of gradle -q consume

> gradle -q consume
Consuming message: null

Oops. Why does this not work? The command is created for projects with a common lifecycle.dependsOn

Provided you have two Java projects were one depends on the other. If you trigger a compile for the

dependent project you don't want that tasks of the other project get executed. Therefore a all dependsOn

creates dependencies between tasks with equal names. To deal with the scenario above you would do the

following:

Example 28.20. Project dependencies

consumer/build.gradle

task consume(dependsOn: ':producer:produce') << {
 println "Consuming message: " + System.getProperty('org.gradle.message')
}

producer/build.gradle

task produce << {
 println "Producing message:"
 System.setProperty('org.gradle.message', 'Watch the order of execution.')
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message: Watch the order of execution.

Page 149 of 168

28.6.2. Configuration time dependencies

Let's have one more example with our producer-consumer build before we enter land. We add aJava

property to the producer project and create now a configuration time dependency from consumer on

producer.

Example 28.21. Configuration time dependencies

consumer/build.gradle

key = 'unknown'
if (project(':producer').hasProperty('key')) {
 key = project(':producer').key
}
task consume(dependsOn: ':producer:produce') << {
 println "Consuming message from key '$key': " + System.getProperty(key)
}

producer/build.gradle

key = 'org.gradle.message'

task produce << {
 println "Producing message:"
 System.setProperty(key, 'Watch the order of execution.')
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message from key 'unknown': null

The default order of the projects is alphanumeric (for the same nesting level). Therefore the evaluation

 project is evaluated before the project and the value of the is set consumer producer key producer after

it is read by the project. Gradle offers a solution for this.consumer

Example 28.22. Configuration time dependencies - evaluationDependsOn

consumer/build.gradle

evaluationDependsOn(':producer')

key = 'unknown'
if (project(':producer').hasProperty('key')) {
 key = project(':producer').key
}
task consume(dependsOn: ':producer:produce') << {
 println "Consuming message from key '$key': " + System.getProperty(key)
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message from key 'org.gradle.message': Watch the order of execution.

Page 150 of 168

The command triggers the evaluation of isevaluationDependsOn producer before consumer

evaluated. The example is a bit contrived for the sake of showing the mechanism. In case there wouldthis

be an easier solution by reading the key property at execution time.

Example 28.23. Configuration time dependencies

consumer/build.gradle

task consume(dependsOn: ':producer:produce') << {
 String key = project(':producer').key
 println "Consuming message from key '$key': " + System.getProperty(key)
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message from key 'org.gradle.message': Watch the order of execution.

Configuration dependencies are very different to execution dependencies. Configuration dependencies are

between projects whereas execution dependencies are always resolved to task dependencies. Another

difference is that always all projects are configured, even when you start the build from a subproject. The

default configuration order is top down, which is usually what is needed.

On the same nesting level the configuration order depends on the alphanumeric position. The most common

use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).

If you declare with a between different projects, the default behavior ofdependsOn execution dependency

this method is to create also a dependency between the two projects. Therefore it is likely thatconfiguration

you don't have to define configuration dependencies explicitly.

28.6.3. Real life examples

Gradle's multi-project features are driven by real life use cases. The first example for describing such a use

case, consists of two webapplication projects and a parent project that creates a distribution out of them. []28

For the example we use only one build script and do .cross project configuration

Page 151 of 168

Example 28.24. Dependencies - real life example - crossproject configuration

Build layout

webDist/
 settings.gradle
 build.gradle
 date/
 src/main/java/org/gradle/sample/DateServlet.java
 hello/
 src/main/java/org/gradle/sample/HelloServlet.java

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/dependencies/webDist

settings.gradle

include 'date', 'hello'

build.gradle

dependsOnChildren()

allprojects {
 usePlugin('java')
 group = 'org.gradle.sample'
 version = '1.0'
}

subprojects {
 usePlugin('war')
 repositories {
 mavenCentral()
 }
 dependencies {
 compile "javax.servlet:servlet-api:2.5"
 }
}

task explodedDist(dependsOn: libs) << {
 File explodedDist = mkdir(buildDir, 'explodedDist')
 subprojects.each {project ->
 project.tasks.withType(Jar).each {archiveTask ->
 ant.copy(file: archiveTask.archivePath, todir: explodedDist)
 }
 }
}

We have an interesting set of dependencies. Obviously the and task have a date hello configuration

dependency on , as all the build logic for the webapp projects is injected by . The webDist webDist

 dependency is in the other direction, as depends on the build artifacts of and execution webDist date

. There is even a third dependency. has a dependency on and hello webDist configuration date hello

because it needs to know the . But it asks for this information at . Therefore wearchivePath execution time

have no circular dependency.

Such and other dependency patterns are daily bread in the problem space of multi-project builds. If a build

system does not support such patterns, you either can't solve your problem or you need to do ugly hacks

which are hard to maintain and massively afflict your productivity as a build master.

Page 152 of 168

There is one more thing to note from the current example. We have used the command

. It is a convenience method and calls the method of the parent projectdependOnChildren() dependsOn

for every child project (not every sub project). It declares a dependency of on execution webDist date

and .hello

Another use case would be a situation where the subprojects have a configuration executionand

dependency on the parent project. This is the case when the parent project does configuration injection into

its subprojects, and additionally produces something at execution time that is needed by its child projects

(e.g. code generation). In this case the parent project would call the method tochildrenDependOnMe

create an execution dependency for the child projects. We might add an example for this in a future version

of the user guide.

28.7. Project lib dependencies
What if one projects needs the jar produced by another project in its compile path. And not just the jar but

also the transitive dependencies of this jar. Obviously this is a very common use case for Java multi-project

builds. As already mentioned in , Gradle offers project dependenciesSection 25.3.4, “Project dependencies”

for this.

Example 28.25. Project dependencies

Build layout

java/
 settings.gradle
 build.gradle
 api/
 src/main/java/org/gradle/sample/api/Person.java
 src/main/java/org/gradle/sample/apiImpl/PersonImpl.java
 services/
 personService/
 src/main/java/org/gradle/sample/services/PersonService.java
 src/test/java/org/gradle/sample/services/PersonServiceTest.java
 shared/
 src/main/java/org/gradle/sample/shared/Helper.java

 The code fo r t h i s examp le can be found a t Note :

samples/userguide/multiproject/dependencies/java

We have the projects , and . has a lib dependency on theshared api personService personService

other two projects. has a lib dependency on . api shared []29

Page 153 of 168

Example 28.26. Project dependencies

settings.gradle

include 'api', 'shared', 'services:personService'

build.gradle

subprojects {
 usePlugin('java')
 group = 'org.gradle.sample'
 version = '1.0'
}

project(':api') {
 dependencies {
 compile project(':shared')
 }
}

project(':services:personService') {
 dependencies {
 compile project(':shared'), project(':api')
 testCompile "junit:junit:3.8.2"
 }
}

All the build logic is in the of the root project. A dependency is a special form of anbuild.gradle []30 lib

execution dependency. It causes the other project to be build first and adds the jar with the classes of the

other project to the classpath. It also add the dependencies of the other project to the classpath. So you can

enter the folder and trigger a . First is build and then is build. Projectapi gradle compile shared api

dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers this to you:

Page 154 of 168

Example 28.27. Fine grained control over dependencies

build.gradle

subprojects {
 usePlugin('java')
 group = 'org.gradle.sample'
 version = '1.0'
}

project(':api') {
 configurations {
 spi
 }
 dependencies {
 compile project(':shared')
 }
 task spiJar(type: Jar) {
 baseName = 'api-spi'
 confs = ['spi']
 fileSet() {
 include('org/gradle/sample/api/**')
 }
 }
}

project(':services:personService') {
 dependencies {
 compile project(':shared')
 compile project(path: ':api', configuration: 'spi')
 testCompile "junit:junit:3.8.2", project(':api')
 }
}

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example

we create an library containing only the interfaces of the project. We assign this library to aadditional api

new . For the person service we declare that the project should be compiled onlydependency configuration

against the interfaces but tested with all classes from .api api

28.7.1. Disable the build of dependency projects.

Sometimes you don't want that dependeny projects get rebuild when doing a partial build. To disable the

build of the dependency projects you can start gradle with the option.-a

28.8. Property and method inheritance
Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to

configuration injection. But we think that the model of inheritance does not reflect the problem space of

multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle's does not support methodsConfiguration Injection

yet (but will in a future release.).

You might be wondering why we have implemented a feature we obviously don't like that much. One reason

is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like

to offer our users a choice.

Page 155 of 168

28.9. Summary
Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for

this chapter is that multi-project builds with Gradle are usually difficult. There are six elements you neednot

to remember: , , , , allproject subprojects dependsOn childrenDependOnMe dependOnChildren

and project lib dependencies. With those elements, and keeping in mind that Gradle has a distinct[]31

configuration and execution phase, you have already a lot of flexibility. But when you enter steep territory

Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[] 28 The real use case we had, was using , where you need a separate war forhttp://lucene.apache.org/solr

each index your are accessing. That was one reason why we have created a distribution of webapps. The

Resin servlet container allows us, to let such a distribution point to a base installation of the servlet

container.

[] 29 is also a project, but we use it just as a container. It has no build script and gets nothingservices

injected by another build script.

[] 30 We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the

buildscript of the respective projects.

[] 31 So we are well in the range of the :)7 plus 2 Rule

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Page 156 of 168

29
Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in

the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a

method. If multiple projects of a multi-project build share some logic you can define this method in the parent

project. If the build logic gets too complex for being properly modeled by methods you want have an OO

Model. Gradle makes this very easy. Just drop your classes in a certain folder and Gradle automatically[]32

compiles them and puts them in the classpath of your build script.

29.1. Build sources
If you run Gradle, it checks for the existence of a folder called . Just put your build source code inbuildSrc

this folder and stick to the layout convention for a Java/Groovy project (see Table 16.2, “Java plugin - default

). Gradle then automatically compiles and tests this code and puts it in the classpath of yourproject layout”

build script. You don't need to provide any further instruction. For multi-project builds there can be only one

 directory which has to be in the root project.buildSrc

This is probably good enough for most of the cases. If you need more flexibility, you can provide a

 and a file in the folder. If you like, you can even have abuild.gradle settings.gradle buildSrc

multi-project build in there.

29.2. External dependencies for the build script
If your build script needs to use external libraries, you can add them to the script's classpath in the build

script itself. You do this using the method, passing in a closure which declares the buildbuildscript()

script classpath.

Example 29.1. Declaring external dependencies for the build script

build.gradle

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: 'commons-codec', name: 'commons-codec', version: '1.2'
 }
}

Page 157 of 168

The closure passed to the method configures a instance. You declarebuildscript() ScriptHandler

the build script classpath by adding dependencies to the configuration. This is the same wayclasspath

you declare, for example, the Java compilation classpath. You can use any of the dependency types

described in , except project dependencies.Section 25.3, “How to declare your dependencies”

Having declared the build script classpath, you can use the classes in your build script as you would any

other classes on the classpath. The following example adds to the previous example, and uses classes from

the build script classpath.

Example 29.2. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath group: 'commons-codec', name: 'commons-codec', version: '1.2'
 }
}

task encode << {
 def byte[] encodedString = new Base64().encode('hello world\n' as byte[])
 println new String(encodedString)
}

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared in the a project's build script, are available to the build

scripts of all sub-projects.

29.3. Ant optional dependencies
For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks.

But you can easily do it in another way. []33

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Page 158 of 168

Example 29.3. Ant optional dependencies

build.gradle

configurations {
 ftpAntTask
}

dependencies {
 ftpAntTask("org.apache.ant:ant-commons-net:1.7.0") {
 module("commons-net:commons-net:1.4.1") {
 dependencies "oro:oro:2.0.8:jar"
 }
 }
}

task ftp << {
 ant {
 taskdef(name: 'ftp',
 classname: 'org.apache.tools.ant.taskdefs.optional.net.FTP',
 classpath: configurations.ftpAntTask.asPath)
 ftp(server: "ftp.apache.org", userid: "anonymous", password: "me@myorg.com") {
 fileset(dir: "htdocs/manual")
 }
 }
}

This is also nice example for the usage of client modules. The pom.xml in maven central for the

ant-commons-net task does not provide the right information for this use case.

29.4. Summary
Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your

domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to

maintain code base. It is our experience that even very complex custom build logic is rarely shared between

different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle

spares you this unnecessary overhead and indirection.

[] 32 Which might range from a single class to something very complex.

[] 33 In fact, we think this is anyway the nicer solution. Only if your buildscript and Ant's optional task need

the library you would have to define it two times. In such a case it would be nice, if Ant's optional tasksame

would automatically pickup the classpath defined in the .gradesettings

Page 159 of 168

30
The Gradle Wrapper

Gradle is a new tool. You can't expect it to be installed on machines beyond your sphere of influence. An

example are continuous integration server where Gradle is not installed and where you have no admin rights

for the machine. Or what if you provide an open source project and you want to make it as easy as possible

for your users to build it?

There is a simple and good news. Gradle provides a solution for this. It ships with a task. Wrapper []34 []35

You can create such a task in your build script.

Example 30.1. Wrapper task

build.gradle

task wrapper(type: Wrapper) {
 gradleVersion = '0.6'
}

The build master usually explicitly executes this task. After such an execution you find the following new or

updated files in your project folder (in case the default configuration of the wrapper task is used).

project-root/
 gradlew
 gradlew.bat
 gradle-wrapper.jar
 gradle-wrapper.properties

All these files must be submitted to your version control system. The command can be used gradlew exactly

the same way as the command.gradle

If you want to switch to a new version of Gradle you don't need to rerun the wrapper task. It is good enough

to change the respective entry in the file. But if there is for example angradle-wrapper.properties

improvement in the gradle-wrapper functionality you need to regenerate the wrapper files.

30.1. Configuration
If you run Gradle with , Gradle checks if a Gradle distribution for the wrapper is available. If not itgradlew

tries to download it, otherwise it delegates to the command of this distribution with all the argumentsgradle

passed originally to the command.gradlew

Page 160 of 168

You can specify where the wrapper files should be stored (within your project directory):

Example 30.2. Configuration of wrapper task

build.gradle

task wrapper(type: Wrapper) {
 gradleVersion = '0.6'
 jarPath = 'wrapper'
}

project-root/
 gradlew
 gradlew.bat
 wrapper/
 gradle-wrapper.jar
 gradle-wrapper.properties

You can specify the download URL of the wrapper distribution. You can also specify where the wrapper

distribution should be stored and unpacked (either within the project or within the gradle user home dir). If

the wrapper is run and there is local archive of the wrapper distribution Gradle tries to download it and stores

it at the specified place. If there is no unpacked wrapper distribution Gradle unpacks the local archive of the

wrapper distribution at the specified place. All the configuration options have defaults except the version of

the wrapper distribution.

For the details on how to configure the wrapper, see Wrapper

If you don't want any download to happen when your project is build via , simply add the Gradlegradlew

distribution zip to your version control at the location specified by your wrapper configuration.

If you build via the wrapper, any existing Gradle distribution installed on the machine is ignored.

30.2. Unix file permissions
The Wrapper task adds appropriate file permissions to allow the execution for the gradlew *NIX command.

Subversion preserves this file permission. We are not sure how other version control systems deal with this.

What should always work is to execute .sh gradlew

30.3. Environment variable
Some rather exotic use cases might occur when working with the Gradle Wrapper. For example the

continuos integration server goes down during unzipping the Gradle distribution. As the distribution directory

exists delegates to it but the distribution is corrupt. Or the zip-distribution was not properlygradlew

downloaded. When you have no admin right on the continuous integration server to remove the corrupt files,

Gradle offers a solution via environment variables.

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/wrapper/Wrapper.html

Page 161 of 168

Table 30.1. Gradle wrapper environment variables

Variable Name Meaning

GRADLE_WRAPPER_ALWAYS_UNPACK

If set to , the distribution directory gets alwaystrue

deleted when is run and the distribution zipgradlew

is freshly unpacked. If the zip is not there, Gradle tries

to download it.

GRADLE_WRAPPER_ALWAYS_DOWNLOAD

If set to , the distribution directory and thetrue

distribution zip gets always deleted when isgradlew

run and the distribution zip is freshly downloaded.

[] 34 If you download the Gradle source distribution or check out Gradle from SVN, you can build Gradle via

the Gradle wrapper.

[] 35 Gradle itself is continuously built by Bamboo and Teamcity via this wrapper. See

http://gradle.org/ci-server.html

http://gradle.org/ci-server.html

Page 162 of 168

31
Embedding Gradle

t.b.d.

Page 163 of 168

A
Potential Traps

A.1. Groovy script variables
For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types

of script variables. One with a local scope and one with a script wide scope.

Example A.1. Variables scope: local and script wide

scope.groovy

String localScope1 = 'localScope1'
def localScope2 = 'localScope2'
scriptScope = 'scriptScope'

println localScope1
println localScope2
println scriptScope

closure = {
 println localScope1
 println localScope2
 println scriptScope
}

def method() {
 try {localScope1} catch(MissingPropertyException e) {println 'localScope1NotAvailable' }
 try {localScope2} catch(MissingPropertyException e) {println 'localScope2NotAvailable' }
 println scriptScope
}

closure.call()
method()

Output of gradle

> gradle
localScope1
localScope2
scriptScope
localScope1
localScope2
scriptScope
localScope1NotAvailable
localScope2NotAvailable
scriptScope

Variables which are declared with a type modifier are visible within closures but not visible within methods.

Page 164 of 168

This is a heavily discussed behavior in the Groovy community. []36

A.2. Configuration and execution phase
It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 27,

).The Build Lifecycle

Example A.2. Distinct configuration and execution phase

build.gradle

classesDir = new File('build/classes')
classesDir.mkdirs()
task clean << {
 ant.delete(dir: 'build')
}
task compile(dependsOn: 'clean') << {
 if (!classesDir.isDirectory()) {
 println 'The class directory does not exist. I can not operate'
 // do something
 }
 // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory does not exist. I can not operate

As the creation of the directory happens during the configuration phase, the task removes theclean

directory during the execution phase.

[] 36 One o f t hose d i scuss ions can be found he re :

http://www.nabble.com/script-scoping-question-td16034724.html

http://www.nabble.com/script-scoping-question-td16034724.html

Page 165 of 168

B
Gradle Command Line

The command has the following usage:gradle
gradle [option...] [task-name...]

The command-line options available for the command are listed below:gradle

, , -? -h --help

Shows a help message.

, -C --cache

Specifies how compiled build scripts should be cached. Possible values are: , , .rebuild off on

Default value is . See for more details.on Section 10.5, “Caching”

, -D --system-prop

Sets a system property of the JVM, for example .-Dmyprop=myvalue

, -I --no-imports

Disable usage of default imports for build script files. See Section C.3, “Using Gradle without IDE

 for details.support”

, -K --default-import-file

Specifies the default import file.

, -P --project-prop

Sets a project property of the root project, for example .-Pmyprop=myvalue

, -a --no-rebuild

Do not rebuild project dependencies.

, -b --build-file

Specifies the build file.

, -c --settings-file

Specifies the settings file.

, -d --debug

Log in debug mode (includes normal stacktrace). See .Chapter 13, Logging

, -e --embedded

Page 166 of 168

Specify an embedded build script.

, -f --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See .Chapter 13, Logging

, -g --gradle-user-home

Specifies the Gradle user home directory.

, -i --info

Set log level to info. See .Chapter 13, Logging

, -l --plugin-properties-file

Specifies the plugin properties file.

, -n --dependencies

Show list of all project dependencies.

, -p --project-dir

Specifies the start directory for Gradle. Defaults to current directory.

, -q --quiet

Log errors only. See .Chapter 13, Logging

, -r --properties

Show list of all available project properties.

, -s --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See .Chapter 13, Logging

, -t --tasks

Show list of all available tasks and their dependencies.

, -u --no-search-upwards

Don't search in parent folders for a file.settings.gradle

, -v --version

Prints version info.

The same information is printed to the console when you execute .gradle -h

Page 167 of 168

C
Existing IDE Support and how to cope

without it

C.1. IntelliJ
Gradle has been mainly developed with Idea IntelliJ and its very good Groovy plugin. Gradle's build script [37

 has also been developed with the support of this IDE. IntelliJ allows you to define any filepattern to be]

interpreted as a Groovy script. In the case of Gradle you can define such a pattern for and build.gradle

. This will already help very much. What is missing is the classpath to the Gradlesettings.gradle

binaries to offer content assistance for the Gradle classes. You might add the Gradle jar (which you can find

in your distribution) to your project's classpath. It does not really belong there, but if you do this you have a

fantastic IDE support for developing Gradle scripts. Of course if you use additional libraries for your build

scripts they would further pollute your project classpath.

We hope that in the future files get special treatment by IntelliJ and you will be able to define a*.gradle

specific classpath for them.

C.2. Eclipse
There is a Groovy plugin for eclipse. We don't know in what state it is and how it would support Gradle. In

the next edition of this user guide we can hopefully write more about this.

C.3. Using Gradle without IDE support
What we can do for you is to spare you typing things like throw new

 and just type org.gradle.api.tasks.StopExecutionException() throw new

 instead. We do this by automatically adding a set of import statements toStopExecutionException()

the Gradle scripts before Gradle executes them. This set is defined by a properties file ingradle-imports

the Gradle distribution. It has the following content.

Page 168 of 168

Figure C.1. gradle-imports

import org.gradle.*
import org.gradle.util.*
import org.gradle.api.*
import org.gradle.api.artifacts.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.specs.*
import org.gradle.api.dependencies.*
import org.gradle.api.execution.*
import org.gradle.api.logging.*
import org.gradle.api.initialization.*
import org.gradle.api.invocation.*
import org.gradle.api.plugins.*
import org.gradle.api.specs.*
import org.gradle.api.tasks.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.compile.*
import org.gradle.api.tasks.javadoc.*
import org.gradle.api.tasks.testing.*
import org.gradle.api.tasks.util.*
import org.gradle.api.tasks.wrapper.*

You can define a project specific set of imports to be added to your build scripts. Just place a file called

 in your root project directory. If you start Gradle with the {-I} option, the imports defined ingradle-imports

the Gradle distribution are disabled. The imports defined in your project directory are always used.

[] 37 Gradle is built with Gradle

	Chapter 1. Introduction
	1.1. About this user guide

	Chapter 2. Overview
	2.1. Features
	2.2. Why Groovy?
	2.3. Missing features

	Chapter 3. Getting Started
	3.1. Prerequisites
	3.2. Unpacking
	3.3. Environment variables
	3.4. Running and testing your installation
	3.5. JVM options

	Chapter 4. Build Script Basics
	4.1. Hello world
	4.2. Build scripts are code
	4.3. Task dependencies
	4.4. Dynamic tasks
	4.5. Manipulating existing tasks
	4.6. Shortcut notations
	4.7. Dynamic task properties
	4.8. Using Ant Tasks
	4.9. Using methods
	4.10. Default tasks
	4.11. Configure by DAG
	4.12. Summary

	Chapter 5. Artifact Basics
	5.1. Artifact configurations
	5.2. Repositories
	5.3. External dependencies
	5.4. Artifact publishing
	5.5. API

	Chapter 6. Java Quickstart
	6.1. A basic Java project
	6.2. Multi-project Java build
	6.3. Summary

	Chapter 7. Groovy Quickstart
	7.1. A basic Groovy project
	7.2. Summary

	Chapter 8. Web Application Quickstart
	8.1. Building a WAR file
	8.2. Running your web application
	8.3. Summary

	Chapter 9. Using the Gradle Command-Line
	9.1. Executing multiple tasks
	9.2. Selecting which build to execute
	9.3. Obtaining information about your build
	9.4. Dry Run

	Chapter 10. Tutorial - 'This and That'
	10.1. Skipping tasks
	10.2. Directory creation
	10.3. Gradle properties and system properties
	10.4. Accessing the web via a proxy
	10.5. Caching
	10.6. Configuring arbitrary objects

	Chapter 11. The Project and Task API
	11.1. Project API
	11.2. Task API
	11.3. Summary

	Chapter 12. More about Tasks
	12.1. Defining tasks
	12.2. Locating tasks
	12.3. Configuring tasks
	12.4. Adding dependencies to a task
	12.5. Adding a description to a task
	12.6. Replacing tasks
	12.7. Task rules
	12.8. Summary

	Chapter 13. Logging
	13.1. Choosing a log level
	13.2. External tools and standard output
	13.3. Sending your own log messages

	Chapter 14. Using Ant from Gradle
	14.1. Using Ant tasks and types in your build
	14.2. Importing an Ant build
	14.3. Ant properties and references
	14.4. API

	Chapter 15. Plugins
	15.1. Declaring plugins
	15.2. Configuration
	15.3. Summary

	Chapter 16. The Java Plugin
	16.1. Tasks
	16.2. Project layout
	16.3. Dependency management
	16.4. Convention properties
	16.5. Javadoc
	16.6. Clean
	16.7. Resources
	16.8. Compile
	16.9. Test
	16.10. Jar
	16.11. Adding archives
	16.12. Uploading
	16.13. Eclipse

	Chapter 17. The Groovy Plugin
	17.1. Tasks
	17.2. Project layout
	17.3. Dependency management
	17.4. Convention properties
	17.5. Compile
	17.6. Test

	Chapter 18. The War Plugin
	18.1. Tasks
	18.2. Project layout
	18.3. Dependency management
	18.4. Convention properties
	18.5. War
	18.6. Customizing
	18.7. Eclipse WTP

	Chapter 19. The Jetty Plugin
	19.1. Tasks
	19.2. Project layout
	19.3. Dependency management
	19.4. Convention properties

	Chapter 20. The Maven Plugin
	20.1. Tasks
	20.2. Project layout
	20.3. Dependency management
	20.4. Convention properties

	Chapter 21. The OSGi Plugin
	21.1. Tasks
	21.2. Project layout
	21.3. Dependency management
	21.4. Convention properties

	Chapter 22. The Eclipse Plugin
	22.1. Tasks
	22.2. Project layout
	22.3. Dependency management
	22.4. Convention properties

	Chapter 23. The Project Report Plugin
	23.1. Tasks
	23.2. Project layout
	23.3. Dependency management
	23.4. Convention properties

	Chapter 24. How to write Custom Plugins
	Chapter 25. Dependency Management
	25.1. Introduction
	25.2. Dependency management overview
	25.3. How to declare your dependencies
	25.4. Working with dependencies
	25.5. Repositories
	25.6. Strategies for transitive dependency management

	Chapter 26. Artifact Management
	26.1. Introduction
	26.2. Artifacts and configurations
	26.3. Uploading artifacts
	26.4. More about project libraries
	26.5. Interacting with Maven repositories

	Chapter 27. The Build Lifecycle
	27.1. Build phases
	27.2. Settings file
	27.3. Multi-project builds
	27.4. Initialization
	27.5. Configuration and execution of a single project build
	27.6. Responding to the lifecycle in the build script

	Chapter 28. Multi-project Builds
	28.1. Cross project configuration
	28.2. Subproject configuration
	28.3. Execution rules for multi-project builds
	28.4. Running tasks by their absolute path
	28.5. Project and task paths
	28.6. Dependencies - Which dependencies?
	28.7. Project lib dependencies
	28.8. Property and method inheritance
	28.9. Summary

	Chapter 29. Organizing Build Logic
	29.1. Build sources
	29.2. External dependencies for the build script
	29.3. Ant optional dependencies
	29.4. Summary

	Chapter 30. The Gradle Wrapper
	30.1. Configuration
	30.2. Unix file permissions
	30.3. Environment variable

	Chapter 31. Embedding Gradle
	Appendix A. Potential Traps
	A.1. Groovy script variables
	A.2. Configuration and execution phase

	Appendix B. Gradle Command Line
	Appendix C. Existing IDE Support and how to cope without it
	C.1. IntelliJ
	C.2. Eclipse
	C.3. Using Gradle without IDE support

