Gradle

A build system

Version 0.7

Hans Dockter

Adam Murdoch
Copyright © 2007-2009 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge
any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or

electronically.

Table of Contents

1. Introduction

1.1. About this user guide

2. Overview

2.2. Why Groovy?
2.3. Missing features

3. Getting Started
3.1. Prerequisites
3.2. Unpacking
3.3. Environment variables
3.4. Running and testing your installation

3.5. JVM options

4. Build Script Basics
4.1. Hello world
4.2, Build scripts are code
4.3. Task dependencies
4.4, Dynamic tasks
4.5. Manipulating existing tasks
4.6. Shortcut notations
4.7. Dynamic task properties
4.8. Using Ant Tasks
4.9. Using methods
4.10. Default tasks
4.11. Configure by DAG
4.12. Summary

5. Artifact Basics
5.1. Artifact configurations
5.2. Repositories
5.3. External dependencies
5.4. Artifact publishing

6. Java Quickstart
6.1. A basic Java project
6.2. Multi-project Java build

7. Groovy Quickstart
7.1. A basic Groovy project
7.2. Summary

8. Web Application Quickstart
8.1. Building a WAR file
8.2. Running your web application
8.3. Summary

9. Using the Gradle Command-Line
9.1. Executing multiple tasks
9.2. Selecting which build to execute
9.3. Obtaining information about your build
9.4, Dry Run

10. Tutorial - 'This and That'
10.1. Skipping tasks
10.2. Directory creation
10.3. Gradle properties and system properties
10.4. Accessing the web via a proxy

11. The Project and Task API

11.1.

Project API

11.2.

Task API

12. More about Tasks

12.1.

Defining tasks

12.2.

Locating tasks

12.3.

Configuring tasks

12.4,

Adding dependencies to a task

12.5.

Adding a description to a task

12.6.

Replacing tasks

13.1.

. Task rules

Choosing a log level

13.2.

External tools and standard output

13.3.

Sending your own log messages

14. Using Ant from Gradle

14.1.

Using Ant tasks and types in your build

14.2.

Importing an Ant build

14.3.

Ant properties and references

. Declaring plugins

. Configuration

. Project layout

. Dependency management

. Convention properties

r

16.11. Adding archives

16.12. Uploading

16.13. Eclipse

17. The Groovy Plugin

17.1.

17.2.

Tasks

Project layout

17.3.

Dependency management

17.4.

Convention properties

17.5.

Compile

18. The War Plugin

18.1.

18.2.

Tasks

Project layout

18.3.

Dependency management

18.4.

Convention properties

18.6.

Customizing

19.

18.7. Eclipse WTP
The Jetty Plugin

20.

19.1. Tasks
19.2. Project layout
19.3. Dependency management

19.4. Convention properties

The Maven Plugin

21.

20.1. Tasks
20.2. Project layout
20.3. Dependency management

20.4. Convention properties
The OSGi Plugin

22.

211, Tasks
21.2. Project layout
21.3. Dependency management

21.4. Convention properties

The Eclipse Plugin

23.

22.1, Tasks
22.2. Project layout
22.3. Dependency management

22.4. Convention properties

The Project Report Plugin

24,

23.1. Tasks
23.2. Project layout
23.3. Dependency management

23.4. Convention properties

How to write Custom Plugins

25.

Dependency Management

26.

25.1. Introduction

25.2. Dependency management overview

25.3. How to declare your dependencies

25.4. Working with dependencies

25.5. Repositories

25.6. Strategies for transitive dependency management

Artifact Management

27.

26.1. Introduction

26.2. Artifacts and configurations

26.3. Uploading artifacts

26.4. More about project libraries

26.5. Interacting with Maven repositories

The Build Lifecycle

28.

27.1. Build phases

27.2. Settings file

27.3. Multi-project builds

27.4. Initialization

27.5. Configuration and execution of a single project build
27.6. Responding to the lifecycle in the build script

Multi-project Builds

28.1. Cross project configuration

28.2. Subproject configuration

28.3. Execution rules for multi-project builds
28.4. Running tasks by their absolute path
28.5. Project and task paths

28.6. Dependencies - Which dependencies?
28.7. Project lib dependencies

28.8. Property and method inheritance
28.9. Summary

29. Organizing Build Logic
29.1. Build sources
29.2. External dependencies for the build script
29.3. Ant optional dependencies
29.4. Summary

30. The Gradle Wrapper
30.1. Configuration
30.2. Unix file permissions
30.3. Environment variable

31. Embedding Gradle

A. Potential Traps
A.1. Groovy script variables
A.2. Configuration and execution phase

B. Gradle Command Line

C. Existing IDE Support and how to cope without it
C. telliJ

C.3. Using Gradle without IDE support

List of Examples

4.1. The first build script

4.2. Execution of a build script

4.3. Using Groovy in Gradle's tasks

4.4, Using Groovy in Gradle's tasks

4.5. Declaration of dependencies between tasks

4.6. Lazy dependsOn - the other task does not exist (yet)
4.7. Dynamic creation of a task

4.8. Accessing a task via API - adding a dependency
4.9. Accessing a task via API - adding behaviour

4.10. Accessing task as a property of the build script
4.11. Assigning properties to a task

4.12. Using AntBuilder to execute ant.checksum target
4.13. Using methods to organize your build logic

4.14. Defining a default tasks

4.15. Different outcomes of build depending on chosen tasks
5.1. Definition of a configuration

5.2. Accessing a configuration

5.3. Configuration of a configuration

5.4. Usage of Maven central repository

5.5. Usage of a local directory

5.6. Accessing a repository

5.7. Configuration of a repository

5.8. Definition of an external dependency

5.9. Usage of external dependency of a configuration
6.1. Java plugin

6.2. Adding Maven repository

6.3. Adding dependencies

6.4. Customization of MANIFEST.MF

6.5. Adding system property

6.6. Publishing the JAR file

6.7. Java example - complete build file

6.8. Multi-project build - hierarchical layout

6.9. Multi-project build - settings.gradle file

6.10. Multi-project build - common configuration
6.11. Multi-project build - dependencies between projects
6.12. Multi-project build - distribution file

7.1. Groovy plugin

7.2. Dependency on Groovy 1.6.0

7.3. Groovy example - complete build file

8.1. War plugin

8.2. Running web application with Jetty plugin
9.1. Executing multiple tasks

9.2. Obtaining information about tasks

9.3. Obtaining information about dependencies
10.1. Skipping tasks using default property name
10.2. Skipping tasks using custom property

10.3. Skipping depending tasks

10.4. Skipping tasks with StopExecutionException
10.5. Enabling and disabling tasks

10.6. Directory creation with mkdir

10.7. Directory creation with Directory tasks

10.8. Setting properties with a gradle.properties file
10.9. Accessing the web via a proxy

10.10. Configuring arbitrary objects

11.1. Accessing property of the Project object
11.2. Project properties

12.1. Defining tasks

12.2. Defining tasks - using strings

12.3. Defining tasks with alternative syntax

12.4. Accessing tasks as properties

12.5. Accessing tasks via tasks collection

12.6. Accessing tasks by path

12.7. Creating a copy task

12.8. Configuring a task - various ways

12.9. Configuring a task - fluent interface

12.10. Configuring a task - with closure

12.11. Configuring a task - with configure() method
12.12. Defining a task with closure

12.13. Adding dependency on task from another project
12.14. Adding dependency using task object
12.15. Adding dependency using closure

12.16. Adding a description to a task

12.17. Overwriting a task

12.18. Task rule

12.19. Dependency on rule based tasks

13.1. Sending your own log message

14.1. Using an Ant task

14.2. Passing nested text to an Ant task

14.3. Passing nested elements to an Ant task

14.4. Using an Ant type

14.5. Using a custom Ant task

14.6. Declaring the classpath for a custom Ant task

14.7. Using a custom Ant task and dependency management together
14.8. Importing an Ant build

14.9. Task that depends on Ant target

14.10. Adding behaviour to an Ant target

14.11. Ant target that depends on Gradle task

14.12. Setting an Ant property

14.13. Getting an Ant property

14.14. Setting an Ant reference

14.15. Getting an Ant reference

15.1. Using plugin

15.2. Configuring a plugin

15.3. Plugin convention object

16.1. Creation of ZIP archive

16.2. Configuration of archive task - custom archive name
16.3. Configuration of archive task - appendix & classifier
16.4. Adding content to archive - include & exclude

16.5. Adding content to archive - arbitrary files

16.6. Adding content to archive - zipFileSet

16.7. Creation of TAR archive

16.8. Customization of MANIFEST.MF

16.9. Customization of MANIFEST.MF for a particular archive
17.1. Configuration of Groovy plugin

17.2. Configuration of Groovy plugin

18.1. Customization of war plugin

18.2. Generation of JAR archive in addition to WAR archive
21.1. Configuration of OSGi MANIFEST.MF file

25.1. Module dependencies

25.2. Artifact only notation

25.3. Dependency with classifier

25.4. Client module dependencies - transitive dependencies
25.5. Project dependencies

25.6. File dependencies

25.7. Excluding transitive dependencies

25.8. Optional attributes of dependencies

25.9. Collections and arrays of dependencies

25.10. Dependency configurations

25.11. Dependency configurations for project

25.12. Configuration.copy

25.13. Accessing declared dependencies

25.14. Configuration.files

25.15. Configuration.files with spec

25.16. Configuration.copy

25.17. Configuration.copy vs. Configuration.files
25.18. Adding central Maven repository

25.19. Adding many Maven repositories

. Adding custom Maven repository

. Adding additional Maven repositories for JAR files
. Flat repository resolver

. Definition of a custom repository

. Assignment of an artifact to a configuration
. Configuration of the upload task

. Upload of file to remote Maven repository
. Upload of file via SSH

. Customization of pom

. Customization of Maven installer

. Generation of multiple poms

. Accessing a mapping configuration

. Single project build

. Hierarchical layout

. Flat layout

. Modification of elements of the project tree

. Modification of elements of the project tree

. Adding of test task to each project which has certain property set
. Notifications

. Setting of certain property to all tasks

. Logging of start and end of each task execution

. Multi-project tree - water & bluewhale projects

. Build script of water (parent) project

. Multi-project tree - water, bluewhale & krill projects

. Water project build script

. Defining common behaviour of all projects and subprojects
. Defining specific behaviour for particular project

. Defining specific behaviour for project krill

. Adding custom behaviour to some projects (filtered by project name)

. Adding custom behaviour to some projects (filtered by project properties)

. Running build from subproject

. Evaluation and execution of projects
. Evaluation and execution of projects
. Running tasks by their absolute path
. Dependencies and execution order

. Dependencies and execution order

. Dependencies and execution order

. Declaring dependencies

. Declaring dependencies

. Project dependencies

. Project dependencies

. Configuration time dependencies

. Configuration time dependencies - evaluationDependsOn
. Configuration time dependencies

28.24. Dependencies - real life example - crossproject configuration
28.25. Project dependencies

28.26. Project dependencies

28.27. Fine grained control over dependencies

29.1. Declaring external dependencies for the build script

29.2. A build script with external dependencies

29.3. Ant optional dependencies

30.2. Configuration of wrapper task
A.1. Variables scope: local and script wide
A.2. Distinct configuration and execution phase

1

Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

® A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks a la Maven. But we never lock you in!
® Very powerful support for multi-project builds.

® Very powerful dependency management (based on Apache lvy).

® Full support for your existing Maven or lvy repository infrastructure.

® Support for transitive dependency management without the need for remote repositories or pom xm
andivy. xnl files.

® Ant tasks and builds as first class citizens.
® Groovy build scripts.
® A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are waiting, have
fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

your own examples and extra content there.

Page 11 of 168

http://www.gradle.org/contributing.html
http://docs.codehaus.org/display/GRADLE/User+guide

2

Overview

2.1. Features

Here is a list of some of Gradle's features.

Language for Dependency Based Programming
This is the core of Gradle. Most build tools do offer such a thing. You can create tasks, create
dependencies between them and those tasks get executed only once and in the right order. Yet
compared to Ant (1] Gradle's task offer a rich API and can be any kind of object. Gradle's tasks
support multi-project builds. There is much more to say about tasks later on.

Flexible Build By Convention
Gradle offers you build-by-convention on top of its core layer. It is the same idea as implemented by
Maven. But Gradle's build-by-convention approach is highly configurable and flexible. And you don't
have to use it, if you need utmost flexibility. You can enable/disable it on a per project basis in a
multi-project build.

Ant Tasks
Ant tasks are first class citizens. Using Ant tasks from Gradle is as convenient and more powerful
than using Ant tasks from a bui | d. xm file.

Configure By DAG
Gradle has a distinct configuration and execution phase. Thus we can offer you special hooks. You
can add configuration to your build, based on the complete execution graph of tasks, before any task
is executed.

Easy Ivy
Our dependency management is based on Apache Ivy, the most advanced and powerful dependency
management in the Java world. We have lvy integrated in our build-by-convention framework. It is
ready to go out-of-the-box. Ivy is mostly used via its Ant tasks but it also provides an API. Gradle
integrates deeply with Ivy via this API. Gradle has its own dependency DSL on top of lvy. This DSL
introduces a couple of features not provided by lvy itself.

Client Modules
We think dependency management is important to any project. Client Modules provide this, without
the need of remote repositories and i vy. xm or pom xm files. For example you can just put your
jars into svn and yet enjoy complete transitive dependency management. Gradle also support fully Ivy
or Maven repository infrastructures based on i vy. xm or pom xnm files and remote repositories.

Page 12 of 168

Cross Project Configuration
Enjoy how easy and yet how extremely powerful the handling of multi-project builds can be. Gradle
introduces Configuration Injection to make this possible.

Distinct Dependency Hierarchies
We allow you to model the project relationships in a multi-project build as they really are for your
problem domain. Gradle follows your layout not vice versa.

Partial Builds
With Maven multi-project builds only work if executed from the root project and thus requiring a
complete build. If you build from a subproject, only the subproject is built, not the projects the
subproject depends on. Gradle offers partial builds. The subproject is built plus the projects it depends
on. This is very convenient for larger builds.

Internal Groovy DSL
Gradle's build scripts are written in Groovy, not XML. This offers many advantages to XML: Rich
interaction with existing libraries, ease of use, more power and a slower learning curve are some of
them.

The Gradle Wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.
For example continuous integration servers or machines of users which want to build your open
source project.

Gradle scales very well. It significantly increases your productivity, from rather simple single project builds up
to huge enterprise multi-project builds.

Gradle is build by Gradle. From a build perspective Gradle is a simple project. But achieving the high degree
of automation we have, would have been very hard (and expensive) to achieve with Ant or Maven.

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous in
case of build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. 2'In such projects obviously the team members know Java. One problem we see with Ant
[3] and Maven is, that it involves a lot of knowledge only available to the build master. Such builds are very
hard to comprehend, let alone to modify by a person not deeply involved with those tools. We think a build
should be as transparent as possible to all team members.

You might argue why not using Java then as the language for build scripts. We think this is a valid question.
It would have the highest transparency for your team and the lowest learning curve. But due to limitations of
Java such a build language would not be as nice, expressive and powerful as it could be. 4] Languages like
Python, Groovy or Ruby do a much better job here. We have chosen Groovy as it offers by far the highest
transparency for Java people. Its base syntax is the same as Java's as well as its type system, its package
structure other things. Groovy builds a lot on top of that. But on a common ground with Java.

For Java teams which share also Python or Ruby knowledge or are happy to learn it the above arguments
don't apply. In the near future Gradle wants to give you a choice between different languages for your build
scripts. For Jython or JRuby this should be easy to implement. If members of those communities are

Page 13 of 168

interested in joining this effort, this is very much appreciated.

2.3. Missing features

Here a list of features you might expect but are not available yet:

® Creating IDE project and classpath files for IntelliJ and NetBeans. Gradle supports IDE project file
generation for Eclipse.

® |Integration with code coverage tools, such as Emma or Cobertura, and static analysis tools, such as
Checkstyle, in our build-by-convention framework. Right now you have to integrate them yourself (for
example using the Ant tasks for those tools).

[1] We mean Ant's targets here.
[2] Gradle also supports Groovy projects. Gradle will support Scala projects in a future release.
[3] If the advanced features are used (e.g. mixins, macrodefs, ...)

[4] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

Page 14 of 168

http://www.defmacro.org/ramblings/lisp.html

3

Getting Started

3.1. Prerequisites

Gradle requires a Java JDK to be installed. Gradle ships with its own Groovy library, therefore no Groovy
needs to be installed. Any existing Groovy installation is ignored by Gradle. The standard Gradle distribution
requires a JDK 1.5 or higher. We also provide a distinct JDK 1.4 compatible distribution.

Gradle uses whichever JDK it finds in your path (to check, use j ava - ver si on). Alternatively, you can set
the JAVA HOME environment variable to point to the install directory of the desired JDK.

3.2. Unpacking

The Gradle distribution comes packaged as a zip. The distribution contains:
® The Gradle binaries.
® The user guide (HTML and PDF).
® The API documentation (Javadoc and Groovydoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete
and more complex builds you can use the starting point for your own build.

® The binary sources (If you want to build Gradle you need to download the source distribution or
checkout the sources from the source repository).

For Un*x users

You need a GNU compatible tool to unzip Gradle, if you want the file permissions to be properly set.
We mention this as some zip front ends for Mac OS X don't restore the file permissions properly.

3.3. Environment variables

For running Gradle, add GRADLE_HOWVE/ bi n to your PATH environment variable. Usually, this is sufficient to
run Gradle. Optionally, you may also want to set the GRADLE_HQVE environment variable to point to the root
directory of your Gradle installation.

Page 15 of 168

3.4. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle -v and you
should get an output like:

Gradl e buildtime: Saturday, July 18, 2009 10: 10: 44 PM CEST
G oovy: 1.6.3

Ant: Apache Ant version 1.7.0 conpiled on Decenber 13 2006
lvy: 2.1.0-rc2

Java: 1.5.0_19

JVM 1.5.0_19-137

JVM Vendor: Apple Inc.

0S Nanme: Mac OS X

3.5. JVM options

JVM options for running Gradle can be set via environment variables. You can use GRADLE_OPTS or
JAVA OPTS. Those variables can be used together. JAVA OPTS is by convention an environment variable
shared by many Java applications. A typical use case would be to set the HTTP proxy in JAVA OPTS and
the memory options in GRADLE_OPTS. Those variables can also be set at the beginning of the gradle or
gradlew script.

Page 16 of 168

4
Build Script Basics

You run a build using the gradle command. When run, gradle looks for a file called bui | d. gr adl e in the
current directory. (3] we call this bui | d. gr adl e file a build script, although strictly speaking it is a build

configuration script, as we will see later. In Gradle the build script defines a project. The name of the
directory containing the build script is used as the name of the project.

4.1. Hello world

In Gradle the most basic building block is the task. The tasks for your build are defined in the build script. To
try this out, create the following build script named bui | d. gr adl e.

Example 4.1. The first build script

buil d. gradl e

task hello << {
println "Hello world!"’

}

In a command-line shell, enter into the containing directory and execute the build script by running gr adl e
-q hello:

Example 4.2. Execution of a build script

Outputofgradle -qg hello What does -q do?

Most of the examples in this
> gradle -q hello
Hel I o worl d! user guide are run with the - q
command-line option. This
suppresses Gradle's log
messages, so that only the
output of the tasks is shown.

What's going on here? This build file defines a single task, called
hel | 0, and adds an action to it. When you run gr adl e hel | o,

Gradle executes the hel | o task, which in turn executes the You don't need to use this
action you've provided. The action is simply a closure containing option if you don't want. See
some Groovy code to execute. Chapter 13, Logging for more

details about the command-line
options which affect Gradle's
output.

If you think this looks similar to Ant's targets, well, you are right.
Gradle tasks are the equivalent to Ant targets. But as you will
see, they are much more powerful. We have used a different

Page 17 of 168

terminology than Ant as we think the word task is more

expressive than the word target. Unfortunately this introduces a terminology clash with Ant, as Ant calls its
commands, such as j avac or copy, tasks. So when we talk about tasks, we always mean Gradle tasks,
which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant commands), we explicitly say ant
task.

4.2. Build scripts are code
Gradle's build scripts expose to you the full power of Groovy. As an appetizer, have a look at this:
Example 4.3. Using Groovy in Gradle's tasks
buil d. gradl e
task upper << {
String soneString = ' mY_nAnE

println "Oiginal: " + someString
println "Upper case: " + soneString.toUpperCase()

Output of gr adl e -qg upper
> gradle -q upper

Oiginal: nmY_nAnE
Upper case: MY_NAME

or
Example 4.4. Using Groovy in Gradle's tasks
buil d. gradl e

task count << {

4.times { print "$it " }
}

Output of gradl e -g count

> gradle -q count
0123

4.3. Task dependencies

As you probably have guessed, you can declare dependencies between your tasks.

Page 18 of 168

Example 4.5. Declaration of dependencies between tasks

buil d. gradl e

task hello << {
println 'Hello world!'

}

task intro(dependsOn: hello) << {
println "I'm G adl e"

}

Outputofgradle -q intro

> gradle -q intro
Hel | o worl d!
I'"'m G adl e

To add a dependency, the corresponding task does not need to exist.

Example 4.6. Lazy dependsOn - the other task does not exist (yet)

buil d. gradl e

task taskX(dependsOn: 'taskY') << {
println 'taskX

task taskY << {
println 'taskY

}

Outputof gradl e -qg taskX

> gradle -q taskX
taskY
taskX

The dependency of taskX to taskY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 12.4, “Adding dependencies

to a task”.

Please notice, that you can't use a shortcut notation (see Section 4.6, “Shortcut notations”) when referring to

task, which is not defined yet.

4.4. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it

to dynamically create tasks.

Page 19 of 168

Example 4.7. Dynamic creation of a task

buil d. gradl e

4.tinmes { counter ->
task "task_$counter" << {
println "I'mtask nunber $counter"

}

Outputofgradl e -qg task_1

> gradle -q task_1
I'"'mtask nunber 1

4.5. Manipulating existing tasks

Once tasks are created they can be accessed via an API. This is different to Ant. For example you can
create additional dependencies.

Example 4.8. Accessing a task via APl - adding a dependency

bui | d. gradl e

4.tinmes { counter ->
task "task_$counter” << {
println "I'mtask nunber $counter”
}
}

task_0. dependsOn task_2, task_3

Outputofgradl e -gq task_0

> gradle -q task_0O
I'mtask nunber 2
I'mtask nunber 3
I'mtask nunber O

Or you can add behavior to an existing task.

Page 20 of 168

Example 4.9. Accessing a task via API - adding behaviour

buil d. gradl e

task hello << {

println 'Hello Earth'
}
hel | 0. doFi rst {

println 'Hello Venus'
}

hel | 0. doLast {
println 'Hello Mars'

}
hel l o << {

println '"Hello Jupiter'
}

Outputofgradl e -q hello

> gradle -q hello
Hel | o Venus
Hello Earth
Hell o Mars

Hel | o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the
end of the task's actions list. When the task executes, the actions in the action list are executed in order. The
<< operator is simply an alias for doLast .

4.6. Shortcut notations

As you might have noticed in the previous examples, there is a convenient notation for accessing an existing
task. Each task is available as a property of the build script:

Example 4.10. Accessing task as a property of the build script

buil d. gradl e

task hello << {
println "Hello world!"'

}
hel | 0. doLast {

println "G eetings fromthe $hello. nane task."

}

Outputofgradl e -q hello

> gradle -q hello
Hel | o worl d!
Greetings fromthe hello task.

This enables very readable code, especially when using the out of the box tasks provided by the plugins
(e.g. compi | e).

Page 21 of 168

4.7. Dynamic task properties

You can assign arbitrary new properties to any task.

Example 4.11. Assigning properties to a task

buil d. gradl e

task myTask
myTask. myProperty = ' myCust onPropVal ue'

task showProps << {
println nmyTask. myProperty
}

Output of gradl e - g showPr ops

> gradle -q showProps
myCust onPr opVal ue

4.8. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks simply by
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der. Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from a bui | d. xni file. Let's look at an example:

Example 4.12. Using AntBuilder to execute ant.checksum target

bui |l d. gradl e

task checksum << {
def files = file('../antChecksunFiles').listFiles().sort()
files.each { File file ->
ant.checksunm(file: file, property: file.nane)
println "$file. nane Checksum ${ant.properties[file.nane]}"

Output of gradl e -g checksum

> gradle -q checksum

agi |l e_mani festo. ht M Checksum 2dd24e01676046d8dedc2009ala8f 563
agil e_principles.htm Checksum 659d204c8c7cch5d633de0b0d26cd104
dyl an_t homas. t xt Checksum 91040calcef chfdc8016b1b3e51f23d3

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 14, Using Ant
from Gradle.

4.9. Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the
example above, is extracting a method.

Page 22 of 168

Example 4.13. Using methods to organize your build logic

buil d. gradl e

task checksum << {
fileList('../antChecksunFiles').each { File file ->
ant . checksun(file: file, property: file.nane)
printin "$file.nane Checksum ${ant.properties[file.nane]}"

}

task length << {
fileList('../antChecksunFiles').each { File file ->
ant.length(file: file, property: file.nane)
println "$file.nane Length: ${ant.properties[file.nanme]}"

}

File[] fileList(String dir) {
file(dir).listFiles().sort()
}

Output of gradl e -g checksum

> gradle -q checksum

agil e_mani festo. ht l Checksum 2dd24e01676046d8dedc2009ala8f 563
agil e_principles.html Checksum 659d204c8c7cch5d633de0b0d26cd104
dyl an_t homas. t xt Checksum 91040calcef cbf dc8016b1b3e51f23d3

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
a whole chapter to this. See Chapter 29, Organizing Build Logic.

4.10. Default tasks

Gradle allows you to define one or more default tasks for your build.

Page 23 of 168

Example 4.14. Defining a default tasks

buil d. gradl e

def aul t Tasks 'clean', 'run

task clean << {
println 'Default C eaning!'
}

task run << {
println 'Default Running!'
}

task other << {
println "lI'"mnot a default task!"

}

Outputof gradl e -q

> gradle -q
Def aul t d eani ng!
Def aul t Runni ng!

This is equivalent to running gr adl e cl ean run. In a multi-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project
are used (if defined).

4.11. Configure by DAG

As we describe in full detail later (See Chapter 27, The Build Lifecycle) Gradle has a configuration phase
and an execution phase. After the configuration phase Gradle knows all tasks that should be executed.
Gradle offers you a hook to make use of this information. A use-case for this would be to check if the release
task is part of the tasks to be executed. Depending on this you can assign different values to some variables.

In the following example, execution of di stri buti on and rel ease tasks results in different value of
ver si on variable.

Page 24 of 168

Example 4.15. Different outcomes of build depending on chosen tasks

buil d. gradl e

bui | d. t askG aph. whenReady {taskG aph ->
if (taskG aph. hasTask(':release')) {
version = '1. 0
} else {
version = '1.0- SNAPSHOT'
}

}

task distribution << {
printin "W build the zip with versi on=$version

}

task rel ease(dependsOn: 'distribution') << {
println 'We rel ease now

}

Outputofgradl e -qg distribution

> gradle -q distribution
We build the zip with version=1. 0- SNAPSHOT

Outputofgradl e -qg rel ease

> gradle -q rel ease
We build the zip with version=1.0
W rel ease now

The important thing is, that the fact that the release task has been chosen, has an effect before the release
task gets executed. Nor has the release task to be the primary task (i.e. the task passed to the gradle
command).

4.12. Summary

This is not the end of the story for tasks. So far we have worked with simple tasks. Tasks will be revisited in
Chapter 12, More about Tasks and when we look at the Java Plugin in Chapter 16, The Java Plugin.

[5] There are command line switches to change this behavior. See Appendix B, Gradle Command Line)

Page 25 of 168

This chapter is currently under construction.

5

Artifact Basics

For all the details of artifact handling see Chapter 26, Artifact Management.

This chapter introduces some of the basics of artifact handling in Gradle.

5.1. Artifact configurations

Artifacts are grouped into configurations. A configuration is simply a set of files with a name. You can use
them to declare the external dependencies your project has, or to declare the artifacts which your project

publishes.
To define a configuration:

Example 5.1. Definition of a configuration
buil d. gradl e
configurations {

conpil e
}

To access a configuration:

Example 5.2. Accessing a configuration

buil d. gradl e

println configurations.conpile.name
println configurations['conpile'].name

To configure a configuration:

Page 26 of 168

Example 5.3. Configuration of a configuration

buil d. gradl e
configurations {
compil e {
description = 'conpile classpath’
transitive = true
}
runtine {
ext endsFrom conpi |l e
}
}
configurations. conpile {
description = 'conpil e classpath’
}

5.2. Repositories

Artifacts are stored in repositories.
To use maven central repository:

Example 5.4. Usage of Maven central repository

buil d. gradl e

repositories {
mavenCentral ()

}

To use a local directory:

Example 5.5. Usage of a local directory

buil d. gradl e

repositories {
flatDir nanme: 'local Repository', dirs: 'lib'
}

You can also use any Ivy resolver. You can have multiple repositories.
To access a repaository:

Example 5.6. Accessing a repository

buil d. gradl e

println repositories.|ocal Repository. nane
println repositories['l|ocal Repository'].nane

To configure a repository:

Page 27 of 168

Example 5.7. Configuration of a repository

buil d. gradl e

repositories {
| ocal Repository {

addArtifactPattern(file('lib').absolutePath + '/[nanme]/[revision]/[nanme]-[revi:s

addArtifactPattern(file('lib').absolutePath + '/[nanme]/[revision]/[nanme]-[revision]

}
}
repositories.local Repository {
}

5.3. External dependencies

To define an external dependency, you add a dependency to a configuration:

Example 5.8. Definition of an external dependency

bui | d. gradl e

configurations {
conpi l e
}

dependenci es {

}

conpi l e group: 'comons-col |l ections', nane:

group and ver si on are optional
TBD - configuring an external dependency

To use the external dependencies of a configuration:

' commons-col | ections',

Example 5.9. Usage of external dependency of a configuration

buil d. gradl e

task listJdars << {

configurations.conpile.each { File file -> println file.nane }

}

Outputofgradle -q listJars

> gradle -q listJars
commmons-col | ections-3.2.jar

5.4. Artifact publishing
TBD

version: '3.2'

Page 28 of 168

5.5. API

Configurations are contained in a Confi gur ati onCont ai ner . Each configuration implements the
Configuration.

Page 29 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ConfigurationContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html

6

Java Quickstart

To build a Java project, you use the Java Plugin. This plugin adds some tasks to your project, along with
some configuration properties, which will compile and test your Java source code, and bundle it into a JAR
file. We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to build a Java
project.

6.1. A basic Java project

Let's look at a simple example. To use the Java plugin, add the following to your build file:

Example 6.1. Java plugin

bui I d. gradl e

usePlugin 'java'

Note: The code for this example can be found at sanpl es/j ava/ qui ckst art

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a
number of tasks to your project.

Executing gradl e 1ibs will compile, test and jar your code.
Gradle looks for your production source code under
src/ main/java and your test source code under

What tasks are available?

. . . You can use gradl e -t to list
src/test/java. In addition, any files under g

the tasks of ject. Thi ill
src/ mai n/ resources will be included in the JAR file as © 1asks of a projec IS Wi

let you see the tasks that the
Java plugin has added to your
project.

resources, and any files under src/test/resources will be
included in the classpath used to run the tests. All output files will
end up under the bui | d directory, with the JAR file ending up in
the bui | d/ | i bs directory.

6.1.1. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in
the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts
of a project, or both. For this example, we will use the public Maven repository:

Page 30 of 168

Example 6.2. Adding Maven repository

buil d. gradl e

repositories {
mavenCentral ()
}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time
dependency on commons collections, and that our test classes have a compile-time dependency on junit:

Example 6.3. Adding dependencies
buil d. gradl e

dependenci es {
conpil e group: 'conmmons-col |l ections', nanme: 'commons-collections', version: '3.2
testConpile group: '"junit', name: 'junit', version: '4.+

You can find out more in Chapter 25, Dependency Management.

6.1.2. Customising the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our
sample. Here we will specify the version number for our Java project, along with the Java version our source
is written in. We also add some attributes to the JAR manifest.

Example 6.4. Customization of MANIFEST.MF

buil d. gradl e

sourceConpatibility = 1.5

version = "1. 0

mani f est. mai nAttri but es(
"Inplenentation-Title' : 'Gadle Quickstart',
"I npl enent ati on-Version': version

The tasks which the Java plugin adds are regular tasks, exactly
the same as if they were declared in the build file. This means
you can use any of the mechanisms shown in earlier chapters to
customise these tasks. For example, you can set the properties of
a task, add behaviour to a task, change the dependencies of a

What properties are
available?

You can use gradl e -r to list

task, or replace a task entirely. In our sample, we will configure the properties of a project. This
the t est task, which is of type Test , to add a system property will allow you to see the
when the tests are executed: properties added by the Java

plugin, and their default values.

Page 31 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/testing/Test.html

Example 6.5. Adding system property

buil d. gradl e
test {
options. systenProperties[' property'] = 'val ue'
}

6.1.3. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish
the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will
publish to a local directory. You can also publish to a remote location, or multiple location.

Example 6.6. Publishing the JAR file

buil d. gradl e

upl oadAr chi ves {
repositories {
flatDir(dirs: file('repos'))
}

To publish the JAR file, run gr adl e upl oadAr chi ves.

6.1.4. Creating Eclipse project

To import your project into Eclipse, simply run gradl e ecl i pse. More on eclipse task can be found in
Section 16.13, “Eclipse”.

6.1.5. Summary

Here's the complete build file for our sample:

Page 32 of 168

Example 6.7. Java example - complete build file

buil d. gradl e
usePlugin 'java'

sourceConpatibility = 1.5

version = '1.0'

mani f est. mai nAttri but es(
"Inmplenentation-Title': 'Gadle Quickstart',
"I npl enent ati on-Version': version

)

repositories {
mavenCentral ()
}

dependenci es {
conpil e group: 'conmons-col |l ections', nanme: 'commons-collections', version: '3.2

testConpile group: 'junit', name: 'junit', version: '4.+
}
test {

options. systenProperties[' property'] = 'val ue'
}

upl oadAr chi ves {
repositories {
flatDir(dirs: file('repos'))
}

6.2. Multi-project Java build

Now let's look at a typical multi-project build. Below is the layout for the project:

Example 6.8. Multi-project build - hierarchical layout

Build layout

mul tiproject/
api/
servi ces/
webser vi ce/
shar ed/

Note: The code for this example can be found at sanpl es/j ava/ mul ti proj ect

Here we have three projects. Project api produces a JAR file which is shipped to the client to provide them
a Java client for your XML webservice. Project webser vi ce is a webapp which returns XML. Project
shar ed contains code used both by api and webser vi ce.

6.2.1. Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root directory of
the source tree, and specifies which projects to include in the build. It must be called setti ngs. gradl e.
For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Page 33 of 168

Example 6.9. Multi-project build - settings.gradle file

settings.gradle

i ncl ude "shared", "servi ces: webservi ce"

api

You can find out more about the settings file in Chapter 28, Multi-project Builds.

6.2.2. Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we
will define this common configuration in the root project, using a technique called configuration injection.
Here, the root project is like a container and the subpr oj ect s method iterates over the elements of this
container - the projects in this instance - and injects the specified configuration. This way we can easily
define the manifest content for all archives, and some common dependencies:

Example 6.10. Multi-project build - common configuration

buil d. gradl e

subprojects {
usePlugin 'java'
usePl ugi n 'eclipse’

repositories {
mavenCentral ()

}

dependenci es {
testConpile "junit:junit: 4.4

}
group = 'org.gradl e
version = "1. 0

mani f est. mai nAttri butes(provider: 'gradle')

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test,
and JAR all the projects by running gr adl e | i bs from the root project directory.

6.2.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one
project is used to compile another project. In the api build file we will add a dependency on the JAR
produced by the shar ed project. Due to this dependency, Gradle will ensure that project shar ed always
gets built before project api .

Example 6.11. Multi-project build - dependencies between projects
api / buil d. gradl e
dependenci es {

conpile project(':shared")

}

Page 34 of 168

See Section 28.7.1, “Disable the build of dependency projects.” for how to disable this functionality.

6.2.4. Creating a distribution
We also add a distribution, that gets shipped to the client:

Example 6.12. Multi-project build - distribution file

api/buil d.gradl e

task dist(type: Zip) {
dependsOn confi gurations. runtine. bui | dDependenci es
files configurations.runtinme
fileSet dir: 'src/dist'

6.3. Summary

In this chapter, you have seen how to do some of the things you commonly need to build a Java based
project. This chapter is not exhaustive, and there are many other things you can do with Java projects in
Gradle. These are dealt with in later chapters. Also, a lot of the behaviour you have seen in this chapter is
configurable. For example, you can change where Gradle looks Java source files, or add extra tasks, or you
can change what any task actually does. Again, you will see how this works in later chapters.

You can find out more about the Java plugin in Chapter 16, The Java Plugin, and you can find more sample
Java projects in the sanpl es/ j ava directory in the Gradle distribution.

Page 35 of 168

7
Groovy Quickstart

To build a Groovy project, you use the Groovy Plugin. This plugin extends the Java plugin to add Groovy
compilation capabilties to your project. Your project can contain Groovy source code, Java source code, or a
mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have already
seen in Chapter 6, Java Quickstart.

7.1. A basic Groovy project

Let's look at an example. To use the Groovy plugin, add the following to your build file:

Example 7.1. Groovy plugin

buil d. gradl e

usePl ugi n ' groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckst art

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin
extends the conpi | e task to look for source files in directory sr ¢/ mai n/ gr oovy, and the conpi | eTest s
task to look for test source files in directorysr c/ t est/ gr oovy. The compile tasks use joint compilation for
these directories, which means they can contain a mixture of java and groovy source files.

To use the groovy compilation tasks, you must also declare the Groovy version to use and where to find the
Groovy libraries. You do this by adding a dependency to the groovy configuration. The conpil e
configuration inherits this dependency, so the groovy libraries will be included in classpath when compiling
Groovy and Java source. For our sample, we will use Groovy 1.6.0 from the public Maven repository:

Example 7.2. Dependency on Groovy 1.6.0
buil d. gradl e

repositories {
mavenCentral ()
}

dependenci es {
groovy group: 'org.codehaus.groovy', nanme: 'groovy-all', version: '1.6.0'
}

Page 36 of 168

Here is our complete build file:
Example 7.3. Groovy example - complete build file
buil d. gradl e

usePl ugi n ' groovy'

repositories {
mavenCentral ()

}

dependenci es {
groovy group: 'org.codehaus.groovy', nanme: 'groovy-all', version: '1.6.0
testConpile group: 'junit', nane: 'junit', version: '4.4

}

Running gr adl e |i bs will compile, test and JAR your project.

7.2. Summary

This chapter describes a very simple Groovy project. Usually, a real project will require more than this.
Because a Groovy project is a Java project, whatever you can do with a Java project, you can also do with a
Groovy project.

You can find out more about the Groovy plugin in Chapter 17, The Groovy Plugin, and you can find more
sample Groovy projects in the sanpl es/ gr oovy directory in the Gradle distribution.

Page 37 of 168

8

Web Application Quickstart

This chapter is a work in progress.

This chapter introduces some of the Gradle's support for web applications. Gradle provides two plugins for
web application developement: the War plugin and the Jetty plugin. The War plugin extends the Java plugin
to build a WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web
application to an embedded Jetty web container.

8.1. Building a WAR file
To build a WAR file, you apply the War plugin to your project:

Example 8.1. War plugin

buil d. gradl e

usePlugin 'war'

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckst art

This also applies the Java plugin to your project. Running gr adl e | i bs will compile, test and WAR your
project. Gradle will look for the source files to include in the WAR file in sr ¢/ mai n/ webapp. Your compiled
classes, and their runtime dependencies are also included in the WAR file.

8.2. Running your web application Groovy web applications
To run your web application, you apply the Jetty plugin to your You can combine multiple
project: plugins in a single project, so

you can use the War and
Groovy plugins together to build
bui l d. gradl e a Groovy based web
application. The appropriate
groovy libraries will be added to
the WAR file for you.

Example 8.2. Running web application with Jetty plugin

usePlugin 'jetty'

This also applies the War plugin to your project. Running gr adl e

Page 38 of 168

jettyRun will run your web application in an embedded Jetty web container. Running gradl e
j ett yRunWar will build and test the WAR file, and then run it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and reload.

8.3. Summary

You can find out more about the War plugin in Chapter 18, The War Plugin and the Jetty plugin in
Chapter 19, The Jetty Plugin. You can find more sample Java projects in the sanpl es/ webAppl i cati on
directory in the Gradle distribution.

Page 39 of 168

9

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the gradle command,
which you have already seen in action in previous chapters.

9.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For
example, the command gradl e conpil e test will execute the conpil e and t est tasks. Gradle will
execute the tasks in the order that they are listed on the command-line, and will also execute the
dependencies for each task. Each task is executed once only, regardless of why it is included in the build:
whether it was specified on the command-line, or it a dependency of another task, or both. Let's look at an
example.

Below three tasks are defined. Both | i bs and t est depend on conpi | e task. Execution of gradl e -q
I i bs test command for this build script results in conpi | e task being executed only once.
Example 9.1. Executing multiple tasks

buil d. gradl e

task conpile << {
println 'conpiling source'

}

task test(dependsOn: conpile) << {
println 'running tests'
}

task |ibs(dependsOn: conpile) << {
printin "building |ibs'
}

Outputofgradle -q |ibs test
> gradle -q libs test
conpi ling source

bui I ding libs
running tests

Because each task is executed once only, executing gradl e i bs |i bs is exactly the same as executing
gradle |ibs.

Page 40 of 168

9.2. Selecting which build to execute

When you run the gradle command, it looks for a build file in the current directory. You can use the - b
option to select another build file. For example:

> gradle -b subproject/build.gradle

Alternatively, you can use the - p option to specify the project directory to use:

> gradle -p subproject

9.3. Obtaining information about your build

Gradle provides several command-line options which show particular details of your build. This can be useful
for understanding the structure and dependencies of your build, and for debugging problems.

Running gr adl e --tasks gives you a list of the tasks which make up the build, broken down by project.
This report shows the default tasks, if any, of each project, and the description and dependencies of each
task. Below is an example of this report:

Example 9.2. Obtaining information about tasks

Outputof gradl e -q --tasks

> gradle -q --tasks

Def ault Tasks: dists

:clean - Deletes the build directory (build)
cdists
-> rapi:libs, :webapp:libs

capi:libs
rule - buil d<ConfigurationNane>: builds the artifacts of the given configuration

Proj ect :webapp

:webapp: |i bs
rule - buil d<ConfigurationNane>: builds the artifacts of the given configuration

Running gradl e --dependenci es gives you a list of the dependencies of the build, broken down by
project. This report shows the configurations of each project. For each configuration, the direct and transitive
dependencies of that configuration are shown. Below is an example of this report:

Page 41 of 168

Example 9.3. Obtaining information about dependencies

Outputof gradl e -qg --dependenci es

> gradle -q --dependenci es

Proj ect :webapp

Running gr adl e --properti es gives you a list of the properties of each project in the build.

You can also use the project report plugin to add a number of reporting tasks to your project.

9.4. Dry Run

Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified
on the command line, but you don't want the tasks to be executed. You can use the - mfor this. For example
gradl e -m cl ean conpil e shows you all tasks to be executed as part of the cl ean and conpi |l e
tasks. This is complementary to the - t , which shows you all available tasks for execution.

You can find out more about the gradle command's usage in Appendix B, Gradle Command Line

Page 42 of 168

10

Tutorial - 'This and That'

10.1. Skipping tasks

Gradle offers multiple ways to skip the execution of a task.

You can set system property named ski p. t askname or pass such property as a parameter to the gradle
command using - D option (see Section 10.3, “Gradle properties and system properties”).

Example 10.1. Skipping tasks using default property name

buil d. gradl e

task autoskip << {
println 'This should not be printed if the skip.autoskip systemproperty is set.'

}

Output of gr adl e - Dski p. aut oski p aut oskip

> gradl e -Dski p. aut oski p aut oski p
:aut oski p SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

You can also choose another another property that can be used to skip a task.

Page 43 of 168

Example 10.2. Skipping tasks using custom property

buil d. gradl e

task skipMe << {
println 'This should not be printed if the mySki pProperty system property is set tc

}
ski pMe. ski pProperties << 'nySki pProperty'

Output of gr adl e - DnySki pProperty ski pMe

> gradl e - DnySki pProperty ski pMe
: ski pMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

You can use this to add one or more skip properties to any task.

In both cases if the corresponding system property is set to any value (6] except false (case does not matter),
the actions of the task don't get executed.

10.1.1. Skipping depending tasks

By default tasks that depends on skipped task get executed. If you want to skip them, you have to declare
this explicitly via the skip properties.

Example 10.3. Skipping depending tasks

bui I d. gradl e

task autoskip << {
println 'This should not be printed if the skip.autoskip systemproperty is set.'

}
task depends(dependsOn: autoskip) << {
println "This should not be printed if the skip.autoskip systemproperty is set."

}

depends. ski pProperties << 'skip. autoskip'

Output of gr adl e - Dski p. aut oski p depends

> gradl e - Dski p. aut oski p depends
:aut oski p SKI PPED
: depends SKI PPED

BUI LD SUCCESSFUL

Total tinme: 1 secs

10.1.2. Using StopExecutionException

If the rules for skipping a task can't be expressed with a simple property, you can use the
St opExecut i onExcepti on . If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the
next task.

Page 44 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 10.4. Skipping tasks with StopExecutionException

buil d. gradl e

task conpile << {
println 'W are doing the conpile.'
}

conpi |l e. doFi rst {
/1 Here you would put arbitrary conditions in real life. But we use this as an inte
if (true) { throw new StopExecuti onException() }

}

task myTask(dependsOn: 'conpile') << {
println 'l amnot affected

}

Output of gradl e -g myTask

> gradle -q nyTask
| am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such a task.

You might be wondering why there is neither an import for the St opExecut i onExcepti on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script.
These imports are customizable (see Appendix C, Existing IDE Support and how to cope without it).

10.1.3. Enabling and disabling tasks

Every task has also an enabl ed flag which defaults to t r ue. Setting it to f al se prevents the execution of
any of the task's actions.

Example 10.5. Enabling and disabling tasks

bui | d. gradl e

task di sabl eMe << {
println 'This should not be printed if the task is disabled."’
}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
1 di sabl eMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

10.2. Directory creation

There is a common situation, that multiple tasks depend on the existence of a directory. Of course you can
deal with this by adding a nkdi r to the beginning of those tasks. But this is kind of bloated. There is a better
solution (works only if the tasks that need the directory have a dependsOn relationship):

Page 45 of 168

Example 10.6. Directory creation with mkdir

buil d. gradl e

classesDir = new File(' build/classes')
task resources << {

cl assesDir. nkdirs()

/1 do sonething

}
task conpil e(dependsOn: 'resources') << {
if (classesDir.isDirectory()) {
println 'The class directory exists. | can operate
}

/1 do sonething

Outputofgradl e -qg conpile

> gradle -q conpile
The class directory exists. | can operate

But Gradle offers you also Directory Tasks to deal with this.

Example 10.7. Directory creation with Directory tasks

buil d. gradl e

classes = dir('build/classes")
task resources(dependsOn: classes) << {
/1 do sonet hi ng

}

task ot her Resour ces(dependsOn: cl asses) << {
if (classes.dir.isDirectory()) {
println 'The class directory exists. | can operate

}

/1 do sonet hi ng

Output of gr adl e -g ot her Resour ces

> gradle -qg ot herResources
The class directory exists. | can operate

A Directory Task is a simple task whose name is a relative path to the project dir (71 During the execution
phase the directory corresponding to this path gets created if it does not exist yet. Another interesting thing
to note in this example, is that you can also pass tasks objects to the dependsOn declaration of a task.

10.3. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option you can
pass a system property to the JVM which runs Gradle. The - D option of the gradle command has the same
effect as the - D option of the java command.

You can also directly add properties to your project objects using properties files. You can place a
gradl e. properti es file in the Gradle user home directory (defaults to USER_HOVE/ . gr adl e) or in your
project directory. For multi-project builds you can place gradl e. properties files in any subproject

Page 46 of 168

directory. The properties of the gradl e. properti es can be accessed via the project object. The
properties file in the user's home directory has precedence over property files in the project directories.

You can also add properties directly to your project object via the - P command line option. For more exotic
use cases you can even pass properties directly to the project object via system and environment properties.
For example if you run a build on a continuous integration server where you have no admin rights for the
machine. Your build script needs properties which values should not be seen by others. Therefore you can't
use the - P option. In this case you can add an environment property in the project administration section
(invisible to normal users). 8] If the environment property follows the pattern ORG_GRADLE PRQIECT _
propertyNanme=soneval ue, propert yNane is added to your project object. If in the future CI servers
support Gradle directly, they might start Gradle via its main method. Therefore we already support the same
mechanism for system properties. The only difference is the pattern, which is or g. gradl e. proj ect.
propertyNanme .

With the gr adl e. properti es files you can also set system properties. If a property in such a file has the
prefix syst enPr op. the property and its value are added to the system properties, without the prefix.

Example 10.8. Setting properties with a gradle.properties file

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue

syst enProperti esProp=shoul dBeOver Wi ttenBySyst enProp
envProperti esProp=shoul dBeOver Wi ttenByEnvProp

syst enPr op. syst enrsyst enVal ue

bui | d. gradl e

task printProps << {
println commandLi neProj ect Prop
println gradl ePropertiesProp
println systenProjectProp
println envProjectProp
println System properties['systen]

Output of gradle -q - PconmandLi nePr oj ect Pr op=commandLi nePr oj ect PropVal ue
-Dorg. gradl e. proj ect. systenProj ect Prop=syst enPropertyVal ue printProps

> gradle -q - PcommandLi nePr oj ect Prop=conmandLi nePr oj ect PropVal ue - Dorg. gradl e. proj ect.
commandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPropertyVal ue

envPr opertyVal ue

syst enVal ue

10.3.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a variable.
In case this property does not exists, an exception is thrown and the build fails. If your build script relies on
optional properties the user might set for example in a gradle.properties file, you need to check for existence
before you can access them. You can do this by using the method hasPr operty(' propertyNane')
which returns t rue or f al se.

Page 47 of 168

10.4. Accessing the web via a proxy

Setting a proxy for web access (for example for downloading dependencies) is easy. Gradle does not need
to provide special functionality for this. The JVM can be instructed to go via proxy by setting certain system
properties. You could set these system properties directly in your build script with
System properties[' proxy.proxyUser'] = 'userid' . An arguably nicer way is shown in
Section 10.3, “Gradle properties and system properties”. Your gradle.properties file could look like this:

Example 10.9. Accessing the web via a proxy

gradl e. properties

syst enProp. http. proxyHost =htt p: // ww. sonehost . org
syst enProp. http. proxyPort =8080

syst enProp. http. proxyUser =userid

syst enProp. http. proxyPasswor d=passwor d

We could not find a good overview for all possible proxy settings. The best we can offer are the constants in
a file from the ant project. Here a link to the svn view. If anyone knows a better overview please let us know
via the mailing list.

10.5. Caching

To improve the responsiveness Gradle caches the compiled build script by default. The first time you run a
build for a project, Gradle creates a . gr adl e directory in which it puts the compiled build script. The next
time you run this build, Gradle uses the compiled build script, if the timestamp of the compiled script is newer
than the timestamp of the actual build script. Otherwise the build script gets compiled and the new version is
stored in the cache. If you run Gradle with the - x option, any existing cache is ignored and the build script is
compiled and executed on the fly. If you run Gradle with the - r option, the build script is always compiled
and stored in the cache. That way you can always rebuild the cache if for example the timestamps for some
reasons don't reflect that the build script needs to be recompiled.

10.6. Configuring arbitrary objects

You can configure arbitrary objects in the following very readable way.

Page 48 of 168

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977

Example 10.10. Configuring arbitrary objects

buil d. gradl e

task configure << {
pos = configure(new java.text.FieldPosition(10)) ({
begi nl ndex = 1
endl ndex = 5
}
println pos. begi nl ndex
println pos. endl ndex

Outputof gradl e -g configure

> gradle -q configure
1
5

[6] The statement - Dpr op sets the property to empty string, thus you don't need to type more to skip a task.

[7] The notation dir (' /sonepath') is a convenience method for t asks. add(' somepath', type:
Directory)

[8] Teamcity or Bamboo are for example Cl servers which offer this functionality.

Page 49 of 168

11

The Project and Task API

11.1. Project API

In the tutorial in Chapter 4, Build Script Basics we used, for example, the t ask() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For Gradle, this means
that it creates an instance of Pr oj ect and associates this Pr oj ect object with the build script. As the build

script executes, it configures this Pr oj ect object.

® Any method you call in your build script, which is not defined in the build script, is delegated to the
Pr oj ect object.

® Any property you access in your build script, which is not defined in the build script, is delegated to
the Pr oj ect object.

Let's try this out and try to access the name property of the Pr oj ect object.

Example 11.1. Accessing property of the Project object

bui I d. gradl e

task check << {
println name
println project.nane

Output of gradl e -g check

> gradle -q check
pr oj ect Api
pr oj ect Api

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect
object, for properties not defined in the build script. The other statement uses the proj ect property
available to any build script, which returns the associated Pr oj ect object. Only if you define a property or a
method which has the same name as a member of the Pr oj ect object, you need to use the proj ect

property.

Have a look at the Pr oj ect API to find out more about project properties and methods.

Page 50 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html

11.1.1. Standard project properties
The Proj ect object provides some standard properties, which are available in your build script. The
following table lists a few of the commonly used ones.

Table 11.1. Project Properties

Name

pr oj ect

name

pat h
bui I dFile
projectDir
bui | dDi r Nane
bui I dDi r
group
version

ant

Type

Pr oj ect

Ant Bui | der

Default Value

The Pr oj ect instance

The name of the directory containing the build script.

The absolute path of the project.

The build script.

The directory containing the build script.
bui | d

projectDir/build

unspecified

unspeci fied

An Ant Bui | der instance

Below is a sample build which demonstrates some of these properties.

Page 51 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html

Example 11.2. Project properties

Build layout

proj ect Cor eProperties/
bui |l d. gradl e
subPr oj ect/
bui |l d. gradl e

buil d. gradl e

task check << {
al | projects {
println "project path $path”
println " project nane = $nanme"”
printin " project dir = "'${toPath(projectDir)}""
printin ™ build file = "${toPath(buildFile)}""
printin ™ build dir = "${toPath(buildDir)}""

}

def toPath(File file) {
rootProject.rel ativePath(file).path.replaceAll (java.util.regex.Pattern.quote(File.:¢

}

Outputof gradl e -g check

> gradle -q check
proj ect path :
proj ect name = projectCoreProperties
project dir ="'
build file = "build.gradle'
build dir = 'build
proj ect path :subProject
proj ect name = subProj ect
project dir = 'subProject’
build file = '"subProject/build.gradle'
build dir = 'subProject/build

11.2. Task API

Many of the methods of the Pr oj ect instance return task objects. We have already seen some ways that

11.3. Summary

The project and the task API constitute the core layer of Gradle and provide all the possible interaction
options with this layer. (2] This core-layer constitutes a language for dependency based programming. 19
There are many other projects providing such a language. There is Ant for Java, Rake and Rant for Ruby,
SCons for Python, the good old Make and many more. (1] we think that one thing that makes Gradle
special compared to the other tools, is its strong support for applying dependency based programming on
multi-project builds. We also think that just Gradle's core layer (together with its integration of the Ant tasks),
provides a more convenient build system than Ant's core layer.

Page 52 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html

[9] There is more to come for this layer in the other chapters, e.g. support for multi-project builds (see
Chapter 28, Multi-project Builds).

[10] Martin Fowler has written about this:

http://martinfowler.com/articles/rake.html#DependencyBasedProgramming

[11] Interestingly, Maven2 is the only major build system which does not use dependency based

programming.

Page 53 of 168

http://martinfowler.com/articles/rake.html#DependencyBasedProgramming

12

More about Tasks

In the introductory tutorial (Chapter 4, Build Script Basics) you have learned how to create simple tasks. You
have also learned how to add additional behavior to these tasks later on. And you have learned how to
create dependencies between tasks. This was all about simple tasks. But Gradle takes the concept of tasks
further. Gradle supports enhanced tasks, that is, tasks which have their own properties and methods. This is
really different to what you are used to with Ant targets. Such enhanced tasks are either provided by you or
are provided by Gradle.

12.1. Defining tasks

We have already seen how to define tasks using a keyword style in Chapter 4, Build Script Basics. There are
a few variations on this style, which you may need to use in certain situations. For example, the keyword
style does not work in expressions.

Example 12.1. Defining tasks

bui I d. gradl e

task(hello) << {
println "hello"
}

task(copy, type: Copy) {
fromfile('srcDir'))
into(buildDir)

You can also use strings for the task names:

Example 12.2. Defining tasks - using strings

bui | d. gradl e
task('hello') <<
{
println "hello"
}

task(' copy', type: Copy) {
from(file('srcDir'))
into(buildDir)

Page 54 of 168

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 12.3. Defining tasks with alternative syntax

buil d. gradl e

tasks. add(nane: 'hello') << {
println "hello"

}

t asks. add(nane: 'copy', type: Copy) {
fromfile('srchDir'))
into(buildDir)

Here we add tasks to the t asks collection. Have a look at TaskCont ai ner for more variations of the

add() method.

12.2. Locating tasks

You often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways you can do this. Firstly, each task is available as a

property of the project, using the task name as the property hame:
Example 12.4. Accessing tasks as properties
bui I d. gradl e

task hello

println hello. nane
println project. hello. nane

Tasks are also available through the t asks collection.

Example 12.5. Accessing tasks via tasks collection
buil d. gradl e
task hello

println tasks. hell o. nanme
println tasks['hello'].name

You can access tasks from any project using the task's path using the t asks. get ByPat h() method. You

can call the get ByPat h() method with a task name, or a relative path, or an absolute path.

Page 55 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 12.6. Accessing tasks by path

buil d. gradl e

project(':projectA) {
task hello
}

task hello

println tasks.getByPath('hello').path

println tasks.getByPath(':hello').path

println tasks.getByPath(' projectA hello').path
println tasks.getByPath(':projectA hello').path

Outputofgradl e -q hello

> gradle -q hello
chello

chello

:projectA hello
:projectA hello

Have a look at TaskCont ai ner for more options for locating tasks.

12.3. Configuring tasks

As an example, let's look at the Copy task provided by Gradle. To create a Copy task for your build, you can

declare in your build script: [*2]

Example 12.7. Creating a copy task

buil d. gradl e

task myCopy(type: Copy)

following examples show several different ways to achieve the same configuration.

Example 12.8. Configuring a task - various ways

buil d. gradl e

Copy nyCopy = task(nyCopy, type: Copy)

myCopy. from ' resources’

myCopy.into 'target’

myCopy.include(" **/*. txt', "**/*.xm"', "**/* properties')

This is similar to the way we would normally configure objects in Java. You have to repeat the context (

my Copy) in the configuration statement every time. This is a redundancy and not very nice to read.

There is a more convenient way of doing this.

Page 56 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html

Example 12.9. Configuring a task - fluent interface

buil d. gradl e

task(myCopy, type: Copy)
.fronm('resources')
.into('target')
cinclude(" **/*. txt', "**/*. xm"', "**/* properties')

You might know this approach from the Hibernates Criteria Query APl or JMock. Of course the API of a task
has to support this. The from t o and i ncl ude methods all return an object that may be used to chain to
additional configuration methods. Gradle's build-in tasks usually support this configuration style.

But there is yet another way of configuring a task. It also preserves the context and it is arguably the most
readable. It is usually our favorite.

Example 12.10. Configuring a task - with closure

buil d. gradl e

task myCopy(type: Copy)
ny Copy {
from'resources'
into 'target’
include(" **/*. txt', "**/*. xm', "**/* properties')

This works for any task. Line 3 of the example is just a shortcut for the t asks. get ByNanme() method. It is
important to note that if you pass a closure to the get ByNarme() method, this closure is applied to configure
the task.

There is a slightly different ways of doing this.

Example 12.11. Configuring a task - with configure() method

buil d. gradl e

task myCopy(type: Copy)
nyCopy. confi gure {
from(' source')

into('target')
include(" **/*. txt', "**/* . xm', "**/* properties')

Every task has a conf i gur e() method, which you can pass a closure for configuring the task. Gradle uses
this style for configuring objects in many places, not just for tasks.

You can also use a configuration closure when you define a task.

Page 57 of 168

Example 12.12. Defining a task with closure

buil d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’
include('**/*. txt', "**/*. xm', "**/* properties')

12.4. Adding dependencies to a task

There are several ways you can define the dependencies of a task. In Section 4.3, “Task dependencies” you
were introduced to defining dependencies using task names. Task names can refer to tasks in the same
project as the task, or to tasks in other projects. To refer to a task in another project, you prefix the name of
the task with the path of the project it belongs to. Below is an example which adds a dependency from
proj ect A: t askXto proj ect B: t askY:

Example 12.13. Adding dependency on task from another project

bui I d. gradl e

project ('projectA) {
task taskX(dependsOn: ':projectB:taskY') << {
println 'taskX
}

}

project (' projectB) {
task taskY << {
println 'taskY
}

Outputofgradl e -q taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a Task object, as shown in this example:

Page 58 of 168

Example 12.14. Adding dependency using task object

buil d. gradl e

task taskX << {
println 'taskX

}

task taskY << {
println 'taskyY

}

t askX. dependsOn taskY

Outputof gradl e -qg taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is
passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
a dependency from t ask X to all the tasks in the project whose name starts with | i b:

Example 12.15. Adding dependency using closure
buil d. gradl e

task taskX << {
println 'taskX

}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}

task libl << {
println "libl'
}

task lib2 << {
println '"lib2'
}

task notALi b << {
println 'notALib'
}

Outputof gradl e -qg taskX

> gradle -q taskX
libl
l'i b2
taskX

For more information about task dependencies, see the Task API.

Page 59 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html

12.5. Adding a description to a task

You can add a description to your task. This description is for example displayed when executing gr adl e
-t.
Example 12.16. Adding a description to a task

bui | d. gradl e

task copy(type: Copy) {
description = 'Copies the resource directory to the target directory."'

from'resources'
into 'target’
include("**/*. txt', "**/*.xml', '"**/* properties')

12.6. Replacing tasks

Sometimes you want to replace a task. For example if you want to exchange a task added by the Java
Plugin with a custom task of a different type. You can achieve this with:

Example 12.17. Overwriting a task
buil d. gradl e

task copy(type: Copy)

task copy(overwite: true) << {
printin('l amthe new one.")
}

Outputof gradl e -qgq copy

> gradle -q copy
| amthe new one.

Here we replace a task of type Copy with a simple task. When creating the simple task, you have to set the
overwr ite property to true. Otherwise Gradle throws an exception, saying that a task with such a name
already exists.

12.7. Task rules

Sometimes you want to have a task which behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Page 60 of 168

Example 12.18. Task rule

buil d. gradl e

tasks. addRul e("Pattern: ping<IiD>") { String taskNane ->
if (taskNane.startsWth("ping")) {
task(taskNane) << {
println "Pinging: " + (taskNane - 'ping')
}

Output of gradl e -qg pi ngServerl

> gradle -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule. This description is shown when doing for example
gradle -t.

Rules not just work for calling tasks from the command line. You can also create dependsOn relations on
rule based tasks:

Example 12.19. Dependency on rule based tasks

bui | d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskNanme ->
if (taskName.startsWth("ping")) {
task(taskNanme) << {
println "Pinging: " + (taskNane - 'ping')
}

}

task groupPing {
dependsOn pi ngServerl, pingServer?2
}

Outputof gradl e -qg groupPi ng

> gradle -q groupPing
Pi ngi ng: Serverl
Pi ngi ng: Server2

12.8. Summary

If you are coming from Ant, such an enhanced Gradle task as Copy looks like a mixture between an Ant
target and an Ant task. And this is actually the case. The separation that Ant does between tasks and targets
is not done by Gradle. The simple Gradle tasks are like Ant's targets and the enhanced Gradle tasks also
include the Ant task aspects. All of Gradle's tasks share a common API and you can create dependencies
between them. Such a task might be nicer to configure than an Ant task. It makes full use of the type system,
is more expressive and easier to maintain.

Page 61 of 168

[12] If you use the Java Plugin, this task is automatically created and added to your project.

Page 62 of 168

13

Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need the relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 13.1, “Log levels”. There are two Gradle-specific log levels, in
addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the
default, and is used to report build progress.

Table 13.1. Log levels

Level Used for
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progress information messages
INFO Information messages

DEBUG Debug messages

13.1. Choosing a log level

You can use the command line switches shown in Table 13.2, “Log level command-line options” to choose
different log levels. In Table 13.3, “Stacktrace command-line options” you find the command line switches
which affect stacktrace logging.

Table 13.2. Log level command-line options
Option Outputs Log Levels
no logging options LIFECYCLE and higher
-q QUIET and higher
- INFO and higher

-d DEBUG and higher (that is, all log messages)

Page 63 of 168

Table 13.3. Stacktrace command-line options

Option Meaning

No No stacktraces are printed to the console in case of a build error (e.g. a compile error).
stacktrace Only in case of internal exceptions will stacktraces be printed. If the loglevel option - d is
options chosen, truncated stacktraces are always printed.

Truncated stacktraces are printed. We recommend this over full stacktraces. Groovy full
stacktraces are extremely verbose (Due to the underlying dynamic invocation

-S
mechanisms. Yet they usually do not contain relevant information for what has gone wrong
in your code.)

-f The full stacktraces are printed out.

13.2. External tools and standard output

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle injects an adapter into the
Ant and Ivy logging systems to redirect their logging output into the Gradle logging system. There is a 1:1
mapping from the Ant/lvy log levels to the Gradle log levels, except the Ant/lvy TRACE level, which is
mapped to Gradle DEBUG. This means the default Gradle log level does not show any Ant/lvy output unless
it is an error or a warning.

There are many tools out there which still use standard output for logging. Gradle redirects by default
standard out to the QUIET level and standard err to the ERROR level. This behavior is configurable. Gradle
provides a couple of switches for this. To change the log level, standard out is redirected to, when your build
script gets evaluated, the project object offers a method called Pr oj ect . capt ur eSt andar dQut put () .
To change the log level for standard out during task execution, tasks offer a method also with the name
Task. capt ur eSt andar dQut put () . Tasks and projects also offer a method

di sabl eSt andar dQut put Capt ur e which causes the standard out to be send to the default standard out.

If you need more fine grained control on how standard out is redirected you can use the class
St andar dQut put Loggi ng .

13.3. Sending your own log messages

Gradle provides a | ogger property to a build script, which is an instance of a slf4j logger. Here is the code
of the logging integration test, which shows you how to use the logger, as well as working with standard out
redirection.

Page 64 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/logging/StandardOutputLogging.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/logging/StandardOutputLogging.html

Example 13.1. Sending your own log message

buil d. gradl e

| ogger . i nfo(Loggi ng. QU ET, prefix + "quietLog")

| ogger . i nfo(Loggi ng. LI FECYCLE, prefix + "lifecycl eLog")
| ogger.info(prefix + "infolLog")

| ogger . debug(prefix + "debugLog")

| ogger.warn(prefix + "warnLog")

| ogger.error(prefix + "errorLog")

printIn(prefix + 'quietQut')

capt ur eSt andar dQut put (LogLevel . | NFO)

printin(prefix + "infoQut')

task logLifecycle << {
printin(prefix + 'lifecycl eTaskQut')

}
| ogLi f ecycl e. capt ur eSt andar dQut put (LogLevel . LI FECYCLE)

task loglnfo << {
println(prefix + 'infoTaskCQut"')

}
| ogl nf 0. capt ur eSt andar dQut put (LogLevel . | NFO)

task | og(dependsOn: [l oglnfo, logLifecycle]) << {
println(prefix + 'quietTaskQut')

}

Strictly speaking, QUIET and LIFECYCLE are not log levels, but they are markers. But logically Gradle treats
them as log levels. In a future version of Gradle we want to provide a logger which provides additional log
methods qui et and | i f ecycl e.

You can also hook into Gradle's logging system from within other classes (classes from the buildSrc
directory for example). Simply use a slf4j logger.

i mport org.slf4j.Logger;
i mport org.slf4j.LoggerFactory;

public class Myd ass {
private static Logger |ogger = LoggerFactory. getlLogger (M ass. cl ass);

You can use this logger the same way as you use the provided logger in the build script.

Page 65 of 168

14

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the
bui | d. xm , the handling of the targets, special constructs like macrodefs, and so on. In other words,
everything except the Ant tasks and types. Gradle understands this language, and allows you to import your
Ant bui | d. xm directly into a Gradle project. You can then use the targets of your Ant build as if they were
Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle
provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
13]

Your build script may contain statements like:" ant cl ean conpil e". execute(). (13
You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle's plugins. This process can be done in parts over time, and you can have a working Gradle
build during the entire process.

14.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der

instance. This Ant Bui | der is used to access Ant tasks, types and properties from your build script. There
is a very simple mapping from Ant's bui | d. xm format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant. echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example which
executes the echo task. Notice that we can also mix Groovy code and the Ant task markup. This can be
extremely powerful.

Page 66 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/AntBuilder.html

Example 14.1. Using an Ant task

buil d. gradl e

task hello << {
String greeting = 'hello from Ant'
ant . echo(nessage: greeting)

Output of gradl e hel | o

> gradle hello

chello

[ant:echo] hello from Ant
BUI LD SUCCESSFUL

Total time: 1 secs

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we
pass the message for the echo task as nested text:

Example 14.2. Passing nested text to an Ant task

bui | d. gradl e

task hello << {
ant.echo('hello fromAnt")
}

Outputof gradl e hel | o

> gradle hello

‘hello

[ant:echo] hello from Ant
BUI LD SUCCESSFUL

Total tinme: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as
tasks, by calling a method with the same name as the element we want to define.

Example 14.3. Passing nested elements to an Ant task

buil d. gradl e

task zip << {
ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(name: '**.xm")
excl ude(nanme: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method

Page 67 of 168

name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 14.4. Using an Ant type

bui I d. gradl e

task list << {
def path = ant.path {
fileset(dir: '"libs', includes: '"*.jar")

}

path.list().each {
printin it

}

More information about Ant Bui | der can be found in 'Groovy in Action' 8.4 or at the Groovy Wiki

14.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you use the t ypedef Ant task, just as you would in a
bui | d. xnl file. You can then refer to the custom Ant task as you would a built-in Ant task.

Example 14.5. Using a custom Ant task

buil d. gradl e

task check << {
ant .t askdef (resource: 'checkstyl etask. properties') {
cl asspath {
fileset(dir: "libs', include: '"*.jar")
}

}

ant . checkstyl e(config: 'checkstyle.xm"') {
fileset(dir: 'src')

}

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To
do this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. This is described in more detail in Section 25.3, “How to declare your dependencies”.

Example 14.6. Declaring the classpath for a custom Ant task

buil d. gradl e

configurations {
checkstyl e

}

dependenci es {
checkstyl e group: 'checkstyle', nane: 'checkstyle', version: '5.0

}

To use the classpath configuration, use the asPat h property of the custom configuration.

Page 68 of 168

http://groovy.codehaus.org/Using+Ant+from+Groovy

Example 14.7. Using a custom Ant task and dependency management together

buil d. gradl e

task check << {

ant . t askdef (resource: 'checkstyl et ask. properties',
ant . checkstyl e(config: 'checkstyle.xm"') {

fileset(dir: '"src')

}

14.2. Importing an Ant build

cl asspat h:

configurations. checks

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you
import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute

the Ant targets in exactly the same way as Gradle tasks.

Example 14.8. Importing an Ant build
buil d. gradl e

ant.inportBuild 'build. xm"

bui | d. xm

<pr oj ect >
<t arget name="hel |l 0" >
<echo>Hel |l o, from Ant </ echo>
</target>
</ proj ect >

Output of gradl e hel | o

> gradle hello

‘hello

[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tinme: 1 secs

You can add a task which depends on an Ant target:

Page 69 of 168

Example 14.9. Task that depends on Ant target

buil d. gradl e

ant.inportBuild 'build. xm"

task intro(dependsOn: hello) << {
println 'Hello, from G adle'

}

Outputofgradl e intro

> gradle intro

chello

[ant:echo] Hello, from Ant
iintro

Hell o, from Gradle

BUI LD SUCCESSFUL

Total tinme: 1 secs

Or, you can add behaviour to an Ant target:

Example 14.10. Adding behaviour to an Ant target

buil d. gradl e

ant.inportBuild 'build. xm"

hello << {
println 'Hello, from G adle'

}

Output of gradl e hel I o

> gradle hello

chello

[ant:echo] Hello, from Ant
Hello, from Gradle

BU LD SUCCESSFUL

Total tinme: 1 secs

It is also possible for an Ant target to depend on a Gradle task:

Page 70 of 168

Example 14.11. Ant target that depends on Gradle task

buil d. gradl e

ant.inportBuild 'build. xm"

task intro << {
println 'Hello, from G adle'

}

buil d. xm

<pr oj ect >
<target nanme="hell 0" depends="intro">
<echo>Hel | o, from Ant </ echo>
</target>
</ pr oj ect >

Outputof gradl e hel l o

> gradle hello

intro

Hello, from Gradle

:hello

[ant:echo] Hello, from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

14.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set
the property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you

can change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.
Example 14.12. Setting an Ant property
buil d. gradl e

ant . buil dDir = buil dDir
ant . properties.buildDir = buildDir

ant.properties['buildDir'] = buildDir
ant . property(nanme: 'buildDir', location: buildDr)
bui | d. xm

<echo>bui I dDi r = ${bui |l dDi r}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also

available as a Map. Below are some examples.

Page 71 of 168

Example 14.13. Getting an Ant property
bui | d. xm

<property nanme="ant Prop" value="a property defined in an Ant build"/>

buil d. gradl e

println ant.antProp
println ant. properties. antProp
println ant.properties['antProp']

There are several ways to set an Ant reference:

Example 14.14. Setting an Ant reference

buil d. gradl e
ant.path(id: 'classpath', location: 'libs")
ant . references. cl asspath = ant.path(location: 'libs")
ant.references[' classpath’'] = ant.path(location: 'libs")
bui | d. xm

<path refid="cl asspath"/>

There are several ways to get an Ant reference:

Example 14.15. Getting an Ant reference

bui | d. xm
<pat h id="ant Path" |ocation="1ibs"/>
bui | d. gradl e

println ant.references. antPath
println ant.references['antPath']

14.4. API
The Ant integration is provided by Ant Bui | der .

a look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 72 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/AntBuilder.html

15
Plugins

Now we look at how Gradle provides build-by-convention and out of the box functionality. These features are
decoupled from the core of Gradle, and are provided via plugins. Although the plugins are decoupled, we
would like to point out that the Gradle core plugins are NEVER updated or changed for a particular Gradle
distribution. If there is a bug in the compile functionality of Gradle, we will release a new version of Gradle.
There is no change of behavior for the lifetime of a given distribution of Gradle.

15.1. Declaring plugins

If you want to use the plugin for building a Java project, simply type
usePl ugi n('java')

at the beginning of your script. That's all. From a technological point of view plugins use just the same
operations as you can use from your build scripts. That is they use the Project and Task API (see
Chapter 11, The Project and Task API). The Gradle plugins use this API for:

® Adding tasks to your build (e.g. compile, test)
® Creating dependencies between those tasks to let them execute in the appropriate order.
® Adding a so called convention object to your project configuration.

Let's check this out:

Example 15.1. Using plugin
bui I d. gradl e
usePl ugi n('java')
task check << {

println(conpile.destinationDir.nane)

}

Output of gradl e -g check

> gradle -q check
cl asses

Page 73 of 168

The Java Plugin adds a conpi | e task to the project object which can be accessed by a build script.

The usePlugin method either takes a string or a class as an argument. You can write (14]
usePl ugi n(org. gradl e. api . pl ugi ns. JavaPl ugi n)

Any class, which implements the Plugin interface, can be used as a plugin. Just pass the class as an
argument. You don't need to configure anything else for this. If you want to access a custom plugin via a
string identifier, you must inform Gradle about the mapping. You can do this in the file
pl ugi n. properti es in the top level directory of Gradle. It looks like this for the current release:

Figure 15.1. plugin.properties

java=org. gradl e. api . pl ugi ns. JavaPl ugi n

ecl i pse=org. gradl e. api . pl ugi ns. Ecl i psePl ugi n

groovy=or g. gradl e. api . pl ugi ns. G oovyPl ugi n

war =or g. gr adl e. api . pl ugi ns. War Pl ugi n

osgi =or g. gradl e. api . pl ugi ns. osgi . Gsgi Pl ugi n
jetty=org.gradle.api.plugins.jetty.JettyPlugin

maven=or g. gr adl e. api . pl ugi ns. MavenPl ugi n

proj ect -reports=org. gradl e. api . pl ugi ns. Proj ect Report sPl ugi n

If you want to use your own plugins, you must make sure that they are accessible via the build script
classpath (see Chapter 29, Organizing Build Logic for more information). To learn more about how to write
custom plugins, see Chapter 24, How to write Custom Plugins.

15.2. Configuration

If you use the Java Plugin for example, there are a compile and a processResources task for your
production code (the same is true for your test code). The default location for the output of those tasks is the
directory bui | d/ cl asses. What if you want to change this? Let's try:

Example 15.2. Configuring a plugin
buil d. gradl e

usePl ugi n('java')

task check << {
processResources. destinationDir = new File(buildDir, 'output')
println(processResources. destinationDir. nane)
println(conpile.destinationDir.nane)

Output of gradl e -g check

> gradle -q check
out put
cl asses

Setting the desti nati onDi r of the processResources task had only an effect on the processResources
task. Maybe this was what you wanted. But what if you want to change the output directory for all tasks? It
would be unfortunate if you had to do this for each task separately.

Page 74 of 168

Gradles tasks are usually convention aware. A plugin can add a convention object to your build. It can also
map certain values of this convention object to task properties.

Example 15.3. Plugin convention object

buil d. gradl e
usePl ugi n('java')

task check << {
cl assesDi rName = ' out put'
println(processResources. destinationDir. nane)
println(conpile.destinationDir.nane)
println(convention. cl assesDi r Nane)

Output of gradl e -g check

> gradle -q check
out put
out put
out put

The Java Plugin has added a convention object with a cl assesDi r Nane property. The properties of a
convention object can be accessed like project properties. As shown in the example, you can also access
the convention object explicitly.

By setting a task attribute explicitly (as we have done in the first example) you overwrite the convention
value for this particular task.

Not all of the tasks attributes are mapped to convention object values. It is the decision of the plugin to
decide what are the shared properties and then bundle them in a convention object and map them to the
tasks.

15.2.1. More about convention objects

Every project object has a convention object which is a container for convention objects contributed by the
plugins declared for your project. If you simply access or set a property or access a method in your build
script, the project object first looks if this is a property of itself. If not, it delegates the request to its
convention object. The convention object checks if any of the plugin convention objects can fulfill the request
(first wins and the order is not defined). The plugin convention objects also introduce a namespace.

usePl ugi n('java')

println classesDir

println convention. cl assesDir

println convention. plugins.java.cl assesDir

All three statements print out the same property. The more specific statements are useful if there are
ambiguities.

Page 75 of 168

15.2.2. Declaring plugins multiple times

A plugin is only called once for a given project, even if you have multiple usePl ugi n() statements. An
additional call after the first call has no effect but doesn't hurt either. This can be important if you use plugins
which extend other plugins. For example usePl ugi n(' groovy') calls also the Java Plugin. We say the
Groovy plugin extends the Java plugin. But you might as well write:

usePl ugi n('java')
usePl ugi n(' groovy')

If you use cross-project configuration in multi-project builds this is a useful feature.

15.3. Summary

Plugins provide tasks, which are glued together via dependsOn relations and a convention object.

[14] Thanks to Gradle's default imports (see Appendix C, Existing IDE Support and how to cope without it)

you can also write usePl ugi n(JavaPl ugi n) in this case.

Page 76 of 168

16

The Java Plugin

The Java Plugin adds Java compilation, testing and bundling capabilities to a project. It serves as the basis
for most of the other Gradle plugins.

16.1. Tasks

The Java plugin adds the tasks shown in Table 16.1, “Java plugin - tasks” to a project. These tasks
constitute a lifecycle for Java builds.

Table 16.1. Java plugin - tasks

Task name Depends on Type

cl ean - dean
pr ocessResour ces - Copy
conpi | e - Conpi l e
processTest Resources - Copy
conpi | eTest s conpil e Conpi |l e

conpi | e, conpi | eTest s, processResour ces,
t est Test
processTest Resources

javadoc - Javadoc
jar conpi | e, processResour ces, t est Jar
l'ibs All Jar and War tasks in the project. Task
dists |'i bs and all Zi p and Tar tasks in the project. Task
build The tasks which produce the artifacts in configuration Task
Confi gur ati onNane Confi gurati onNape.

upl oad The tasks which uploads the artifacts in configuration Upl oad
Conf i gurati onNane Confi gurati onN@ape. o

Page 77 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Clean.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/testing/Test.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/javadoc/Javadoc.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Jar.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Upload.html

16.2. Project layout

The Java plugin assumes the project layout shown in Table 16.2, “Java plugin - default project layout”. This
is configurable using the convention properties listed in the next section.

Table 16.2. Java plugin - default project layout

Directory

src/ main/java

src/ mai n/ resour ces

src/test/java

src/test/resources

Meaning

Application/Library Java source

Application/Library resources

Test Java source

Test resources

16.3. Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown in Table 16.3, “Java
plugin - dependency configurations”. It assigns those configurations to tasks such as conpi |l e and t est .

To learn more about configurations see Section 25.3.1, “Configurations” and Section 26.2, “Artifacts and

configurations”

Table 16.3. Java plugin - dependency configurations

Name Extends Used by tasks Meaning
compile - compile Compile time dependencies
runtime compile - Runtime dependencies
testCompile compile compileTests Additional dependencies for compiling tests.
i runtime, . . .
testRuntime . test Additional dependencies for running tests only.
testCompile
archives - uploadArchives Artifacts (e.g. jars) produced by this project.
default runtime, Artifacts produced and dependencies required
efau , - . .
archives by this project.

Page 78 of 168

16.4. Convention properties

The Java plugin adds the convention properties shown in Table 16.4, “Java plugin - directory properties” and
Table 16.6, “Java plugin - other properties”. [15] Gradle's conventions contain a convention for the directory
hierarchy as well as conventions for the element names of the hierarchy. For example the srcDi rs are
relative to the sr cRoot . Therefore srcDi r s is a read-only property. If you want to change the name of the
source dirs you need to do this via the sr cDi r Nanes property. But the paths you specify here are relative to
the sr cRoot . This has the advantage to make bulk changes easy. If you change sr cRoot from src to
sour ce, this automatically applies to all directory properties which are relative to sr cRoot . As this also

introduces an inflexibility, we have additional floating dirs, which are not bound to any hierarchy (see
Table 16.5, “Java plugin - floating directory properties”). For example code generation tool could make use
of this, by adding a source dir which is located in the build folder.

Table 16.4. Java plugin - directory properties

Directory Name Directory File

Default Name Default File
Property Property
srcRootName srcRoot src projectDir/src
srcDirNames srcDirs [mai n/j aval [srcRoot/ main/java]

. . [. [srcRoot

resourceDirNames resourceDirs mai n/ r esour ces .

] / mai n/ r esour ces]
testSrcDirNames testSrcDirs [test/javal [srcRoot/test/java]

)) [srcRoot
testResourceDirNames testResourceDirs test/resources
/test/resources]

classesDirName classesDir cl asses buil dDir/cl asses
testClassesDirName testClassesDir test-cl asses buil dDir/test-cl asses
testResultsDirName testResultsDir test-results buildDir/test-results
testReportDirName testReportDir tests reportsDir/test
libsDirName libsDir libs buildDir/libs
distsDirName distsDir di sts buil dDir/dists
docsDirName docsDir docs bui | dDi r/ docs
javadocDirName javadocDir j avadoc bui I dDi r/j avadoc
reportsDirName reportsDir reports buil dDir/reports

Page 79 of 168

Table 16.5. Java plugin - floating directory properties

Property Type Default Value
floatingSrcDirs List empty
floatingResourceDirs List empty
floatingTestSrcDirs List empty
floatingTestResourceDirs List empty

Table 16.6. Java plugin - other properties

Property Type Default Value

o JavaVer si on . Can also set using a String or a
sourceCompatibility 15
Number,eg' 1. 5" orl.5.

o JavaVer si on . Can also set using a String or o
targetCompatibility Numberegl 5 orl 5 sourceConpatibility

archivesBaseName String proj ect Nane
manifest G adl eMani f est empty
metalnf List empty

16.5. Javadoc

The j avadoc task has no default association with any other task. It has no prerequisites on the actions of
other tasks, as it operates on the source. We support the core javadoc options and the options of the
standard doclet described in the reference documentation of the Javadoc executable.

For some of the Javadoc options we provide defaults these defaults are only used when they are not set
explicitly. Except for the sourcepath and classpath option for these options you can in addition to setting your
custom values also make it so that the defaults get appended to these paths with the
(alwaysAppendDefaultSourcepath and alwaysAppendDefaultClasspath toggles).

Page 80 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/GradleManifest.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide

Table 16.7. Javadoc options

Javadoc
) Default value
option
destination))
) [javadocDir]
directory
The java or groovy source
sourcepath))
directories
The dependencies from the
classpath compile configuration + the
classesDir
windowTitle project name + version
All first level sub directories in the
subPackages

srcDirs

When is the default used

When the destination directory is not set
explicitly

When the sourcepath is empty or when you set
the alwaysAppendDefaultSourcepath to true

When the classpath is empty or when you set
the alwaysAppendDefaultClasspath to true

When the window title is not set explicitly

When the following options are all empty:
packageNames, sourceNames and
subPackages

For a complete list of supported Javadoc options consult the APl documentation of the following classes:
Cor eJavadocOpt i ons and St andar dJavadocDocl et Opti ons .

Table 16.8. Java plugin - Javadoc properties

Task Property
srcDirs srcDirs
classesDir classesDir

destinationDir [javadocDir]

16.6. Clean

Convention Property

The cl ean task simply removes the directory denoted by its di r property. This property is mapped to the

bui | dDi r property of the project. In future releases there will be more control of what gets deleted. If you

need more control now, you can use the Ant delete task.

16.7. Resources

Gradle uses the Copy task for resource handling. It has two instances, processResour ces and

processTest Resour ces.

Table 16.9. Java plugin - processResource properties

Task Instance Task Property

processResources sourceDirs
processResources destinationDir
processTestResources sourceDirs
processTestResources destinationDir

Convention Property

resourceD

classesDir

irs

testResourceDirs

testClassesDir

Page 81 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html

to learn about the detalils.

16.8. Compile

The Compile task has two instances, conpi | e and conpi | eTest s.

Table 16.10. Java plugin - compile properties

Task Instance Task Property Convention Property
compile srcDirs srcDirs

compile destinationDir classesDir

compile sourceCompatibility ~ sourceCompatibility
compile targetCompatibility targetCompatibility
compileTests srcDirs testSrcDirs
compileTests destinationDir testClassesDir
compileTests sourceCompatibility ~ sourceCompatibility

compileTests targetCompatibility targetCompatibility

compile. You can set most of the properties of the Ant javac task.

16.9. Test

The t est task executes the unit tests which have been compiled by the conpi | eTest s task.

Table 16.11. Java plugin - test properties

Task Property Convention Property
testClassesDir testClassesDir
testResultsDir testResultsDir
unmanagedClasspath [classesDir]

a st opAt Fai | uresOr Er r or s property to control the behavior when tests are failing. Test always executes
all tests. It stops the build afterwards if st opAt Fai | uresOr Err or s is true and there are failing tests or
tests that have thrown an uncaught exception.

Per default the tests are run in a forked JVM and the fork is done per test. You can modify this behavior by
setting forking to false or set the forkmode to once.

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it
scans all .class files. You can set custom includes / excludes, only those classes will be scanned. Depending
on the Test framework used (JUnit / TestNG) the test class detection uses different criteria.

Page 82 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/Copy.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/Compile.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/testing/Test.html

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the
class is considered to be a JUnit test class. Extend TestCase or GroovyTestCase, Class annotated with
RunWith or contain a method annotated with Test (inherited test methods are detected).

When using TestNG, we scan for methods annotated with Test (inherited test methods are detected).
Since 0.6.1 we scan up the inheritance tree into jar files on the test classpath.

In case you don't want to use the test class detection, you can disable it by setting scanForTestClasses to
false. This will make the test task only use the includes / excludes to find test classes. If
scanFor Test O asses is disabled and no include or exclude patterns are specified, the respective defaults
are used. For include this is "**/*Tests. cl ass", "**/*Test.class" and the for exclude it is
"**/ Abstract*. cl ass".

Both JUnit and TestNG are supported through their Ant tasks.

16.10. Jar

The j ar task creates a JAR file containing the class files and resources of the project. The JAR file is
declared as an artifact in the ar chi ves dependency configuration. This means that the JAR is available in
the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part
of the dependency descriptor. To learn more about how to work with archives and artifact configurations see
Chapter 26, Artifact Management.

16.11. Adding archives

If you come from Maven you can have only one library JAR per project. With Gradle you can have as many
as you want. You can also add WAR, ZIP and TAR archives to your project. They are all added the same
way, so let's look at how you add a ZIP file.

Example 16.1. Creation of ZIP archive

bui I d. gradl e

usePlugin 'java'
version = 1.0

task nmyZip(type: Zip) {
fileSet(dir: 'somedir')
}

println myZp. archi veName

Output of gradl e -g nyZip

> gradle -q nyZip
zi pProject-1.0.zip

This adds a Zip archive task with the name nyZi p which produces ZIP file zi pProject-1.0.zip. Itis
important to distinguish between the name of the archive task and the name of the archive generated by the

Page 83 of 168

archive task. The name of the generated archive file is by default the name of the project with the project
version appended. The default name for archives can be changed with the ar chi vesBaseNamne project
property. The name of the archive can also be changed at any time later on.

There are a number of properties which you can set on an archive task. You can, for example, change the
name of the archive:

Example 16.2. Configuration of archive task - custom archive name

buil d. gradl e

usePlugin 'java'
version = 1.0

task nyZip(type: Zip) {
fileSet(dir: 'somedir')
baseNane = 'cust omNane'

}

println nmyZp. archi veName

Output of gradl e -qgq nyZip

> gradle -q nmyZip
cust omNane- 1. 0. zi p

You can further customize the archive names:

Example 16.3. Configuration of archive task - appendix & classifier

buil d. gradl e

usePlugin 'java'
archi vesBaseName = 'gradle’
version = 1.0

task nmyZip(type: Zip) {
appendi x = 'w apper"'
classifier = "src’
fileSet(dir: 'somedir')

}
println nmyZp. archi veNane
Outputofgradl e -q nyZip

> gradle -q nyZip
gradl e-wrapper-1.0-src. zip

Often you will want to publish an archive, so that it is usable from another project. This process is described
in Chapter 26, Artifact Management

16.11.1. Archive tasks

An archive task is a task which produces an archive at execution time. The following archive tasks are
available:

Page 84 of 168

Table 16.12. Archive tasks

Type Accepted file container Extends
Zip fileSet, fileCollection, zipFileSet AbstractArchiveTask

Tar fileSet, fileCollection, zipFileSet, tarFileSet Zip

Jar fileSet, fileCollection, zipFileSet Zip

War fileSet, fileCollection, zipFileSet Jar

The following file containers are available:

Table 16.13. File container for archives

Type Meaning

Fi | eSet A set of files defined by a common baseDir and include/exclude patterns.

Zi pFi | eSet. Extends FileSet with additional properties known from Ant's zipfileset task.
Tar Fi | eSet Extends ZipFileSet with additional properties known from Ant's tarfileset task.

An arbitrary collection of files to include in the archive. In contrast to a Fi | eSet
they don't need to have a common basedir. There are a number of ways of

Fil eCol |l ection creatingaFil eCol | ecti on. For example, the Confi gur at i on objects of a
project implement Fi | eCol | ecti on. You can also obtain a Fi | eCol | ecti on
using the Proj ect. fil es() method.

AntDirective An arbitrary Ant resource declaration.

To learn about all the details have a look at the javadoc of the archive task class or the file container class
itself.

16.11.1.1. Common properties

The name of the generated archive is assembled from the task properties baseNamne, appendi x, ver si on,
cl assi fi er and ext ensi on into baseName- appendi x- ver si on-cl assi fi er. ext ensi on . 18 The
assembled name is accessible via the ar chi veNane property. The nane property denotes the name of the
task, not the generated archive. An archive task has also a cust omNane property. If this property is set, the
ar chi veNane property returns its value instead of assembling a name out of the properties mentioned
above.

Archives have a desti nati onDi r property to specify where the generated archive should be placed. It has
also an ar chi vePat h property, which returns a File object with the absolute path of the generated archive.

16.11.1.2. Adding content

To add content to an archive you must add file container to an archive (see Table 16.13, “File container for
archives”). You can add as many file containers as you like. They behave pretty much the same as the Ant

resources with similar names.

Page 85 of 168

http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Zip.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Tar.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/Jar.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/War.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/FileSet.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/ZipFileSet.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/TarFileSet.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/FileCollection.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/FileCollection.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/util/AntDirective.html

Example 16.4. Adding content to archive - include & exclude
buil d. gradl e

task zi pWthFil eSet (type: Zip) {

fileSet(dir: '"contentDir') {
include('**/*. txt")
exclude('**/*.gif")

You can add arbitrary files to an archive:

Example 16.5. Adding content to archive - arbitrary files
bui I d. gradl e

task zipWthFiles(type: Zip) {
files('path_to filel', "path_to file2")
}

Other examples:

Example 16.6. Adding content to archive - zipFileSet
buil d. gradl e

task zi pWthzi pFil eSet (type: Zip) {

zipFileSet(dir: 'contentDir') {
include(' **/*. txt")
exclude(' **/*.gif")

prefix = 'nyprefix
}

Example 16.7. Creation of TAR archive
buil d. gradl e

task tarWthFil eSet (type: Tar) ({
tarFileSet(dir: 'contentDir') ({
include('**/*. txt")
exclude('**/*.gif")
uid = "myuid
}

There is also the option to add an arbitrary Ant expression describing an Ant resource.
nmyZi pTask. antDi rective {
zi pgroupfileset(dir: new File(rootDir,

}

"1ib'))

This is for rather exotic use cases. Usually you should be fine with the file container provided by Gradle.

Page 86 of 168

16.11.1.3. Merging

If you want to merge the content of other archives into the archive to be generated Gradle offers you two
methods. One is ner ge:

nmyZi pTask. mer ge(' pat hl/ ot her Archi vel. zi p', 'path2/otherArchive.tar.gz")

This merges the whole content of the archive passed to the merge method into the generated archive. If you
need more control which content of the archive should be merged and to what path, you can pass a closure
to the merge method:

nmyZi pTask. nerge(' pat hl/ ot her Archivel. zip', 'path2/otherArchive.tar.gz') {
include('**/*. txt")
exclude('**/*.gif")
prefix = 'nyprefix

Under the hood Gradle scans the extension of the archives to be merged. According to the extension, it
creates a Zi pFi | eSet or Tar Fi | eSet . The closure is applied to this newly created file container. There is
another method for merging called mer geGr oup.

nyZi pTask. nergeG oup(' path_to_dir_w th_archives') {
include('**/*.zip")
exclude('**/*.tar.gz'")

With this method you can assign a set of archives to be merged. Those archives have to be located under
the directory you pass as an argument. You can define filters what archives should be included. They are
always included fully and you can't specify a path. If you need this features, you must use the ner ge
method.

16.11.1.4. Manifest

The convention object of the Java Plugin has a mani f est property pointing to an instance of
G adl eMani f est . With this Gr adl eMani f est object you can define the content of the MANI FEST. M file
for all the jar or a war archives in your project.

Example 16.8. Customization of MANIFEST.MF

bui | d. gradl e

mani fest. mai nAttributes("lnplenentation-Title": "Gadle", "Inplenentation-Version": ver

You can also define sections of a manifest file.

If a particular archive needs unique entries in its manifest you have to create your own G adl eMani f est
instance for it.

Page 87 of 168

http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/GradleManifest.html
http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/GradleManifest.html

Example 16.9. Customization of MANIFEST.MF for a particular archive

buil d. gradl e
mani fest. mai nAttributes("lnplenentation-Title": "G adle", "Inplenentation-Version": ver

myZi pTask. mani fest = new G adl eMani fest (mani fest. createMani fest())
myZi pTask. mani f est. mai nAttri but es(nykey: "nyval ue")

Passing the common manifest object to the constructor of Gradl eMani f est add the common manifest
values to the task specific manifest instance.

16.11.1.5. Metalnf
The convention object of the Java Plugin has a et al nf property pointing to a list of Fi | eSet objects. With
these file sets you can define which files should be in the META- | NF directory of a JAR or a WAR archive.

met al nf << new Fil eSet (sonebDi r)

16.12. Uploading

How to upload your archives is described in Chapter 26, Artifact Management.

16.13. Eclipse

Gradle comes with a number of tasks for generating eclipse files for your projects.

16.13.1. Eclipse classpath

Ecl i psed asspat h has a default instance with the name ecl i pseCp. It generates a . cl asspat h file.

Table 16.14. Java plugin - Eclipse properties

Task Property Convention Property

srcDirs srcDirs + resourcesDirs
testSrcDirs testSrcDirs + testResourcesDirs
outputDirectory classesDir

testOutputDirectory testClassesDir

classpathLibs the resolve result for t est Runt i me

16.13.2. Eclipse project

Ecl i psePr oj ect has a default instance with the name ecl i psePr oj ect . It generates a . pr oj ect file.

Table 16.15. Java plugin - Eclipse project properties

Task Property Convention Property
name project.name
projectType ProjectType.JAVA

Page 88 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/ide/eclipse/EclipseClasspath.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/ide/eclipse/EclipseProject.html

The java plugin also provides a task called ecl i pse which generates both of the eclipse tasks mentioned
above. If you are using the war plugin, ecl i pse also leads to the execution of the ecl i pseW p task.

[15] The buildDir property is a property of the project object. It defaults to bui | d.

Page 89 of 168

17

The Groovy Plugin

The Groovy Plugin extends the Java Plugin. It can deal with pure Java projects, [17] with mixed Java and

Groovy projects, and with pure Groovy projects.

17.1. Tasks

The Groovy plugin does not add any tasks. It modifies some of the tasks of the Java Plugin.

17.2. Project layout

The Groovy plugin assumes the project layout shown in Table 17.1, “Groovy plugin - project layout”. All the

Groovy s ource directories can contain Groovy and Java code. The Java source directories may only contain

Java source code (and can of course be empty). 118l

Table 17.1. Groovy plugin - project layout

Directory Meaning
src/ mai n/ groovy Application/Library Groovy/Java source

src/test/groovy Test Groovy/Java source

17.3. Dependency management

The Groovy plugin adds a dependency configuration called gr oovy.

Gradle is written in Groovy and allows you to write your build scripts in Groovy. But this is an internal aspect
of Gradle which is strictly separated from building Groovy projects. You are free to choose the Groovy
version your project should be build with. This Groovy version is not just used for compiling your code and
running your tests. The gr oovyc compiler and the the gr oovydoc tool are also taken from the Groovy
version you provide. As usual, with freedom comes responsibility ;). You are not just free to choose a Groovy
version, you have to provide one. Gradle expects that the groovy libraries are assigned to the gr oovy
dependency configuration. Here is an example using the public Maven repository:

Page 90 of 168

Example 17.1. Configuration of Groovy plugin

buil d. gradl e

repositories {
mavenCentral ()

}
dependenci es {

groovy group: 'org.codehaus.groovy', nanme: 'groovy-all', version: '1.6.0
}

And here is an example using the Groovy JARs checked into the | i b directory of the source tree:

Example 17.2. Configuration of Groovy plugin

bui | d. gradl e

repositories {
flatDir(dirs: file('lib"))
}

dependenci es {
groovy nodul e(':groovy-all:1.6.0") ({
dependency(' : commons-cli:1.0")
modul e(':ant:1.7.0") {
dependencies(':ant-junit:1.7.0:jar', ':ant-launcher:1.7.0")
}

17.4. Convention properties

The Groovy plugin adds the convention properties shown in Table 17.2, “Groovy plugin - directory
properties” and Table 17.3, “Groovy Plugin - floating directory properties”.

Table 17.2. Groovy plugin - directory properties

Dir Name Dir File Default Value Name Default Value File
groovySrcDirNames groovySrcDirs [mai n/ gr oovy] [srcRoot/ mai n/ gr oovy]
groovyTestSrcDirNames groovyTestSrcDirs test/ groovy [srcRoot/test/groovy]
groovydocDirName groovydocDir gr oovydoc docsDi r/ groovydoc

Table 17.3. Groovy Plugin - floating directory properties
Property Type Default Value

floatingGroovySrcDirs List empty

floatingGroovyTestSrcDirs List empty

Page 91 of 168

17.5. Compile

The GroovyCompile task has two instances, conpi | e and conpi | eTest s. The task type extends the
Conpi | e task (see Section 16.8, “Compile”)

Table 17.4. Groovy Convention Object - source directory properties

Task Instance Task Property Convention Property
compile groovySourceDirs groovySrcDirs
compileTests groovySourceDirs groovyTestSrcDirs

Have a look at G oovyConpi | e to learn about the details. The compile task delegates to the Ant Groovyc
task to do the compile. Via the compile task you can set most of the properties of Ants Groovyc task.

17.6. Test

In contrast to the Java plugin the fork mode is set to once by default, because of the significant startup time
of Groovy. The Java plugin uses per test as fork mode (see Section 16.9, “Test").

[17] We don't recommend this, as the Groovy plugin uses the Groovyc Ant task to compile the sources. For

pure Java projects you might rather stick with pure j avac. In particular as you would have to supply a
groovy jar for doing this.

[18] We are using the same conventions as introduced by Russel Winders Gant tool (

http://gant.codehaus.org).

Page 92 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/compile/GroovyCompile.html
http://gant.codehaus.org

18

The War Plugin

The war plugin extends the Java Plugin. It disables the default jar archive generation of the Java Plugin and
adds a default war archive task.

18.1. Tasks
TBD

18.2. Project layout
Table 18.1. War plugin - project layout

Directory Meaning

sr ¢/ mai n/ webapp Web application sources

18.3. Dependency management

The War plugin adds two dependency configurations: pr ovi dedConpi | e and pr ovi dedRunt i me. Those
configurations have the same scope as the respective conpi | e and r unt i me configurations, except that
they are not added to the WAR archive. It is important to note that those pr ovi ded configurations work
transitively. Let's say you add conmons- htt pcl i ent: cormons- htt pcli ent: 3. 0 to any of the provided
configurations. This dependency has a dependency on commons- codec. This means neither ht t pcl i ent
nor cormons- codec is added to your WAR, even if commons- codec were an explicit dependency of your
compi | e configuration. If you don't want this transitive behavior, simply declare your provi ded
dependencies like cormons- ht t pcl i ent: commons-httpclient: 3. 0@ ar.

18.4. Convention properties
Table 18.2. War plugin - directory properties

Directory Name Property Directory File Property Default Name Default File

webAppDirName webAppDir mai n/ webapp srcRoot/ nmai n/ webapp

Page 93 of 168

18.5. War

The default behavior of the War task is to copy the content of sr ¢/ mai n/ webapp to the root of the archive.

Your webapp folder may of course contain a V\EEB- | NF sub-directory, which again may contain a web. xmni

file. Your compiled classes are compiled to VEB- | NF/ cl asses. All the dependencies of the runt i ne (19]

configuration are copied to VEB- | NF/ | i b.

Have also a look at \War .

18.6. Customizing

Here is an example with the most important customization options:

Page 94 of 168

http://www.gradle.org/0.7/docs/groovydoc/org/gradle/api/tasks/bundling/War.html

Example 18.1. Customization of war plugin

buil d. gradl e

i mport org.apache. commons. httpclient. Htpdient
i mport org.apache. conmons. httpclient. met hods. Get Met hod

group = 'gradle'
version = '1.0'
usePl ugi n(' war"')
usePlugin('jetty')

configurations {
nor eLi bs

}

repositories {
flatDir(dirs: "$rootDir/lib")
mavenCentral ()

}
dependenci es {
conpile ":conpile:1.0"
provi dedConpil e ": provi dedConpile:1.0@ar", "javax.servlet:servlet-api:2.5"

runtinme ":runtine: 1. 0"

provi dedRuntine ":provi dedRuntine: 1. 0@ ar"
testConmpile "junit:junit:3.8.2"

nmor eLi bs ":otherLib:1.0"

}

war {
fileSet(dir: file('src/rootContent')) // adds a file-set to the root of the archi ve
weblnf(dir: file('src/additional Wblinf')) // adds a file-set to the WEB-INF dir.
addi tional Libs(dir: file('additionalLibs')) // adds a file-set to the WEB-INF/lib ¢
I'i bConfigurations(' nmoreLibs') // adds a configuration to the WEB-INF/lib dir.
webXm = file('src/soneWeb.xm"') // copies a file to WEB-INF/ web. xm

}

jar.enabled = true

[jettyRun, jettyRunWar]*.daenon = true

stopKey = 'foo

stopPort = 9451

httpPort = 8163

task runTest (dependsOn: jettyRun) << {
cal | Servl et ()

}

task runWar Test (dependsOn: jettyRunWar) << {
cal | Servl et ()

}

private void call Servlet() {
HtpClient client = new Htpdient()
Get Met hod et hod = new Get Met hod("http://I| ocal host: $httpPort/custoni sed/ hello")
cl i ent. execut eMet hod(net hod)
new File(buildDir, "servliet-out.txt").wite(method. get ResponseBodyAsString())
jettyStop. execute()

Of course one can configure the different file-sets with a closure to define excludes and includes.

If you want to enable the generation of the default jar archive additional to the war archive just type:

Page 95 of 168

Example 18.2. Generation of JAR archive in addition to WAR archive

buil d. gradl e

jar.enabled = true

18.7. Eclipse WTP

Ecli pseWp has a default instance with the name eclipseWp. It generates a

.settings/org. eclipse.wst.common. conmponent file.

[19] The runt i me configuration extends the conpi | e configuration.

Page 96 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/ide/eclipse/EclipseWtp.html

This chapter is currently under construction.

19

The Jetty Plugin

The Jetty Plugin extends the War Plugin, and adds tasks which you can use to deploy your web application

to an embedded Jetty server.

19.1. Tasks
The Jetty plugin defines the following tasks:

Table 19.1. Jetty plugin - tasks

Task name Depends on Type
jettyRun conpi | eTests JettyRun
jettyRunVar war JettyRunVar
jettyStop - Jettystop

19.2. Project layout
TBD

19.3. Dependency management

The Jetty plugin does not define any dependency configurations.

19.4. Convention properties

The Jetty plugin defines the following convention properties:

Page 97 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/jetty/JettyRun.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/jetty/JettyRunWar.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/jetty/JettyStop.html

Table 19.2. Jetty plugin - properties

Property
httpPort
stopPort

stopKey

Type
Integer
Integer

String

Default Value
8080
nul |

nul |

Page 98 of 168

This chapter is a work in progress

20.1. Tasks
TBD

20.2. Project layout
TBD

20.3. Dependency management
TBD

20.4. Convention properties
TBD

20

The Maven Plugin

Page 99 of 168

21

The OSGI Plugin

The Gradle OSGi plugin enables the generation of an OSGi manifest. This OSGi manifest is automatically
added to all the JAR files produced by the project. This plugin makes heavy use of Peter Kriens BND tool.

21.1. Tasks
TBD

21.2. Project layout
TBD

21.3. Dependency management
TBD

21.4. Convention properties

The OSGi plugin adds an osgi property to every jar task. This osgi property points to an instance of
Osgi Mani f est . Via the OsgiManifest object you can control the generation of the OSGi Manifest of the

respective jar. The OSGi plugin assign default values to the OsgiManifest object.
Table 21.1. OSGi properties

Task Property Convention Property

classesDir project.classesDir
version project.version
name project.archivesBaseName

symbolicName transformation of the name and the group to produce a valid OSGi symbolic name

classpath project.dependencies.resolve(‘runtime")

The classes in the classes dir are analyzed regarding there package dependencies and the packages they
expose. Based on this the Import-Package and the Export-Package values of the OSGi Manifest are

Page 100 of 168

http://www.aqute.biz/Code/Bnd
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html

calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify
version information for the Import-Package value. Beside the explicit properties of the Gsgi Mani f est
object you can add instructions.

Example 21.1. Configuration of OSGi MANIFEST.MF file

buil d. gradl e

configure(jar.osgi) {
nane = 'overwittenSpecial Gsgi Nane'
instruction 'Private-Package',
' org. nyconp. packagel',
' org. nyconp. package2'
instruction 'Bundl e-Vendor', 'MConpany'
instruction 'Bundl e-Description', 'Platforn2: Metrics 2 Measures Framework'
instruction 'Bundl e-DocURL', 'http://ww. myconpany. coni

The first argument of the instruction call is the key of the property. The other arguments form the value. They
are joined by Gradle with the , separator. To learn more about the available instructions have a look at the
BND tool.

Page 101 of 168

http://www.aqute.biz/Code/Bnd

This chapter is a work in progress

22.1. Tasks
TBD

22.2. Project layout
TBD

22.3. Dependency management
TBD

22.4. Convention properties
TBD

22

The Eclipse Plugin

Page 102 of 168

23

The Project Report Plugin

The Project report plugin is currently a work in progress, and at this stage doesn't do particularly much.
We plan to add much more to these reports in the next release of Gradle.

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build.

23.1. Tasks

The project report plugin defines the following tasks:

Table 23.1. Project report plugin - tasks

Task name Depends on Type
dependencyReport - DependencyReport Task
pr opertyReport - Pr opert yReport Task

t askReport - TaskReport Task

dependencyReport, propertyReport,

roj ect Report
prol P t askReport

23.2. Project layout

The project report plugin does not require any particular project layout.

23.3. Dependency management

The project report plugin does not define any dependency configurations.

23.4. Convention properties

The project report defines the following convention properties:

Page 103 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/DependencyReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/DependencyReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/PropertyReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/diagnostics/TaskReportTask.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Task.html

Table 23.2. Project report plugin - directory properties

Directory Name Property Directory File Property Default Name Default File
reportsDirName reportsDir reports buil dDir/reports

projectReportDirName projectReportDir proj ect reportsDir/ project

Page 104 of 168

24

How to write Custom Plugins

t.b.d.

Page 105 of 168

25

Dependency Management

25.1. Introduction

This chapter gives an overview of issues related with dependency management and presents how Gradle
can be used to overcome them.

Gradle offers a very good support for dependency management. If you are familiar with Maven or Ivy
approach you will be delighted to learn that:

® All the concepts that you already know and like are still there and are fully supported by Gradle. The
current dependency management solutions all require to work with XML descriptor files and are
usually based on remote repositories for downloading the dependencies. Gradle fully supports this
approach.

® Gradle works perfectly with your existent dependency management infrastructure, be it Maven or Ivy.
All the repositories you have set up with your custom pom or ivy files can be used as they are. No
changes necessary.

® Additionally, Gradle offers a simpler approach, which might be better suited for some projects.

25.2. Dependency management overview

We think dependency management is very important for almost any project. Yet the kind of dependency
management you need depends on the complexity and the environment of your project. Is your project a
distribution or a library? Is it part of an enterprise environment, where it is integrated into other projects
builds or not? But all types of projects share the following requirements:

® The version of the jar must be easy to recognize. Sometimes the version is in the Manifest file of the
jar, often not. And even fif, it is rather painful to always look into the Manifest file to learn about the
version. Therefore we think that you should only use jars which have their version as part of their file
name.

® |t hopes to be clear what are the first level dependencies and what are the transitive ones. There are
different ways to achieve this. We will look at this later.

® Conflicting versions of the same jar should be detected and either resolved or cause an exception.

Page 106 of 168

25.2.1. Versioning the jar name

Why do we think this is necessary? Without a dependency management as described above, your are likely
to burn your fingers sooner or later. If it is unclear which version of a jar your are using, this can introduce
subtle bugs which are very hard to find. For example there might be a project which uses Hibernate 3.0.4.
There are some problems with Hibernate so a developer installs version 3.0.5 of Hibernate on her machine.
This did not solve the problem but she forgot to roll back Hibernate to 3.0.4. Weeks later there is an
exception on the integration machine which can't be reproduced on the developer machine. Without a
version in the jar name this problem might take a long time to debug. Version in the jar names increases the
expressiveness of your project and makes it easier to maintain.

25.2.2. Transitive dependency management

Why is transitive dependency management so important? If you don't know which dependencies are first
level dependencies and which ones are transitive you will soon lose control over your build. Even Gradle has
already 20+ jars. An enterprise project using Spring, Hibernate, etc. easily ends up with 100+ jars. There is
no way to memorize where all these jars come from. If you want to get rid of a first level dependency you
can't be sure which other jars you should remove. Because a dependency of a first level dependency might
also be a first level dependency itself. Or it might be a transitive dependency of another of your first level
dependencies. Many first level dependencies are runtime dependencies and the transitive dependencies are
of course all runtime dependencies. So the compiler won't help you much here. The end of the story is, as
we have seen very often, no one dares to remove any jar any longer. The project classpath is a complete
mess and if a classpath problem arises, hell on earth invites you for a ride. In one of my former projects, |
found some Idap related jar in the classpath, whose sheer presence, as | found out after much research,
accelerated LDAP access. So removing this jar would not have led to any errors at compile or runtime.

Gradle offers you different ways to express what are first level and what are transitive dependencies. Gradle
allows you for example to store your jars in CVS or SVN without XML descriptor files and still use transitive
dependency management. Gradle also validates your dependency hierarchy against the reality of your code
by using only the first level dependencies for compiling.

25.2.3. Version conflicts

In your dependency description you tell Gradle which version of a dependency is needed by another
dependency. This frequently leads to conflicts. Different dependencies rely on different versions of another
dependency. The JVM unfortunately does not offer yet any easy way, to have different versions of the same
jar in the classpath (see Section 25.2.4, “Dependency management and Java”). What Gradle offers you is a
resolution strategy, by default the newest version is used. To deal with problems due to version conflicts,
reports with dependency graphs are also very helpful. Such reports are another feature of dependency
management.

25.2.4. Dependency management and Java

Traditionally, Java has offered no support at all for dealing with libraries and versions. There are no standard
ways to say that f oo- 1. 0. ar depends on a bar-2. 0.j ar. This has led to proprietary solutions. The
most popular ones are Maven and Ivy. Maven is a complete build system whereas Ivy focuses solely on
dependency management.

Both approaches rely on descriptor XML files, which contains information about the dependencies of a
particular jar. Both also use repositories where the actual jars are placed together with their descriptor files.
And both offer resolution for conflicting jar versions in one form or the other. Yet we think the differences of

Page 107 of 168

both approaches are significant in terms of flexibility and maintainability. Beside this, Ivy fully supports the
Maven dependency handling. So with Ivy you have access to both worlds. We like Ivy very much. Gradle
uses it under the hood for its dependency management. lvy is most often used via Ant and XML descriptors.
But it also has an API. We integrate deeply with lvy via its API. This enables us to build new concepts on top
of lvy which Ivy does not offer itself.

Right now there is a lot of movement in the field of dependency handling. There is OSGi and there is

technologies deal, amongst many other things, also with a painful problem which is neither solved by Maven
nor by Ivy. This is enabling different versions of the same jar to be used at runtime.

25.3. How to declare your dependencies

People who know lvy have come across most of the concepts we are going to introduce now. But Gradle
does not use any XML for declaring the dependencies (e.g. no i vy. xnl file). It has its own notation which is
part of the Gradle build file.

25.3.1. Configurations

Dependencies are grouped in configurations. Configurations have a name, a number of other properties, and
they can extend each other. For examples see: Section 5.1, "Artifact configurations”. If you use the Java
plugin, Gradle adds a number of pre-defined configurations to your build. The plugin also assigns
configurations to tasks. See Section 16.3, “Dependency management” for details. Of course you can add
your add custom configurations on top of that. There are many use cases for custom configurations. This is
very handy for example for adding dependencies not needed for building or testing your software (e.g.
additional JDBC drivers to be shipped with your distribution). The configurations are managed by a
confi gurati ons object. The closure you pass to the configurations object is applied against its API. To
learn more about this API have a look at the javadoc: Confi gur ati onHandl er .

25.3.2. Module dependencies

Module dependencies are the most common dependencies. They correspond to a dependency in an
external repository.

Example 25.1. Module dependencies

bui I d. gradl e

dependenci es {
runtinme group: 'org.springframework', nane: 'spring-core', version: '2.5'
runtine 'org.springframework: spring-core: 2.5, 'org.springframework:spring-aop: 2.5
runti nme(
[group: 'org.springframework', nanme: 'spring-core', version: '2.5],
[group: 'org.springframework', name: 'spring-aop', version: '2.5"]
)
runti me(' org. hi bernate: hibernate:3.0.5") {
transitive = true

}
runtinme group: 'org.hibernate', nane: 'hibernate', version: '3.0.5', transitive: tr
runtine(group: 'org.hibernate', nane: 'hibernate', version: '3.0.5") {

transitive = true

}

Gradle provides different notations for module dependencies. There is a string notation and a map notation.

Page 108 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/dsl/ConfigurationHandler.html

A module dependency has an APl which allows for further configuration. Have a look at
Ext er nal Modul eDependency to learn all about the API. This API provides properties and configuration

methods. Via the string notation you can define a subset the properties. With the map notation you can
define all properties. To have access to the complete API, either with the map or with the string notation, you
can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a corresponding module descriptor file (pom xmi or
i vy.xm) in the repositories. If such a module descriptor file exists, it is parsed and the artifacts of this
module (e.g. hi ber nat e- 3. 0. 5. j ar) as well as its dependencies (e.g. cglib) are downloaded. If no such
module descriptor file exists, Gradle looks for a file called hi ber nat e- 3. 0. 5. j ar to retrieve. In Maven a
module can only have one and only one artifact. In Gradle and Ivy a module can have multiple artifacts.
Each artifact can have a different set of dependencies.

25.3.2.1. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of
the module. But sometimes, even if the repository contains module descriptors, you want to download only
the artifact jar, without the dependencies. [21] And sometimes you want to download a zip from a repository,
that does not have module descriptors. Gradle provides an artifact only notation for those use cases - simply
prefix the extension that you want to be downloaded with ' @ sign:

Example 25.2. Artifact only notation

buil d. gradl e

dependenci es {
runtine "org.groovy:groovy: 1.5 6@ar"
runtime group: 'org.groovy', nane: 'groovy', version: '1.5.6', ext:

jar

An artifact only notation creates a module dependency which downloads only the artifact file with the
specified extension. Existing module descriptors are ignored.

25.3.2.2. Classifiers

The Maven dependency management has the notion of classifiers. (22] Gradle supports this. To retrieve
classified dependencies from a maven repository you can write:

Example 25.3. Dependency with classifier

bui I d. gradl e

conpile "org.gradle.test.classifiers:service: 1. 0:jdkl5@ar"
ot her Conf group: 'org.gradle.test.classifiers', nane: 'service', version: '1.0', cl

As you can see in the example, classifiers can be used together with setting an explicit extension (artifact
only notation).

25.3.3. Client module dependencies

Client module dependencies enable you to declare transitive dependencies directly in your build script. They
are a replacement for a module descriptor XML file in an external repository.

Page 109 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

Example 25.4. Client module dependencies - transitive dependencies

buil d. gradl e

dependenci es {
runtinme nodul e("org. codehaus. groovy: groovy-all:1.5.6") {
dependency(" comons-cli:comons-cli:1.0") {
transitive = fal se

}
nmodul e(group: 'org.apache.ant', nane: 'ant', version: '1.7.0") {

dependenci es "org. apache. ant:ant-launcher:1.7.0@ar", "org.apache.ant:ant-j
}

This declares a dependency of your project on Groovy. Groovy itself has dependencies. But Gradle does not
look for an XML descriptor to figure them out but gets the information from the build file. The dependencies
of a client module can be normal module dependencies or artifact dependencies or another client module.
Have also a look at the javadoc: C i ent Modul e

In the current release client modules have one limitation. Let's say your project is a library and you want this
library to be uploaded to your company's Maven or lvy repository. Gradle uploads the jars of your project to
the company repository together with the XML descriptor file of the dependencies. If you use client modules
the dependency declaration in the XML descriptor file is not correct. We will improve this in a future release
of Gradle.

25.3.4. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the
same multi-project build. For the latter you can declare Project Dependencies.

Example 25.5. Project dependencies
buil d. gradl e
dependenci es {

conpil e project(':shared")
}

For more information see the javadoc for Pr oj ect Dependency

Multi-project builds are discussed in Chapter 28, Multi-project Builds.

25.3.5. File dependencies

File dependencies allow you to directly add a set of files to a configuration. This can be useful if you cannot,
or do not want to, place certain files in a repository.

Example 25.6. File dependencies

bui | d. gradl e
dependenci es {
runtine files('libs/a.jar', 'libs/b.jar")
runtinme new FileSet(dir: "libs', includes: ['"*.jar'])

Page 110 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/ProjectDependency.html

File dependencies are not included in the published dependency descriptor for your project.

25.3.6. Excluding transitive dependencies

You can exclude a transitive dependency either by configuration or by dependency:

Example 25.7. Excluding transitive dependencies

buil d. gradl e

configurations {
conpi | e. excl ude nodul e: ' commons'’
al | *. exclude group: 'org.gradle.test.excludes', nodule: 'reports’

}

dependenci es {
conpil e("org. gradl e.test.excludes:api:1.0") {
excl ude nodul e: 'shared’

}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered for
all dependencies when resolving this configuration or any inheriting configuration. If you want to exclude a
transitive dependency from all your configurations you can use the Groovy spread-dot operator to express
this in a concise way, as shown in the example. When defining an exclude, you can specify either only the
organization or only the module name or both. Have also a look at the javadoc of Dependency and

Configuration.

25.3.7. Optional attributes

All attributes for a dependency are optional, except the name. It depends on the repository type, which
information is need for actually finding the dependencies in the repository. See Section 25.5, “Repositories”.
If you work for example with Maven repositories, you need to define the group, name and version. If you
work with filesystem repositories you might only need the name or the name and the version.

Example 25.8. Optional attributes of dependencies

buil d. gradl e

dependenci es {
runtime ":junit:4.4", ":testng"
runtime nane: 'testng'

You can also assign collections or arrays of dependency notations to a configuration:

Page 111 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html

Example 25.9. Collections and arrays of dependencies

buil d. gradl e

Li st groovy = ["org.codehaus. groovy: groovy-all:1.5. 4@ar",
"commons-cli:comons-cli:1.0@ar",
"org.apache.ant:ant:1.7.0@ar"]
Li st hibernate = ['org. hibernate: hibernate:3.0.5@ar', 'sonegroup:soneorg:1l.0@ar']
dependenci es {
runtime groovy, hibernate
}

25.3.8. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different configurations).
If you don't specify anything explicitly, Gradle uses the default configuration of the dependency. For
dependencies from a Maven repository, the default configuration is the only available one anyway. If you
work with lvy repositories and want to declare a non-default configuration for your dependency you have to
use the map notation and declare:

Example 25.10. Dependency configurations

bui I d. gradl e

dependenci es {
runtine group: 'org.sonegroup', nane: 'sonedependency', version: '1.0', configurati
}

To do the same for project dependencies you need to declare:

Example 25.11. Dependency configurations for project

bui | d. gradl e

dependenci es {
conpile project(path: ':api', configuration: 'spi')
}

25.3.9. Dependency reports

You can generate dependency reports from the command line (see Section 9.3, “Obtaining information
about your build”). With the help of the Project report plugin (see Chapter 23, The Project Report Plugin)
such a report can be created by your build.

25.4. Working with dependencies

For the examples below we have the following dependencies setup:

Page 112 of 168

Example 25.12. Configuration.copy

buil d. gradl e

configurations {
sealife
alllife.extendsFrom sealife

}

dependenci es {
sealife "sea.manmmal s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife "air.birds:al batros: 1. 0"

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

You can use the configuration to access the declared dependencies or a subset of those:

Example 25.13. Accessing declared dependencies

bui I d. gradl e
task dependenci es << {
configurations.alllife.dependencies.each { dep -> println dep. nanme }
println()
configurations.alllife.all Dependenci es.each { dep -> println dep. nane }
println()
configurations.alllife.all Dependencies.findAll { dep -> dep.nanme != '"orca' }.each {

Output of gr adl e -g dependenci es

> gradl e -q dependenci es
al batros

al batros
orca
shark
tuna

al batros
shark
tuna

dependenci es returns only the dependencies belonging explicitly to the configuration. al | Dependenci es

includes the dependencies from extended configurations.

To get the library files of the configuration dependencies you can do:

Page 113 of 168

Example 25.14. Configuration.files

buil d. gradl e

task allFiles << {
configurations.sealife.files.each { file ->
println file.name

}

Outputofgradle -q all Files

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar

seal -2.0.jar
tuna-1.0.j ar
herring-1.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 25.15. Configuration.files with spec

bui | d. gradl e

task files << {
configurations.sealife.files { dep -> dep.nanme == 'orca' }.each { file ->
printin file.nanme

}

Outputofgradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Confi guration.fil es method always retrieves all artifacts of the whole configuration. It then filters
the retrieved files by specified dpendencies. As you can see in the example, transitive dependencies are
included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the
orginal configuration should be copied. The copying methods come in two flavors. The copy method copies
only the dependencies belonging explicitly to the configuration. The copyRecur si ve methode copies all the
dependencies, including the dependencies from extended configurations.

Page 114 of 168

Example 25.16. Configuration.copy

buil d. gradl e

task copy << {
configurations.alllife.copyRecursive { dep -> dep.nane != "'orca' }.all Dependencies
println dep. name

}

println()

configurations.alllife.copy().allDependencies.each { dep ->
println dep. nanme

}

Output of gradl e -qgq copy

> gradle -q copy
al bat r os

shar k

tuna

al bat r os

It is important to note that the returned files of the copied configuration are often but not always the same
than the returned files of the dependency subset of the original configuration. In case of version conflicts
between dependencies of the subset and dependencies not belonging to the subset the resolve result might
be different.

Example 25.17. Configuration.copy vs. Configuration.files

buil d. gradl e

task copyVsFiles << {
configurations. sealife.copyRecursive { dep -> dep.nane == 'orca' }.each { file ->
println file.name

}

println()

configurations.sealife.files { dep -> dep.name == 'orca' }.each { file ->
println file.name

}

Output of gradl e -g copyVsFil es

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency on
seal - 2. 0. The original configuration has therefore a version conflict which is resolved to the newer
seal - 2. 0 version. The fi | es method therefore returns seal - 2. 0 as a transitive dependency of or ca.
The copied configuration only has or ca as a dependency and therefore there is no version conflict and
seal - 1. 0 is returned as a transitive dependency.

Page 115 of 168

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies
will cause an exception. You can always copy a resolved configuration. The copied configuration is in the
unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the javadoc: Confi gurati on .

25.5. Repositories

25.5.1. Introduction

The Gradle repository management, based on Apache Ivy, gives you have a lot of freedom regarding the
repository layout and the retrieval policies. Additionally Gradle provides a couple of convenience method to
add preconfigured repositories.

25.5.2. Maven repositories

To add the central Maven2 repository (http://repol.maven.org/maven2) simply type:

Example 25.18. Adding central Maven repository

bui | d. gradl e

repositories {
mavenCentral ()
}

Now Gradle looks for your dependencies in this repository.

Quite often certain jars are not in the official Maven repository for licensing reasons (e.g. JTA), but its poms
are.

Example 25.19. Adding many Maven repositories

buil d. gradl e

repositories {
mavenCentral name: 'single-jar-repo', urls: "http://repo.nyconpany.conljars"
mavenCentral name: 'nulti-jar-repos', urls: ["http://repo. myconpany.com jarsl”, "ht

Gradle looks first in the central Maven repository for the pom and the jar. If the jar can't be found there, its
looks for it in the other repositories.

For adding a custom Maven repository you can say:

Example 25.20. Adding custom Maven repository

buil d. gradl e

repositories {
mavenRepo urls: "http://repo.nyconpany. com naven2"
}

To declare additional repositories to look for jars (like above in the example for the central Maven

Page 116 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/Configuration.html
http://repo1.maven.org/maven2

repository), you can say:

Example 25.21. Adding additional Maven repositories for JAR files

bui | d. gradl e

repositories {
mavenRepo urls: ["http://repo2. myconpany. conl maven2", "http://repo. myconpany.conij ¢
}

The first URL is used to look for poms and jars. The subsequent URLs are used to look for jars.

25.5.3. Flat directory resolver

If you want to use a (flat) filesytem directory as a repository, simply type:

Example 25.22. Flat repository resolver

bui I d. gradl e
repositories {
flatDir nanme: 'local Repository', dirs: 'lib'
flatDir dirs: ['libl, "lib2"]

This adds repositories which look into one or more directories for finding dependencies. If you only work with
flat directory resolvers you don't need to set all attributes of a dependency. See Section 25.3.7, “Optional
attributes”

25.5.4. More about preconfigured repositories

The methods above for creating preconfigured repositories share some common behavior. For all of them,
defining a name for the repository is optional. If no name is defined a default name is calculated, depending
on the type of the repository. You might want to assign a name, if you want to access the declared
repository. For example if you want to use it also for uploading your project artifacts. An explicit name might
also be helpful when studying the debug output.

The values passed as arguments to the repository methods can be of any type, not just String. The value
that is actually used, is the t oSt r i ng result of the argument object.

25.5.5. Cache

When Gradle downloads dependencies from remote repositories it stores them in a local cache located at
USER_HOME/ . gr adl e/ cache. When Gradle downloads dependencies from one of its predefined local
resolvers (e.g. Flat Directory resolver), the cache is not used as an intermediate storage for dependency
artifacts. The cache is always used for caching module descriptors.

25.5.6. More about lvy resolvers

Gradle, thanks to vy under its hood, is extremely flexible regarding repositories:

® There are many options for the protocol to communicate with the repository (e.qg. filesystem, http, ssh,

)

® FEach repository can have its own layout.

Page 117 of 168

Let's say, you declare a dependency on the junit:junit: 3. 8. 2 library. Now how does Gradle find it in
the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,
where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here
are some examples: 23]

/1 Maven2 layout (if a repository is marked as Maven2 conpati bl e, the organi zation (gr¢
soner oot /[organi sation]/[nmodul e]/[revision]/[nbdul e]-[revision].[ext]

/1 Typical layout for an ivy repository (the organization is not split into subfolder)
soneroot/[organi sation]/[nmodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinmple layout (the organization is not used, no nested folders.)

soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Example 25.23. Definition of a custom repository

buil d. gradl e

repositories {
add(new org. apache. i vy. pl ugi ns.resol ver. Fi | eSyst enResol ver()) {
nane = 'repo’
addl vyPattern "$projectDir/repo/[organisation]/[nodul e]-ivy-[revision].xm"
addArtifactPattern "$projectDir/repo/[organisation]/[nodule]-[revision](-[class
descriptor = 'optional’
checknodified = true

you just don't configure them via XML but directly via their API.

25.6. Strategies for transitive dependency management

Many projects rely on the Maven2 repository. This is not without problems.

® The IBibilio repository can be down or has a very long response time.

® The pom xm 's of many projects have wrong information (as one example, the pom of
commons- htt pcli ent - 3. 0 declares JUnit as a runtime dependency).

® For many projects there is not one right set of dependencies (as more or less imposed by the porr
format).

If your project relies on the IBibilio repository you are likely to need an additional custom repository,
because:

® You might need dependencies that are not uploaded to IBibilio yet.
® You want to deal properly with wrong metadata in a IBibilio pom xm .

® You don't want to expose people who want to build your project, to the downtimes or sometimes very
long response times of IBibilio.

Page 118 of 168

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://repo1.maven.org/maven2

It is not a big deal to set-up a custom repository. (241 But it can be tedious, to keep it up to date. For a new

version, you have always to create the new XML descriptor and the directories. And your custom repository
is another infrastructure element which might have downtimes and needs to be updated. To enable historical
builds, you need to keep all the past libraries and you need a backup. It is another layer of indirection.
Another source of information you have to lookup. All this is not really a big deal but in its sum it has an
impact. Repository Manager like Artifactory or Nexus make this easier. But for example open source projects
don't usually have a host for those products.

This is a reason why some projects prefer to store their libraries in their version control system. This
approach is fully supported by Gradle. The libraries can be stored in a flat directory without any XML module
descriptor files. Yet Gradle offers complete transitive dependency management. You can use either client
module dependencies to express the dependency relations, or artifact dependencies in case a first level
dependency has no transitive dependencies. People can check out such a project from svn and have
everything necessary to build it.

If you are working with a distributed version control system like Git you probably don't want to use the
version control system to store libraries as people check out the whole history. But even here the flexibility of
Gradle can make your life easier. For example you can use a shared flat directory without XML descriptors
and yet you can have full transitive dependency management as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the pom xml and
maintaining custom XML descriptors, Client Modules offer an alternative. But you can of course still use
Maven2 repo and your custom repository as a repository for jars only and still enjoy transitive dependency
management. Or you can only provide client modules for pom's with bad metadata. For the jars and the
correct pom's you still use the remote repository.

25.6.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do this with
Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with other
build tools.

The trick is to use only artifact dependencies and group them in lists. That way you have somehow
expressed, what are your first level dependencies and what are transitive dependencies (see Section 25.3.7,
“Optional attributes”). But the draw-back is, that for the Gradle dependency management all dependencies
are considered first level dependencies. The dependency reports don't show your real dependency graph
and the conpi | e task uses all dependencies, not just the first level dependencies. All in all, your build is

less maintainable and reliable than it could be when using client modules. And you don't gain anything.

[20] JSR 294: Improved Modularity Support in the JavaTM Programming Language,

http://jcp.org/en/jsr/detail?id=294

[21] Gradle supports partial multiproject builds (seeChapter 28, Multi-project Builds).

[2 2]

Page 119 of 168

http://jcp.org/en/jsr/detail?id=294
http://www.sonatype.com/books/maven-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

probably want to set-up a repository proxy for this. In an enterprise environment this is rather common. For
an open source project it looks like overkill.

Page 120 of 168

20

Artifact Management

26.1. Introduction

This chapter is about how you declare what are the artifacts of your project and how to work with them (e.g.
upload them). We define the artifacts of the projects as the files the project want to provide to the outside
world. This can be a library or a distribution or any other file. Usually artifacts are archives, but not
necessarily. In the Maven world a project can provide only one artifact. With Gradle a project can provide as
many artifacts as needed.

26.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both, artifacts
and dependencies, at the same time. To assign an artifact to a configuration, you can write:

Example 26.1. Assignment of an artifact to a configuration

buil d. gradl e

task myJar(type: Jar)

artifacts {
ar chi ves myJar

}

What do you gain by assigning an artifact to a configuration? For each configuration (also for the custom
ones added by you) Gradle provides the tasks upl oad[ConfigurationNane] and

respective configuration.

Table Table 16.3, “Java plugin - dependency configurations” shows the configurations added by the Java
plugin. Two of the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the
standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this
configuration. We will talk more about the def aul t configuration in Section 26.4, “More about project

libraries”. As with dependencies, you can declare as many custom configurations as you like and assign

artifacts to them.

It is important to note that the custom archives you are creating as part of your build are not automatically
assigned to any configuration. You have to explicitly do this assignment.

Page 121 of 168

26.3. Uploading artifacts

We have said that there is a specific upload task for each configuration. But before you can do an upload,
you have to configure the upload task and define where to upload. The repositories you have defined as
described in Section 25.5, “Repositories” are not automatically used for uploading. In fact some of those
repositories are not even capable of uploading, there are just capable of reading from a repository. Here is
an example how you can configure the upload task of a configuration:

Example 26.2. Configuration of the upload task

bui I d. gradl e

repositories {
flatDir(nanme: 'fileRepo', dirs: "$projectDir/repo")
}

upl oadAr chi ves {
upl oadDescri ptor = fal se
repositories {
add project.repositories.fileRepo
add(new org. apache. i vy. pl ugi ns. resol ver. SshResol ver ()) {

nane = 'sshRepo’

user = 'usernane'

user Password = ' pw

host = "http://repo. myconpany. cont

As you can see, you can either use a reference to an exisiting repository or create a new repository. As
described in Section 25.5.6, “More about Ivy resolvers”, you can use all the lvy resolvers suitable for the
purpose of uploading.

26.4. More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and
what are the dependencies of this artifacts. The Java plugin adds a def aul t configuration for this purpose.
This configuration extends both the ar chi ves and the r unt i me configuration, with the implicit assumption
that the r unt i me dependencies are the dependencies of the ar chi ves configuration. Of course this is fully
customizable. You can add your own custom configuration or let the the existing configurations extends from
other configurations. You might have different group of artifacts which have a different set of dependencies.
This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare on which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur at i on property to declare this. If this
is not specified, the def aul t configuration is used (see Section 25.3.8, “Dependency configurations”).

Using your project as a library can either happen from within a multi-project build or by retrieving your project
from a repository. In the latter case, an ivy.xml descriptor in the repository is supposed to contain all the
neccesary information. If you work with Maven repositories you don't have the flexibility as described above.
For how to publish to a Maven repository, see the section Section 26.5, “Interacting with Maven repositories”

Page 122 of 168

26.5. Interacting with Maven repositories

26.5.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's deployment
is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a pom. Fortunately Gradle can
generate this pom for you using the dependency information it has.

26.5.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote
Maven repository.

Example 26.3. Upload of file to remote Maven repository

buil d. gradl e

usePl ugi n ' maven'

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")
}

That is all. Calling the upl oadAr chi ves task will generate the pom and deploys the artifact and the pom to
the specified repository.

There is some more work to do if you need support for other protocols than fi | e. In this case the native
Maven code we delegate to needs additional libraries. Which libraries depend on the protocol you need. The
available protocols and the corresponding libraries are listed in Table 26.1, “Protocol jars for Maven

For example to use the ssh protocol you can do:

Page 123 of 168

Example 26.4. Upload of file via SSH

buil d. gradl e

configurations {
depl oyer Jars
}

repositories {
mavenCentral ()
}

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 1. 0- bet a- 2"
}

upl oadAr chi ves {
repositories. mavenDepl oyer {

nane = 'sshDepl oyer' // optional
configuration = configurations. depl oyerJars
repository(url: "scp://repos. myconpany.con rel eases") {

aut henti cati on(userNanme: "nme", password: "nyPassword")

}

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to
the bean elements. To add another bean elements to its parent, you use a closure. In the example above
repository and authentication are such bean elements. Table 26.2, “Configuration elements of the
MavenDeployer” lists the available bean elements and a link to the javadoc of the corresponding class. In
the javadoc you can see the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t ory element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Table 26.1. Protocol jars for Maven deployment

Protocol Library
http org.apache.maven.wagon:wagon-http:1.0-beta-2
ssh org.apache.maven.wagon:wagon-ssh:1.0-beta-2

ssh-external org.apache.maven.wagon:wagon-ssh-external:1.0-beta-2

scp org.apache.maven.wagon:wagon-scp:1.0-beta-2

ftp org.apache.maven.wagon:wagon-ftp:1.0-beta-2
webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Page 124 of 168

Table 26.2. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant. Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
snapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

26.5.3. Installing to the local repository

The Maven plugin add an i nst al | task to your project. This task depends on all the archives task of the
ar chi ves configuration. It installs those archives to your local Maven repository. If the default location for
the local repository is redefined in a Maven set ti ngs. xni , this is considered by this task.

26.5.4. Maven Pom generation

The Maven Poms are automatically generated by Gradle. You can find the generated poms in the directory
<bui | dDi r >/ porrs. In many scenarios it just works and you don't have to do anything. But there are
situations were you want or have to customize the pom generation.

26.5.4.1. Changing non-dependency elements of the pom

You might want the artifact deployed to the maven repository to have a different version or name than the
artifact generated by Gradle. To customize these you can do:

Example 26.5. Customization of pom

buil d. gradl e

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")
pomversion = '1.0Maven'
pomartifactld = ' myMavenNane'

one artifact to publish, things work differently. See Section 26.5.4.2, “Multiple artifacts per project”.

To customize the settings for the maven Installer (see Section 26.5.3, “Installing to the local repository”), you
can do:

Page 125 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Authentication.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Proxy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/MavenPom.html

Example 26.6. Customization of Maven installer

buil d. gradl e

configure(install.repositories. mavenlnstaller) {
pomversion = '1.0Maven'
pomartifactld = ' myNaneg'

26.5.4.2. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven pom. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple poms. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The MavenDeployer and the Mavenlnstaller both provide an API for
this:

Example 26.7. Generation of multiple poms

buil d. gradl e

upl oadAr chi ves {
repositories. mavenDepl oyer {
repository(url: "file://local host/tnp/nyRepo/")
addFilter('api') { artifact, file ->

artifact.name == 'api'

}

addFilter('service') { artifact, file ->
artifact.name == 'service'

}

pon(' api').version = 'nmySpeci al MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a pom associated with it which you can configure. To learn
more about this have a look at G- oovyPonti | t er Cont ai ner and its associated classes.

26.5.4.3. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. One can assign also a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn more.
To access the mapping configuration you can say:

Example 26.8. Accessing a mapping configuration

bui | d. gradl e

task mappi ngs << {
println conf2ScopeMappi ngs. mappi ngs
}

Page 126 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/GroovyPomFilterContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to
Ivy). Right now excludes-per-configuration are not converted to the Maven Pom.

26.5.4.4. Planned future features

We plan support for excludes-per-configuration. We also plan support for the new Ivy override element,
which corresponds to the dependencyManagement element of a Maven pom. Last but not least we want to
make the customization more powerful, by enabling to add custom dependency elements to the pom and
remove/modify auto-generated ones.

[25] To be exact, the Base plugin provides those tasks. The BasePlugin is automatically applied, if you use

the Java plugin.

[26] It is planned for a future release to provide out-of-the-box support for this

Page 127 of 168

217

The Build Lifecycle

We said earlier, that the core of Gradle is a language for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks
are executed in the order of their dependencies, and that each task is executed only once. Those tasks form
a Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

27.1. Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines
which projects are going to take part in the build, and creates a Pr oj ect instance for each of these
projects.

Configuration
The build scripts of all projects which are part of the build are executed. This configures the project
objects.

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to
be executed. The subset is determined by the task nhame arguments passed to the gradle command
and the current directory. Gradle then executes each of the selected tasks.

27.2. Settings file

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for this file is set ti ngs. gr adl e. Later in this chapter we explain,
how Gradle looks for a settings file.

The settings file gets executed during the initialization phase. A multiproject build must have a
settings. gradl e file in the root project of the multiproject hierarchy. It is required because in the settings
file it is defined, which projects are taking part in the multi-project build (see Chapter 28, Multi-project Builds).

Page 128 of 168

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/Project.html

For a single-project build, a settings file is optional. You might need it for example, to add libraries to your
build script classpath (see Chapter 29, Organizing Build Logic). Let's first do some introspection with a single
project build:

Example 27.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.'’

bui | d. gradl e

println 'This is executed during the configuration phase.'

task configured {
println 'This is also executed during the configuration phase.'
}

task test << {
println 'This is executed during the execution phase.’

}

Output of gradl e test

> gradle test

This is executed during the initialization phase.
This is executed during the configuration phase.
This is also executed during the configuration phase.
itest

This is executed during the execution phase.

BU LD SUCCESSFUL

Total tinme: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Have a look at Set t i

27.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
You have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project builds in the chapter dedicated to this topic (see Chapter 28, Multi-project Builds).

27.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represent a
project. A project has a virtual and a physical path. The virtual path denotes the position of the project in the
multi-project build tree. The project tree is created in the setti ngs. gr adl e file. By default it is assumed
that the location of the settings file is also the location of the root project. But you can redefine the location of
the root project in the settings file.

27.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

Page 129 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/initialization/Settings.html

27.3.2.1. Hierarchical layouts
Example 27.2. Hierarchical layout

settings.gradle

include 'projectl', 'project2', 'project?2:childl

The i ncl ude method takes as an argument a relative virtual path to the root project. This relative virtual
path is assumed to be equals to the relative physical path of the subproject to the root project. You only need
to specify the leafs of the tree. Each parent path of the leaf project is assumed to be another subproject
which obeys to the physical path assumption described above.

27.3.2.2. Flat layouts
Example 27.3. Flat layout

settings.gradle

includeFl at 'project3, 'project4d’

The i ncl udeFl at method takes directory names as an argument. Those directories need to exist at the
same level as the root project directory. The location of those directories are considered as child projects of
the root project in the virtual multi-project tree.

27.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can modify
these descriptors in the settings file at any time. To access a descriptor you can do:

Example 27.4. Modification of elements of the project tree

settings.gradle

println rootProject.nanme
println project(':projectA).nane

Using this descriptor you can change the name, project directory and build file of a project.

Example 27.5. Modification of elements of the project tree

settings.gradle
root Proj ect.name = ' nmain'

project(':projectA).projectDir = new File(settingsDir, '../ny-project-a')
project(':projectA). buildFileName = 'projectA gradle'

Have a look at Pr oj ect Descr i pt or for more details.

Page 130 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

27.4. Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from
the directory where the settings file is, things are easy. But Gradle also allows you to execute the build from
within any subproject taking part in the build. (271 i you execute Gradle from within a project that has no
settings. gradl e file, Gradle does the following:

® |t searches for a settings. gradl e in a directory called mast er which has the same nesting level
as the current dir.

®* If no settings.gradle is found, it searches the parent directories for the existence of a
settings. gradl e file.

® |fnosettings. gradl e file is found, the build is executed as a single project build.

* |fasettings.gradl e file is found, Gradle checks if the current project is part of the multiproject
hierarchy defined in the found set ti ngs. gr adl e file. If not, the build is executed as a single project
build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Somehow Gradle has to find out, whether the project you are into, is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent
projects are build. But Gradle needs to create the build configuration for the whole multiproject build (see
Chapter 28, Multi-project Builds). Via the - u command line option, you can tell Gradle not to look in the

parent hierarchy for a set ti ngs. gr adl e file. The current project is then always build as a single project
build. If the current project contains a set ti ngs. gr adl e file, the - u option has no meaning. Such a build
is always executed as:

® asingle project build, if the set ti ngs. gr adl e file does not define a multiproject hierarchy
* a multiproject build, if the set ti ngs. gr adl e file does define a multiproject hierarchy.

The auto search for a settings file does only work for multi-project builds with a physical hierarchical or flat
layout. For a flat layout you must additionally obey to the naming convention described above. Gradle
supports arbitrary physical layouts for a multiproject build. But for such arbitrary layouts you need to execute
the build from the directory where the settings file is located. For how to run partial builds from the root see
Section 28.4, “Running tasks by their absolute path”. In our next release we want to enable partial builds
from subprojects by specifying the location of the settings file as a command line parameter. Gradle creates
Project objects for every project taking part in the build. For a single project build this is only one project. For
a multi-project build these are the projects specified in Settings object (plus the root project). Each project
object has by default a name equals to the name of its top level folder. Every project except the root project
has a parent project and might have child projects.

27.5. Configuration and execution of a single project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build script is
executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project builds is discussed in Chapter 28, Multi-project Builds.

Page 131 of 168

27.6. Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecyle. These notifications
generally take 2 forms: You can either implement a particular listener interface, or you can provide a closure
to execute when the notification is fired. The examples below use closures. For details on how to use the
listener interfaces, refer to the API documentation.

27.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once all the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds a t est task to each project with the hasTest s property set to true.

Example 27.6. Adding of test task to each project which has certain property set

buil d. gradl e

al | projects {
afterEvaluate { project ->
if (project.hasTests) {
println "Adding test task to $project”
project.task('test') << {
println "Running tests for $project”

}

projectA gradl e

hasTests = true

Outputofgradl e -qg test

> gradle -q test
Addi ng test task to project ':projectA
Runni ng tests for project ':projectA

This example uses method Proj ect. aft er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect natification is received regardless of
whether the project evaluates successfully or fails with an exception.

Page 132 of 168

Example 27.7. Notifications

buil d. gradl e

buil d. afterProject {project, exception ->
if (exception) {
println "Eval uati on of $project FAILED'
} else {
println "Eval uation of $project succeeded"
}

Outputofgradl e -qg test

> gradle -q test

Eval uation of root project 'buil dProjectEval uateEvents' succeeded
Eval uation of project ':projectA succeeded

Eval uation of project ':projectB FAILED

You can also add a Pr oj ect Eval uat i onLi st ener to the Bui | d to receive these events.

27.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example sets the srcDi r property of each task as it is created.

Example 27.8. Setting of certain property to all tasks

bui | d. gradl e
t asks. whenTaskAdded { task ->
task.srcDir = 'src/min/java'
}
task a

println "source dir is $a.srcDir"

Outputofgradle -gq a

> gradle -q a
source dir is src/main/java

You can also add a TaskAct i on to a TaskCont ai ner to receive these events.

27.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have
seen this already in Section 4.11, “Configure by DAG”.

You can also add a TaskExecuti onG aphLi st ener to the TaskExecuti onGraph to receive these
events.

27.6.4. Task execution

You can receive a notification immediately before and after any task is executed.

Page 133 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/invocation/Build.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/TaskAction.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

The following example logs the start and end of each task execution. Natice that the af t er Task notification
is received regardless of whether the task completes successfully or fails with an exception.
Example 27.9. Logging of start and end of each task execution
buil d. gradl e
task ok
task broken(dependsOn: ok) << {

t hrow new Runti neException(' broken')
}

bui | d. t askGr aph. beforeTask { task ->
println "executing $task ..."
}

bui | d. t askGraph. after Task { task, exception ->
if (exception) {
println "FAI LED

}
el se {

println "done"
}

Output of gradl e -qg broken

> gradle -q broken
executing task ':ok'
done

executing task ':broken'
FAI LED

You can also use a TaskExecut i onLi st ener to the TaskExecut i onG aph to receive these events.

[27] Gradle supports partial multiproject builds (see Chapter 28, Multi-project Builds).

Page 134 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

28

Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

28.1. Cross project configuration

Let's start with a very simple multi-project build. After all Gradle is a general purpose build tool at its core, so
the projects don't have to be java projects. Our first examples are about marine life.

28.1.1. Defining common behavior

We have the following project tree. This is a multi-project build with a root project wat er and a subproject
bl uewhal e.

Example 28.1. Multi-project tree - water & bluewhale projects
Build layout
wat er /
bui | d. gradl e

settings.gradle
bl uewhal e/

Note: The code for this example can be found at
sanpl es/ usergui de/ nul ti project/firstExanpl e/ wat er

settings.gradle

i ncl ude ' bl uewnhal e'

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously for a
single project build, a project without a build script doesn't make much sense. For multiproject builds the
situation is different. Let's look at the build script for the wat er project and execute it;

Page 135 of 168

Example 28.2. Build script of water (parent) project

buil d. gradl e

Closure cl = { task -> println "I'm $task. proj ect.nane" }
task hello << cl
project (' :bluewhale') {

task hello << cl

}

Outputofgradl e -q hello

> gradle -q hello
I m wat er
1" m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect (), which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project configuration.
Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It is inconvenient to add the task explicitly
for every project. We can do better. Let's first add another project called kri | | to our multi-project build.

Example 28.3. Multi-project tree - water, bluewhale & krill projects
Build layout

wat er /
bui |l d. gradl e
settings.gradle
bl uewhal e/
krill/

Note: The code for this example can be found at
sanpl es/ usergui de/ nul ti project/addKrill/water

settings.gradle

include 'bluewhale', "krill'

Now we rewrite the wat er build script and boil it down to a single line.

Page 136 of 168

Example 28.4. Water project build script

buil d. gradl e

al | projects {
task hello << { task -> println "I'm $task. proj ect. nane" }
}

Outputofgradl e -q hello

> gradle -q hello
1" m wat er

1" m bl uewhal e
I"mkrill

Is this cool or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do an iteration via al | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject
builds.

28.2. Subproject configuration

The Project API also provides a property for accessing the subprojects only.

28.2.1. Defining common behavior

Example 28.5. Defining common behaviour of all projects and subprojects

buil d. gradl e
al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}

Outputofgradl e -q hello

> gradle -q hello
1" m wat er

1" m bl uewhal e

- | depend on water
I"mkrill

- | depend on water

28.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don't have to do it this way. We could add project specific behavior for the bl uewhal e project like this:

Page 137 of 168

Example 28.6. Defining specific behaviour for particular project

buil d. gradl e
al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}
project (':bluewhale').hello << {
println "lI'mthe | argest aninmal that has ever lived on this planet."
}

Outputofgradl e -q hello

> gradle -q hello
' m wat er

I m bl uewhal e

- | depend on water
|

|

"mthe largest aninal that has ever lived on this planet.
"mkrill

| depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior to the kri | | project.

Page 138 of 168

Example 28.7. Defining specific behaviour for project krill

Build layout
wat er/
bui |l d. gradl e
settings.gradle
bl uewhal e/
bui |l d. gradl e
krill/
bui |l d. gradl e
Note: The code for this example can be found at

sanpl es/ user gui de/ nul ti proj ect/ spreadSpeci fics/ wat er

settings.gradle
include 'bluewhale', "krill'
bl uewhal e/ bui | d. gradl e

hel | 0. doLast { println "- I'"'mthe |largest animal that has ever lived on this planet." }

krill/build.gradle

hel | 0. doLast {

println "- The weight of my species in summer is twi ce as heavy as all human bei ngs
}
bui | d. gradl e
al |l projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}

Outputofgradle -q hello

> gradle -q hello

1" m wat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

I"mkrill

| depend on water

The wei ght of mnmy species in sunmer is twice as heavy as all hunman bei ngs.

28.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 139 of 168

28.2.3.1. Filtering by name

Example 28.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er /

bui | d. gradl e
settings. gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

Note: The code for this example can be found at
sanpl es/ user gui de/ nul ti proj ect/addTropi cal / wat er

settings.gradle

include 'bluewhale', "krill', 'tropicalFish'
buil d. gradl e
al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hello << {println '- | love to spend tinme in the arctic waters."'}
}

Outputofgradl e -q hello

> gradle -q hello

I m wat er

1" m bl uewhal e

- | depend on water

-1 love to spend tine in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"mkrill

- | depend on water

-1 love to spend tine in the arctic waters.

- The weight of ny species in summer is twice as heavy as all human beings
I"mtropical Fi sh

- | depend on water

The confi gure() method takes a list as an argument and applies the configuration to the projects in this
list.

28.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using dynamic project properties is another.

Example 28.9. Adding custom behaviour to some projects (filtered by project properties)

Page 140 of 168

Build layout

wat er/
bui | d. gradl e
settings. gradle
bl uewhal e/
bui | d. gradl e
krill/
bui | d. gradl e
tropical Fi sh/
bui | d. gradl e

Note: The code for this example can be found at
sanpl es/ usergui de/ nul ti project/tropical Wt hProperties/wat er

settings.gradle

include 'bluewhale', "krill', 'tropicalFish'

bl uewhal e/ bui | d. gradl e

arctic = true
hel | 0. doLast { println "- I'mthe |largest animal that has ever lived on this planet." }

krill/build.gradle
arctic = true

hel | 0. doLast {
println "- The weight of nmy species in summer is twi ce as heavy as all human bei ngs
}

tropi cal Fi sh/ bui |l d. gradl e

arctic = fal se

bui | d. gradl e
al |l projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hel l o {
doLast {println "- | depend on water"}
afterEvaluate { Project project ->
if (project.arctic) { doLast {
println '- | love to spend tine in the arctic waters.' }
}
}
}
}

Outputofgradl e -q hello

Page 141 of 168

gradle -q hello
''m wat er
"'m bl uewhal e
| depend on water
I"'mthe largest animal that has ever lived on this planet.
I love to spend tine in the arctic waters.
"mkrill
| depend on water
The wei ght of nmy species in sunmer is twice as heavy as all human bei ngs
I love to spend tine in the arctic waters.
"mtropical Fi sh
| depend on water

VA

In the build file of the wat er project we use an af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property

arctic is set in those build scripts, we have to do it this way. You will find more on this topic in

Section 28.6, “Dependencies - Which dependencies?”

28.3. Execution rules for multi-project builds

When we have executed the hel | o task from the root project dir things behaved in an intuitive way. All the
hel | o tasks of the different projects were executed. Let's switch to the bl uewhal e dir and see what
happens if we execute Gradle from there.

Example 28.10. Running build from subproject

Outputofgradle -q hello

> gradle -q hello

1" m bl uewhal e

- | depend on water

- I"'mthe largest aninmal that has ever lived on this planet.
- | love to spend tine in the arctic waters.

The basic rule behind Gradle's behavior is simple. Gradle looks down the hierarchy, starting with the current
dir, for tasks with the name hel | o an executes them. One thing is very important to note. Gradle always
evaluates every project of the multi-project build and creates all existing task objects. Then, according to the
task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of
Gradle's cross project configuration every project has to be evaluated before any task gets executed. We will
have a closer look at this in the next section. Let's now have our last marine example. Let's add a task to

bl uewhal e and kri || .

Page 142 of 168

Example 28.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e

arctic = true
hello << { println "- I"'mthe largest aninmal that has ever lived on this planet." }

task distanceTol ceberg << {
println '20 nautical mniles'

}

krill/build.gradle

arctic = true
hello << { println "- The weight of ny species in sumer is twice as heavy as all humar

task di stanceTol ceberg << {
println '5 nautical niles’

}

Output of gradl e -qg di st anceTol ceberg

> gradl e -q distanceTol ceberg
20 nautical mles
5 nautical mles

Here the output without the - g option:

Example 28.12. Evaluation and execution of projects

Output of gr adl e di st anceTol ceberg

> gradl e di stanceTol ceberg

: bl uewhal e: di st anceTol ceberg
20 nautical nmiles
ckrill:distanceTol ceberg

5 nautical mles

BU LD SUCCESSFUL

Total time: 1 secs

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is: Execute
all tasks down the hierarchy which have this name. Only complain if there is no such task!

28.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from
there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle
also offers to execute tasks by their absolute path (see also Section 28.5, “Project and task paths”):

Page 143 of 168

Example 28.13. Running tasks by their absolute path

Outputofgradle -q :hello :krill:hello hello
> gradle -q :hello :krill:hello hello
1" m wat er
I"mkrill

| depend on water
- The weight of ny species in sumer is twice as heavy as all human bei ngs.
- | love to spend tine in the arctic waters.
I'"'mtropical Fi sh
- | depend on water

The build is executed from the t r opi cal Fi sh project. We execute the hel | o tasks of the wat er, the
krill andthe tropi cal Fi sh project. The first two tasks are specified by there absolute path, the last task
is executed on the name matching mechanism described above.

28.5. Project and task paths

A project path has the following pattern: It starts always with a colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The path : bl uewhal e corresponds
to the file system path wat er/ pr oj ect in the case of the example above.

The path of a task is simply its project path plus the task name. For example : bl uewhal e: hel | 0. Within a
project you can address a task of the same project just by its name. This is interpreted as a relative path.

Originally Gradle has used the ' /' character as a natural path separator. With the introduction of directory

tasks (see Section 10.2, “Directory creation”) this was no longer possible, as the name of the directory task
contains the ' /' character.

28.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. Here is an example where this is different:

Page 144 of 168

28.6.1. Execution dependencies

28.6.1.1. Dependencies and execution order

Example 28.14. Dependencies and execution order

Build layout

messages/
settings.gradle
consuner/
bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at
sanpl es/ user gui de/ mul ti proj ect/ dependenci es/first Messages/ nessages

settings.gradle

include 'consumer', 'producer’

consurmer/bui |l d. gradl e

task action << {
println "Consum ng nmessage: " + System getProperty('org.gradle.nessage')

}

producer/ buil d. gradl e

task action << {
println "Produci ng nmessage: "
Syst em set Property(' org. gradl e. nessage', 'Watch the order of execution.')

Outputofgradl e -g action

> gradle -q action
Consum ng message: nul |
Produci ng message:

This did not work out. If nothing else is defined, Gradle executes the task in alphanumeric order. Therefore
. consuner: acti on is executed before : producer: acti on. Let's try to solve this with a hack and
rename the producer project to aPr oducer .

Page 145 of 168

Example 28.15. Dependencies and execution order

Build layout

nmessages/
settings.gradle
aProducer/

bui |l d. gradl e
consuner/
bui |l d. gradl e

settings.gradle

include 'consuner', 'aProducer'

aProducer/buil d. gradl e
task action << {

println "Produci ng nessage: "
System set Property(' org. gradl e. nessage', 'Watch the order of execution.')

consuner/bui |l d. gradl e
task action << {

println "Consum ng message: " + System getProperty('org.gradle.nmessage')

}

Outputof gradl e -qg action
> gradle -q action

Pr oduci ng nessage:
Consuni ng nessage: Watch the order of execution.

Now we take the air out of this hack. We simply switch to the consuner dir and execute the build.

Example 28.16. Dependencies and execution order

Outputof gradl e -qg action

> gradle -q action
Consum ng message: nul |

For Gradle the two act i on tasks are just not related. If you execute the build from the nessages project
Gradle executes them both because they have the same name and they are down the hierarchy. In the last
example only one act i on was down the hierarchy and therefore it was the only task that got executed. We
need something better than this hack.

Page 146 of 168

28.6.1.2. Declaring dependencies
Example 28.17. Declaring dependencies

Build layout

messages/
settings. gradle
consuner/
bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at
sanpl es/ user gui de/ nul ti proj ect/ dependenci es/ nessagesW t hDependenci es/ nessages
settings.gradle

i nclude 'consumer', 'producer’

consurmer/bui |l d. gradl e

dependsOn(' : producer')

task action << {
println "Consum ng nmessage: " + System getProperty('org.gradle.nessage')

}

producer/buil d. gradl e

task action << {
println "Produci ng nmessage: "
System set Property(' org. gradl e. nessage', 'Watch the order of execution.')

Outputofgradl e -g action

> gradle -q action
Pr oduci ng nessage:
Consuni ng nessage: Watch the order of execution.

Running this from the consuner directory gives:

Example 28.18. Declaring dependencies

Outputof gradl e -qg action

> gradle -q action
Pr oduci ng nessage:
Consuni ng nessage: Watch the order of execution.

We have now declared that the consumer project has an execution dependency on the pr oducer project.
For Gradle declaring execution dependencies between projects is syntactic sugar. Under the hood Gradle
creates task dependencies out of them. You can also create cross project tasks dependencies manually by
using the absolute path of the tasks.

Page 147 of 168

28.6.1.3. The nature of project dependencies
Let's change the naming of our tasks and execute the build.
Example 28.19. Project dependencies

consumer/ bui | d. gradl e

dependsOn(' : producer')

task consunme << {
println "Consum ng nmessage: " + System getProperty('org.gradle.nessage')

}

producer/buil d. gradl e

task produce << {
println "Produci ng nmessage: "
System set Property(' org. gradl e. nessage', 'Watch the order of execution.')

Outputof gradl e -g consune

> gradle -q consume
Consum ng message: nul |

Oops. Why does this not work? The dependsOn command is created for projects with a common lifecycle.
Provided you have two Java projects were one depends on the other. If you trigger a compile for the
dependent project you don't want that all tasks of the other project get executed. Therefore a dependsOn
creates dependencies between tasks with equal names. To deal with the scenario above you would do the
following:

Example 28.20. Project dependencies

consurmer/bui |l d. gradl e

task consune(dependsOn: ':producer: produce') << {
println "Consum ng nmessage: " + System getProperty('org.gradle.nessage')
}

producer/ buil d. gradl e

task produce << {
println "Produci ng nmessage: "
System set Property(' org. gradl e. nessage', 'Watch the order of execution.')

Output of gradl e -g consune

> gradle -q consume
Pr oduci ng nessage:
Consunmi ng nessage: Watch the order of execution.

Page 148 of 168

28.6.2. Configuration time dependencies

Let's have one more example with our producer-consumer build before we enter Java land. We add a
property to the producer project and create now a configuration time dependency from consumer on
producer.

Example 28.21. Configuration time dependencies

consurmer/bui |l d. gradl e

key = 'unknown'
if (project(':producer').hasProperty('key')) {
key = project(':producer').key

}
task consune(dependsOn: ':producer: produce') << {

println "Consuning nessage fromkey '$key': " + System getProperty(key)
}

producer/buil d. gradl e

key = 'org.gradl e. mressage’
task produce << {

println "Produci ng nmessage: "
Syst em set Property(key, 'Watch the order of execution.')

Output of gradl e -g consune

> gradle -q consume
Pr oduci ng nessage:
Consumi ng nessage from key 'unknown': null

The default evaluation order of the projects is alphanumeric (for the same nesting level). Therefore the
consuner project is evaluated before the pr oducer project and the key value of the pr oducer is set after
it is read by the consuner project. Gradle offers a solution for this.

Example 28.22. Configuration time dependencies - evaluationDependsOn

consuner/bui |l d. gradl e
eval uat i onDependsOn(' : producer')
key = 'unknown'

if (project(':producer').hasProperty('key')) {
key = project(':producer').key

}
task consunme(dependsOn: ':producer: produce') << {

println "Consum ng nessage fromkey '$key': " + System getProperty(key)
}

Output of gradl e -g consune

> gradle -q consume
Pr oduci ng nessage:
Consumi ng nessage from key 'org.gradl e. message': Watch the order of execution.

Page 149 of 168

The command eval uati onDependsOn triggers the evaluation of producer before consumer is
evaluated. The example is a bit contrived for the sake of showing the mechanism. In this case there would
be an easier solution by reading the key property at execution time.

Example 28.23. Configuration time dependencies

consurmer/ bui |l d. gradl e

task consunme(dependsOn: ':producer: produce') << {

String key = project(':producer').key

println "Consum ng nessage fromkey '$key': " + System getProperty(key)
}

Output of gradl e -g consune

> gradle -q consune
Pr oduci ng nessage:
Consumi ng nessage from key 'org.gradl e. message': Watch the order of execution.

Configuration dependencies are very different to execution dependencies. Configuration dependencies are
between projects whereas execution dependencies are always resolved to task dependencies. Another
difference is that always all projects are configured, even when you start the build from a subproject. The
default configuration order is top down, which is usually what is needed.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with dependsOn a execution dependency between different projects, the default behavior of
this method is to create also a configuration dependency between the two projects. Therefore it is likely that
you don't have to define configuration dependencies explicitly.

28.6.3. Real life examples

Gradle's multi-project features are driven by real life use cases. The first example for describing such a use
case, consists of two webapplication projects and a parent project that creates a distribution out of them. <%:
For the example we use only one build script and do cross project configuration.

Page 150 of 168

Example 28.24. Dependencies - real life example - crossproject configuration

Build layout

webDi st/
settings.gradle
bui |l d. gradl e
dat e/
src/ mai n/ javal/ org/ gradl e/ sanpl e/ Dat eServl et . j ava
hel | o/
src/ mai n/javal/ org/ gradl e/ sanpl e/ Hel | oServl et . j ava

Note: The code for this example can be found at
sanpl es/ user gui de/ nul ti proj ect/ dependenci es/ webDi st

settings.gradle

include 'date', 'hello

bui I d. gradl e

dependsOnChi | dren()

al | projects {
usePl ugi n('java')
group = 'org.gradle. sanpl e’
version = '1.0'

}

subproj ects {
usePl ugi n(' war"')
repositories {
mavenCentral ()
}

dependenci es {
conpile "javax.servlet:servlet-api:2. 5"
}

}

task expl odedDi st (dependsOn: libs) << {
Fil e expl odedDi st = nkdir(buildDir, 'explodedDist')
subproj ects. each {project ->
proj ect.tasks.w thType(Jar).each {archiveTask ->
ant . copy(file: archiveTask. archivePath, todir: expl odedDi st)
}

We have an interesting set of dependencies. Obviously the dat e and hel | o task have a configuration
dependency on webDi st, as all the build logic for the webapp projects is injected by webDi st. The
execution dependency is in the other direction, as webDi st depends on the build artifacts of dat e and
hel | 0. There is even a third dependency. webDi st has a configuration dependency on dat e and hel | o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore we
have no circular dependency.

Such and other dependency patterns are daily bread in the problem space of multi-project builds. If a build
system does not support such patterns, you either can't solve your problem or you need to do ugly hacks
which are hard to maintain and massively afflict your productivity as a build master.

Page 151 of 168

There is one more thing to note from the current example. We have used the command
dependOnChi | dren() . It is a convenience method and calls the dependsOn method of the parent project
for every child project (not every sub project). It declares a execut i on dependency of webDi st on dat e
and hel | o.

Another use case would be a situation where the subprojects have a configuration and execution
dependency on the parent project. This is the case when the parent project does configuration injection into
its subprojects, and additionally produces something at execution time that is needed by its child projects
(e.g. code generation). In this case the parent project would call the chi | dr enDependOnMe method to
create an execution dependency for the child projects. We might add an example for this in a future version
of the user guide.

28.7. Project lib dependencies

What if one projects needs the jar produced by another project in its compile path. And not just the jar but
also the transitive dependencies of this jar. Obviously this is a very common use case for Java multi-project
builds. As already mentioned in Section 25.3.4, “Project dependencies”, Gradle offers project dependencies
for this.

Example 28.25. Project dependencies

Build layout

j aval/
settings.gradle
bui | d. gradl e
api/
src/ mai n/ javal or g/ gr adl e/ sanpl e/ api / Person. j ava
src/ mai n/javal or g/ gr adl e/ sanpl e/ api | npl / Per sonl npl . j ava
servi ces/
per sonServi ce/
src/ mai n/ javal or g/ gr adl e/ sanpl e/ servi ces/ PersonServi ce. j ava
src/test/javal org/ gradl e/ sanpl e/ servi ces/ PersonServi ceTest. j ava
shar ed/
src/ mai n/ javal or g/ gr adl e/ sanpl e/ shar ed/ Hel per. j ava

Note: The code for this example can be found at
sanpl es/ user gui de/ nul ti proj ect/ dependenci es/j ava

We have the projects shar ed, api and per sonSer vi ce. per sonSer vi ce has a lib dependency on the
other two projects. api has a lib dependency on shar ed. [29]

Page 152 of 168

Example 28.26. Project dependencies

settings.gradle

include '"api', 'shared', 'services:personService

buil d. gradl e

subprojects {
usePl ugi n('java')
group = 'org.gradle.sanple
version = "1. 0

}

project(':api') {
dependenci es {
conpile project(':shared")
}
}

project (' :services: personService') ({
dependenci es {
conpile project(':shared), project(':api')
testConpile "junit:junit:3.8.2"

All the build logic is in the bui | d. gr adl e of the root project. (391 A lib dependency is a special form of an
execution dependency. It causes the other project to be build first and adds the jar with the classes of the
other project to the classpath. It also add the dependencies of the other project to the classpath. So you can
enter the api folder and trigger a gr adl e compi | e. First shar ed is build and then api is build. Project
dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from lvy land, you might
expect some more fine grained control. Gradle offers this to you:

Page 153 of 168

Example 28.27. Fine grained control over dependencies

buil d. gradl e

subproj ects {
usePl ugi n('java')
group = 'org.gradle.sanpl e’
version = '1.0'

}

project(':api') {
configurations {
spi
}
dependenci es {
conpil e project(':shared")

}
task spiJar(type: Jar) {
baseNane = 'api - spi
confs = ['spi']
fileSet() {
i nclude(' org/gradl e/ sanpl e/ api/**"')
}
}

}

project (':services: personService') {
dependenci es {
conpil e project(':shared")
conpile project(path: ':api', configuration: 'spi')
testConmpile "junit:junit:3.8.2", project(':api')

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the api project. We assign this library to a
new dependency configuration. For the person service we declare that the project should be compiled only
against the api interfaces but tested with all classes from api .

28.7.1. Disable the build of dependency projects.

Sometimes you don't want that dependeny projects get rebuild when doing a partial build. To disable the
build of the dependency projects you can start gradle with the - a option.

28.8. Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In a future edition of this user guide we might write more about this.

Method inheritance might be interesting to use as Gradle's Configuration Injection does not support methods
yet (but will in a future release.).

You might be wondering why we have implemented a feature we obviously don't like that much. One reason
is that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like
to offer our users a choice.

Page 154 of 168

28.9. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for
this chapter is that multi-project builds with Gradle are usually not difficult. There are six elements you need
to remember: al | proj ect, subproj ects, dependsOn, chi | dr enDependOnMe, dependOnChi | dren
and project lib dependencies. [31] with those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you have already a lot of flexibility. But when you enter steep territory

Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[28] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index your are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet

container.

[29] servi ces is also a project, but we use it just as a container. It has no build script and gets nothing

injected by another build script.

[30] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the

buildscript of the respective projects.

[31] So we are well in the range of the 7 plus 2 Rule)

Page 155 of 168

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

29
Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in
the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a
method. If multiple projects of a multi-project build share some logic you can define this method in the parent
project. If the build logic gets too complex for being properly modeled by methods you want have an OO

compiles them and puts them in the classpath of your build script.

29.1. Build sources

If you run Gradle, it checks for the existence of a folder called bui | dSr c. Just put your build source code in
this folder and stick to the layout convention for a Java/Groovy project (see Table 16.2, “Java plugin - default
' "). Gradle then automatically compiles and tests this code and puts it in the classpath of your
build script. You don't need to provide any further instruction. For multi-project builds there can be only one
bui | dSr ¢ directory which has to be in the root project.

ut

This is probably good enough for most of the cases. If you need more flexibility, you can provide a
bui I d. gradl e and a settings. gradl e file in the bui | dSr ¢ folder. If you like, you can even have a
multi-project build in there.

29.2. External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script's classpath in the build
script itself. You do this using the bui | dscri pt () method, passing in a closure which declares the build
script classpath.

Example 29.1. Declaring external dependencies for the build script

bui I d. gradl e

bui l dscript {
repositories {
mavenCentral ()
}

dependenci es {
cl asspath group: 'commons-codec', nane: 'conmons-codec', version: '1.2'
}

Page 156 of 168

The closure passed to the bui | dscri pt () method configures a Scri pt Handl er instance. You declare
the build script classpath by adding dependencies to the cl asspat h configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in Section 25.3, “How to declare your dependencies”, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any
other classes on the classpath. The following example adds to the previous example, and uses classes from
the build script classpath.

Example 29.2. A build script with external dependencies

bui | d. gradl e

i mport org. apache. conmons. codec. bi nary. Base64
bui l dscript {
repositories {
mavenCentral ()
}

dependenci es {
cl asspath group: 'commons-codec’', nane: 'conmmons-codec', version: '1.2'
}

}

task encode << {
def byte[] encodedString = new Base64().encode(' hello world\n' as byte[])
println new String(encodedString)

Output of gradl e -g encode

> gradl e -q encode
aGVshGBgd29ybGXK

For multi-project builds, the dependencies declared in the a project's build script, are available to the build
scripts of all sub-projects.

29.3. Ant optional dependencies

For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks.

Page 157 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 29.3. Ant optional dependencies

buil d. gradl e

configurations {
ft pAnt Task

}

dependenci es {
ft pAnt Task("or g. apache. ant: ant-commons-net:1.7.0") {
nmodul e(" commons- net: commons-net: 1.4.1") {
dependenci es "oro:oro:2.0.8:jar"

}
}
}
task ftp << {
ant {
t askdef (nanme: 'ftp',
cl assnanme: 'org. apache.tool s. ant.taskdefs. optional.net.FTP",
cl asspat h: configurations. ftpAnt Task. asPat h)
ftp(server: "ftp.apache.org", userid: "anonynmous", password: "me@ryorg.cont) {
fileset(dir: "htdocs/manual ")
}
}
}

This is also nice example for the usage of client modules. The pom.xml in maven central for the
ant-commons-net task does not provide the right information for this use case.

29.4. Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your
domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to
maintain code base. It is our experience that even very complex custom build logic is rarely shared between
different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle
spares you this unnecessary overhead and indirection.

[32] Which might range from a single class to something very complex.

the same library you would have to define it two times. In such a case it would be nice, if Ant's optional task
would automatically pickup the classpath defined in the gr adeset ti ngs.

Page 158 of 168

30

The Gradle Wrapper

Gradle is a new tool. You can't expect it to be installed on machines beyond your sphere of influence. An
example are continuous integration server where Gradle is not installed and where you have no admin rights
for the machine. Or what if you provide an open source project and you want to make it as easy as possible
for your users to build it?

There is a simple and good news. Gradle provides a solution for this. It ships with a Wrapper task. 341 [33]
You can create such a task in your build script.

Example 30.1. Wrapper task

bui I d. gradl e

task wrapper(type: Wapper) {
gradl eVersion = '0.6'
}

The build master usually explicitly executes this task. After such an execution you find the following new or
updated files in your project folder (in case the default configuration of the wrapper task is used).

proj ect -root/
gradl ew
gr adl ew. bat
gr adl e-wr apper.j ar
gr adl e-wr apper . properties

All these files must be submitted to your version control system. The gradlew command can be used exactly
the same way as the gradle command.

If you want to switch to a new version of Gradle you don't need to rerun the wrapper task. It is good enough
to change the respective entry in the gr adl e- w apper . properti es file. But if there is for example an
improvement in the gradle-wrapper functionality you need to regenerate the wrapper files.

30.1. Configuration

If you run Gradle with gradlew, Gradle checks if a Gradle distribution for the wrapper is available. If not it
tries to download it, otherwise it delegates to the gradle command of this distribution with all the arguments
passed originally to the gradlew command.

Page 159 of 168

You can specify where the wrapper files should be stored (within your project directory):

Example 30.2. Configuration of wrapper task

bui | d. gradl e
task wrapper(type: Wapper) {
gradl eVersion = '0. 6
jarPath = '"w apper"’

proj ect - r oot/
gradl ew
gr adl ew. bat
wr apper/
gr adl e-wr apper.j ar
gr adl e-wr apper . properties

You can specify the download URL of the wrapper distribution. You can also specify where the wrapper
distribution should be stored and unpacked (either within the project or within the gradle user home dir). If
the wrapper is run and there is local archive of the wrapper distribution Gradle tries to download it and stores
it at the specified place. If there is no unpacked wrapper distribution Gradle unpacks the local archive of the
wrapper distribution at the specified place. All the configuration options have defaults except the version of
the wrapper distribution.

If you don't want any download to happen when your project is build via gradlew, simply add the Gradle
distribution zip to your version control at the location specified by your wrapper configuration.

If you build via the wrapper, any existing Gradle distribution installed on the machine is ignored.

30.2. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution for the gradlew *NIX command.
Subversion preserves this file permission. We are not sure how other version control systems deal with this.
What should always work is to execute sh gr adl ew.

30.3. Environment variable

Some rather exotic use cases might occur when working with the Gradle Wrapper. For example the
continuos integration server goes down during unzipping the Gradle distribution. As the distribution directory
exists gradlew delegates to it but the distribution is corrupt. Or the zip-distribution was not properly
downloaded. When you have no admin right on the continuous integration server to remove the corrupt files,
Gradle offers a solution via environment variables.

Page 160 of 168

http://www.gradle.org/0.7/docs/javadoc/org/gradle/api/tasks/wrapper/Wrapper.html

Table 30.1. Gradle wrapper environment variables

Variable Name Meaning

If set to t r ue, the distribution directory gets always
deleted when gradlew is run and the distribution zip
is freshly unpacked. If the zip is not there, Gradle tries
to download it.

GRADLE_WRAPPER_ALWAYS_UNPACK

If set to t r ue, the distribution directory and the
GRADLE_WRAPPER_ALWAYS_DOWNLOAD distribution zip gets always deleted when gradlew is
run and the distribution zip is freshly downloaded.

[34] If you download the Gradle source distribution or check out Gradle from SVN, you can build Gradle via

the Gradle wrapper.

[35] Gradle itself is continuously built by Bamboo and Teamcity via this wrapper. See

http://gradle.org/ci-server.html

Page 161 of 168

http://gradle.org/ci-server.html

31

Embedding Gradle

t.b.d.

Page 162 of 168

A

Potential Traps

A.1. Groovy script variables

For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types
of script variables. One with a local scope and one with a script wide scope.

Example A.1. Variables scope: local and script wide

scope. gr oovy

String | ocal Scopel = 'l ocal Scopel’
def | ocal Scope2 = '| ocal Scope2
scri pt Scope = 'script Scope

println | ocal Scopel
println | ocal Scope2
println scriptScope

closure = {
println | ocal Scopel
println | ocal Scope2
println scriptScope

}

def method() ({
try {l ocal Scopel} catch(M ssingPropertyException e) {println 'l ocal ScopelNotAvail at
try {l ocal Scope2} catch(M ssingPropertyException e) {println 'l ocal Scope2Not Avai | at
println scriptScope

}

closure.call ()
met hod()

Output of gr adl e

> gradle

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal ScopelNot Avai |l abl e
| ocal Scope2Not Avai | abl e
scri pt Scope

Variables which are declared with a type modifier are visible within closures but not visible within methods.

Page 163 of 168

This is a heavily discussed behavior in the Groovy community. [36]

A.2. Configuration and execution phase

It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 27,
The Build Lifecycle).

Example A.2. Distinct configuration and execution phase

bui I d. gradl e

classesDir = new File('build/classes')
cl assesDir. nkdirs()
task clean << {
ant.delete(dir: '"build")
}
task conpil e(dependsOn: 'clean') << {
if (!classesDir.isDrectory()) {
println 'The class directory does not exist. | can not operate'
/1 do sonet hi ng

}

/1 do sonet hi ng

Outputofgradl e -g conpile

> gradle -q conmpile
The class directory does not exist. | can not operate

As the creation of the directory happens during the configuration phase, the cl ean task removes the
directory during the execution phase.

[36] One of those discussions can be found here:

http://www.nabble.com/script-scoping-question-td16034724 .htm|

Page 164 of 168

http://www.nabble.com/script-scoping-question-td16034724.html

B

Gradle Command Line

The gradle command has the following usage:
gradle [option...] [task-nane...]

The command-line options available for the gradle command are listed below:

-?,-h,--help
Shows a help message.

-C, --cache
Specifies how compiled build scripts should be cached. Possible values are: r ebui | d, of f, on.
Default value is on. See Section 10.5, “Caching” for more details.

-D,--system prop
Sets a system property of the JVM, for example - Dnypr op=nyval ue.

-l,--no-inports
Disable usage of default imports for build script files. See Section C.3, “Using Gradle without IDE

-K --default-inmport-file
Specifies the default import file.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=nyval ue.

-a,--no-rebuild
Do not rebuild project dependencies.

-b,--build-file
Specifies the build file.

-c,--settings-file
Specifies the settings file.

-d, - - debug
Log in debug mode (includes normal stacktrace). See Chapter 13, Logging.

-e, - -enbedded

Page 165 of 168

Specify an embedded build script.

-f,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See Chapter 13, Logging.

-g,--gradl e-user-hone
Specifies the Gradle user home directory.

-i,--info
Set log level to info. See Chapter 13, Logging.

-1,--plugin-properties-file
Specifies the plugin properties file.

-n, - -dependenci es
Show list of all project dependencies.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory.

-q,--qui et
Log errors only. See Chapter 13, Logging.

-r,--properties
Show list of all available project properties.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See Chapter 13, Logging.

-t,--tasks
Show list of all available tasks and their dependencies.

- u, - - no- sear ch- upwar ds
Don't search in parent folders for a set ti ngs. gr adl e file.

-V, --version
Prints version info.

The same information is printed to the console when you execute gradl e -h.

Page 166 of 168

C

Existing IDE Support and how to cope
without it

C.1. Intellid

Gradle has been mainly developed with Idea IntelliJ and its very good Groovy plugin. Gradle's build script 37
I has also been developed with the support of this IDE. IntelliJ allows you to define any filepattern to be
interpreted as a Groovy script. In the case of Gradle you can define such a pattern for bui | d. gr adl e and
settings. gradl e. This will already help very much. What is missing is the classpath to the Gradle
binaries to offer content assistance for the Gradle classes. You might add the Gradle jar (which you can find
in your distribution) to your project's classpath. It does not really belong there, but if you do this you have a
fantastic IDE support for developing Gradle scripts. Of course if you use additional libraries for your build
scripts they would further pollute your project classpath.

We hope that in the future *. gr adl e files get special treatment by IntelliJ and you will be able to define a
specific classpath for them.

C.2. Eclipse

There is a Groovy plugin for eclipse. We don't know in what state it is and how it would support Gradle. In
the next edition of this user guide we can hopefully write more about this.

C.3. Using Gradle without IDE support

What we <can do for you is to spare you typing things like throw new
org.gradl e. api . tasks. St opExecuti onExcepti on() and just type t hr ow new
St opExecut i onExcepti on() instead. We do this by automatically adding a set of import statements to
the Gradle scripts before Gradle executes them. This set is defined by a properties file gr adl e-i nmport s in
the Gradle distribution. It has the following content.

Page 167 of 168

Figure C.1. gradle-imports

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

*

uti

api .
.artifacts.*
.artifacts.dsl.*
.artifacts.specs. *
. dependenci es. *
.execution.*

. 1 oggi
.initialization.*
.invocation.*

. pl ugi
. Specs.
. tasks.
.tasks
.tasks
.tasks
.tasks
.tasks
.tasks

api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api

*

*

ng. *

ns. *
*
*

. bundl i ng. *
.conpile.*
. j avadoc. *
.testing.*
.util ¥

. Wr apper . *

You can define a project specific set of imports to be added to your build scripts. Just place a file called
gradl e-i nport s in your root project directory. If you start Gradle with the {-1} option, the imports defined in

the Gradle distribution are disabled. The imports defined in your project directory are always used.

Page 168 of 168

	Chapter 1. Introduction
	1.1. About this user guide

	Chapter 2. Overview
	2.1. Features
	2.2. Why Groovy?
	2.3. Missing features

	Chapter 3. Getting Started
	3.1. Prerequisites
	3.2. Unpacking
	3.3. Environment variables
	3.4. Running and testing your installation
	3.5. JVM options

	Chapter 4. Build Script Basics
	4.1. Hello world
	4.2. Build scripts are code
	4.3. Task dependencies
	4.4. Dynamic tasks
	4.5. Manipulating existing tasks
	4.6. Shortcut notations
	4.7. Dynamic task properties
	4.8. Using Ant Tasks
	4.9. Using methods
	4.10. Default tasks
	4.11. Configure by DAG
	4.12. Summary

	Chapter 5. Artifact Basics
	5.1. Artifact configurations
	5.2. Repositories
	5.3. External dependencies
	5.4. Artifact publishing
	5.5. API

	Chapter 6. Java Quickstart
	6.1. A basic Java project
	6.2. Multi-project Java build
	6.3. Summary

	Chapter 7. Groovy Quickstart
	7.1. A basic Groovy project
	7.2. Summary

	Chapter 8. Web Application Quickstart
	8.1. Building a WAR file
	8.2. Running your web application
	8.3. Summary

	Chapter 9. Using the Gradle Command-Line
	9.1. Executing multiple tasks
	9.2. Selecting which build to execute
	9.3. Obtaining information about your build
	9.4. Dry Run

	Chapter 10. Tutorial - 'This and That'
	10.1. Skipping tasks
	10.2. Directory creation
	10.3. Gradle properties and system properties
	10.4. Accessing the web via a proxy
	10.5. Caching
	10.6. Configuring arbitrary objects

	Chapter 11. The Project and Task API
	11.1. Project API
	11.2. Task API
	11.3. Summary

	Chapter 12. More about Tasks
	12.1. Defining tasks
	12.2. Locating tasks
	12.3. Configuring tasks
	12.4. Adding dependencies to a task
	12.5. Adding a description to a task
	12.6. Replacing tasks
	12.7. Task rules
	12.8. Summary

	Chapter 13. Logging
	13.1. Choosing a log level
	13.2. External tools and standard output
	13.3. Sending your own log messages

	Chapter 14. Using Ant from Gradle
	14.1. Using Ant tasks and types in your build
	14.2. Importing an Ant build
	14.3. Ant properties and references
	14.4. API

	Chapter 15. Plugins
	15.1. Declaring plugins
	15.2. Configuration
	15.3. Summary

	Chapter 16. The Java Plugin
	16.1. Tasks
	16.2. Project layout
	16.3. Dependency management
	16.4. Convention properties
	16.5. Javadoc
	16.6. Clean
	16.7. Resources
	16.8. Compile
	16.9. Test
	16.10. Jar
	16.11. Adding archives
	16.12. Uploading
	16.13. Eclipse

	Chapter 17. The Groovy Plugin
	17.1. Tasks
	17.2. Project layout
	17.3. Dependency management
	17.4. Convention properties
	17.5. Compile
	17.6. Test

	Chapter 18. The War Plugin
	18.1. Tasks
	18.2. Project layout
	18.3. Dependency management
	18.4. Convention properties
	18.5. War
	18.6. Customizing
	18.7. Eclipse WTP

	Chapter 19. The Jetty Plugin
	19.1. Tasks
	19.2. Project layout
	19.3. Dependency management
	19.4. Convention properties

	Chapter 20. The Maven Plugin
	20.1. Tasks
	20.2. Project layout
	20.3. Dependency management
	20.4. Convention properties

	Chapter 21. The OSGi Plugin
	21.1. Tasks
	21.2. Project layout
	21.3. Dependency management
	21.4. Convention properties

	Chapter 22. The Eclipse Plugin
	22.1. Tasks
	22.2. Project layout
	22.3. Dependency management
	22.4. Convention properties

	Chapter 23. The Project Report Plugin
	23.1. Tasks
	23.2. Project layout
	23.3. Dependency management
	23.4. Convention properties

	Chapter 24. How to write Custom Plugins
	Chapter 25. Dependency Management
	25.1. Introduction
	25.2. Dependency management overview
	25.3. How to declare your dependencies
	25.4. Working with dependencies
	25.5. Repositories
	25.6. Strategies for transitive dependency management

	Chapter 26. Artifact Management
	26.1. Introduction
	26.2. Artifacts and configurations
	26.3. Uploading artifacts
	26.4. More about project libraries
	26.5. Interacting with Maven repositories

	Chapter 27. The Build Lifecycle
	27.1. Build phases
	27.2. Settings file
	27.3. Multi-project builds
	27.4. Initialization
	27.5. Configuration and execution of a single project build
	27.6. Responding to the lifecycle in the build script

	Chapter 28. Multi-project Builds
	28.1. Cross project configuration
	28.2. Subproject configuration
	28.3. Execution rules for multi-project builds
	28.4. Running tasks by their absolute path
	28.5. Project and task paths
	28.6. Dependencies - Which dependencies?
	28.7. Project lib dependencies
	28.8. Property and method inheritance
	28.9. Summary

	Chapter 29. Organizing Build Logic
	29.1. Build sources
	29.2. External dependencies for the build script
	29.3. Ant optional dependencies
	29.4. Summary

	Chapter 30. The Gradle Wrapper
	30.1. Configuration
	30.2. Unix file permissions
	30.3. Environment variable

	Chapter 31. Embedding Gradle
	Appendix A. Potential Traps
	A.1. Groovy script variables
	A.2. Configuration and execution phase

	Appendix B. Gradle Command Line
	Appendix C. Existing IDE Support and how to cope without it
	C.1. IntelliJ
	C.2. Eclipse
	C.3. Using Gradle without IDE support

